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ABSTRACT

Image registration is an image processing to transform different sets of data in which one

has an overlap with another into one coordinate system. Usually, the data is multiple

photographs such as the data from different sensors, times, depths, or viewpoints. Image

registration is a very important and popular research field in image processing, not only be-

cause the requirement of the medical image processing such as Computational Anatomy(CA)

which is applied to study health, disease and epidemiology and uses deformable mappings

between images as a basic technique, but also because it is the basis for the application of the

meteorological satellite spectral image data[1]. There are various methods for image regis-

tration, such as affine, deformable Directly Manipulated Free-Form Deformation(DMFFD),

diffeomorphic transformation method with mutual information(MI), mean squared differ-

ence(MSQ) or fast cross correlation(CC) as its similarity measure, thin spline method, land-

mark method and so on. In this paper, an new automatic image registration will be given

and discussed. This method has three parts which are edge searching, image registration

method by using multivariate spline function and automatic image registration with satellite

images. That is, we will introduce a new image registration method by using multivariate

spline functions. To facilitate the application with some previous results, we generalized

them by using matrix variable. The basic idea of our method is as follows: we had already

found the image registration method by using multivariate spline function, now we try to

update it as an automatic image registration method, so, firstly, we need find a suitable edge

searching method for this method, secondly, we need a method which can make those two

parts which are edge searching and image registration method by using multivariate spline

function works automatically. The summary of this paper as follows:

Chapter 1 includes the introduction and the preliminaries. The first section includes the

background of image registration and the recent progress of Spline Methods. The second

section provides definitions and theorems which will be used in this paper.

Chapter 2 describes the boundary selection method for multivariate spline method. There

are four sections in this chapter: In section 1, the Pre-boundary Selection Method 1 will be

introduce, this method is based on using Otsu’s method. In section 2, the Pre-boundary

Selection Method 2 will be introduce, this method is based on using sobel operator. In

section 3, the Boundary Selection Method will be given by using Pre-boundary Selection

v



Method 1 and Pre-boundary Selection Method 2. Section 4 introduces Object Recognition

Method which is based on the Boundary Selection Method.

Chapter 3 describes the multivariate Spline Method. There are four sections in this chapter:

In section 1, the feature point is introduced. In this section, feature points are chosen as the

interpolation points for multivariate spline functions. Section 2 is affine transformation. In

this section, we will demonstrate the way to calculate the affine transformation by using the

feature points. Section 3 introduces the Delaunay triangulation. By using the corresponding

interpolation points in output image, we will perform the corresponding Delaunay triangula-

tions in this section. Section 4 shows the application of multivariate spline interpolation. In

this section, the barycentric coordinates are used to evaluate the expression of multivariate

spline functions. Section 5 describes size determination. In this section, the size of the out-

put image is determined. Section 6 is the valuation scheme. In this section, two valuation

schemes can be used for output image.

Chapter 4 describes the Automatic Image Registration by using Multivariate Spline Method.

In this chapter, there are 2 sections. Section 1 is Pre-Selection Method for Automatic

Image Registration, the basic idea of the Pre-Selection Method is tried to find the first three

corresponding feature points automatically, then tried to find more corresponding feature

points as much as possible so that we can use the Multivariate Spline Method. Section 2

is Adding point Method for Automatic Image Registration, the basic idea of Adding point

Method is that try to match the number of points for the pair of corresponding feature

points, we add enough points so that the number of the points is equal to the least common

multiple(LCM) of the number of the points in corresponding feature points, then tried to find

more corresponding feature points as much as possible so that we can use the Multivariate

Spline Method.

Chapter 5 includes results and experimental procedures. We will show some results by using

both satellite image and MRI.

Chapter 6 includes the conclusion and future work. Some conclusion and future work will

be given in this chapter.

Key words: Automatic Image Registration, Multivariate, Spline, Delaunay Triangulation,

Affine Transformation, Edge Searching.
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Chapter 1: INTRODUCTION AND PRELIMINARIES

In this chapter, the first section includes the background of image registration and the recent

progress of spline methods. The second section provides definitions and theorems which will

be used in this dissertation.

1.1 Introduction

Image registration is an image processing to transform different sets of data in which one

has an overlap with another into one coordinate system. Usually, the data is multiple pho-

tographs such as the data from different sensors, times, depths, or viewpoints.

For image processing, there is no general agreement among authors regarding where image

processing stops and other related areas. The birth of what we call digital image processing

today can be traced back to 1964 when pictures of the moon transmitted by Ranger 7, those

pictures were processed by a computer to correct various types of image distortion inherent

in the on-board television camera at Jet Propulsion Laboratory(Pasadena, California), see

figure 1.1.

Since 1979, The tomograph was invented by Godfrey N. Hounsfield and Allan M. Cormack

Figure 1.1: First Picture of the Moon Transmitted by Ranger 7[3]
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and in 1895 X-rays were discovered by Wilhelm Conrad Roentgen[3]. These two inventions

still led to some of the most active application areas of image processing today, such as image

registration.

In the early days, image registration originated from the optical flow. Nowadays, most re-

searchers treat them as the same problem, since both of them focus on the relationship

between the given two images which may have been obtained at different times or different

views and so on for the same or different objects. In my opinion, there is still small difference.

Optical flow can give us important information about the spatial arrangement of the objects

viewed and the rate of change of this arrangement[4]. Discontinuities in the optical flow can

help in segmenting images into regions that correspond to different objects[5]. Here are some

early papers about how to deal with this kind of problem [6,7,8]. All of the above works

dedicate to predict the relationships and future changing of the interested objects, by image

registration, based on the existing images obtained from different time, different visual angle

and so on. It is very useful for weather forecasting and television signals.

Nowadays, many researchers focus on image registration. For image registration, studying

the relationship between the given images is still very important. After we know the rela-

tionship, we want to put the given images in one coordinate system or one image(output

image). In recent years, there are a host of clinical applications requiring this kind of image

processing. For example, one would like to compare two Magnetic Resonance Imaging (MRI)

scans of a patient, taken say six months ago and yesterday. Or someone needs to identify

differences between the two, e.g., the growth of a tumor during the intervening six months.

Someone may want to align Positron Emission Tomography (PET) data to an MR image,

so that to help identify the anatomic location of certain mental activation [9]. More over,

one may also want to register lung surfaces in chest Computed Tomography (CT) scans for

lung cancer screening [10]. While all of these identifications can be done in the radiologists

head, the possibility always exists that small, but critical, features could be missed. So the
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image registration is required to deal with those kind of problems.

More and more researchers are working on these kinds of problems, and some of them use

spline functions as the image registration method. Here are some published papers on this

research field: In 1994, Richard Szeliski and James Couglan use spline function to do image

registration[11]. In this paper, this algorithm is used to solve the problem including the com-

putation of optic flow (general pixel-based motion), stereo correspondence, structure from

motion, feature tracking and the recovery of 3D projective scene geometry. This method

is based on solving the image for CCD camera(visible light) so they use the first-degree

Bezier curve form as the spline interpolation function. The result looks petty good for CCD

camera image like trees, buildings and so on. In 1997, Seungyong Lee, George Wolberg and

Sung Yong Shin describe a fast algorithm for scattered data interpolation and approxima-

tion. Multilevel B-splines are introduced to compute a C2 -continuous surface through a set

of irregularly spaced points. They got a good result for image registration on the human

face(need a non-linear transform). This method we consider the similarity and transforma-

tion together, which is much faster. In recent years, as the medical requirement, a lot of

people focus on CT image and MRI for human organs, this is essentially different with CCD

camera images and much more difficult to do image registration.

In 1999, D. Rueckert,* L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J.

Hawkes used the Multilevel B-splines Method for breast MRI image registration, named

by Free-Form Deformation(FFD)[12], in which normalized mutual information is used as a

voxel-based similarity. In 2006, Nicholas J. Tustison and James C. Gee used the parame-

terized reconstruction method for data fitting. The parameterized reconstruction method

employs n-D Ck B-splines with typically utilized least-squares methodology for data fit-

ting[13]. In 2009, Nicholas J. Tustison, Brian B. Avants, and James C. Gee improved FFD

method for image registration, by directly using manipulated free-form deformation without

similarity, named DMFFD[14]. In 2013, Feiyu Chen, Peng Zheng, Penglong Xu, Andrew D.
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A. Maidment, Fengshan Liu and Xiquan Shi presented non-linear local affine transformation

method for image registration[15]. In [15], Sherped interpolation method is used to calculate

the affine transformation of each pixel.

The theory of multivariate spline functions has relatively matured. Actually, in 1977, M.

J. D. Powell and M. A. Sabin already proved that, under the Powell-Sabin Scheme, piece-

wise quadratic spline function exist a unique solution[16] for the given function and partial

derivative values on the vertices of a triangulation. In 1988, Renhong Wang , Wubao Wang,

Shoming Wang and Xiquan Shi found a method to calculate the piecewise quadratic spline

function for the Powell-Sabin Scheme on the same assumption[17]. In this paper, we will

generalize those results to matrix variable for image registration.

1.2 Preliminaries

In this section, some definitions and theorems are introduced which will be used in this

paper.

1.2.1 Transformations

In this section, I will introduce some transformations.

Definition1.1: In Euclidean geometry, a translation is a function that moves every point a

constant distance in a specified direction.

Matrix representation:

Tvp =



1 0 0 vx

0 1 0 vy

0 0 1 vz

0 0 0 1





px

py

pz

1


=



px + vx

py + vy

pz + vz

1


= p+ v

.
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Figure 1.2: Shear Mapping

Definition1.2: In Euclidean geometry, uniform scaling is a linear transformation that en-

larges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all

directions.

Matrix representation:

Svp =


vx 0 0

0 vy 0

0 0 vz



px

py

pz

 =


pxvx

pyvy

pzvz


. Definition1.3: A rotation is a circular movement of an object around a center (or point)

of rotation. A three-dimensional object rotates always around an imaginary line called a

rotation axis.

2D Matrix representation:

x′
y′

 =

cos Θ − sin Θ

sin Θ cos Θ


x
y


, Where Θ is the rotation angle. Definition1.4: In plane geometry, a shear mapping is

a linear map that displaces each point in fixed direction, by an amount proportional to

its signed distance from a line that is parallel to that direction, see Figure 1.2. Matrix
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representation: x′
y′

 =

x+my

y

 =

1 m

0 1


x
y


, x′

y′

 =

 x

mx+ y

 =

 1 0

m 1


x
y


. Definition1.5: In geometry, an affine transformation is a function between affine spaces

which preserves points, straight lines and planes include shear, translation, scaling and ro-

tation. Also, sets of parallel lines remain parallel after an affine transformation.

Augmented matrix: −→y
1

 =

A −→
b

0 1


−→x

1


. This is equivalent to −→y = A−→x +

−→
b . The above mentioned augmented matrix is called

affine transformation matrix, or projective transformation matrix.

1.2.2 Spline Function

In this section, spline function and some theorem are introduced that will used in this work.

Definition1.6[2]: Multivariate spline functions is defined by

Sµk (4) = {s ∈ Cµ(D)|s|Di
∈ Pk, i = 1, 2, ..., N}.

Where 4 is the partition of domain D, denote by D1, D2, ..., DN , and

Pk := {p =
k∑
i=0

k−i∑
j=0

cijx
iyj | cij is a real value}.
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. Definition1.7[18]: A d-degree Bezier hyper surface is given by

C(u1, u2, ..., un) =

N1∑
i1=0

N2∑
i2=0

...

Nn∑
in=0

Pi1,i2,...,in

n∏
j=1

Bij ,d(uj) (1.1)

where the basis for the Bezier hyper surface is given by

Bi,d(u) =

d
i

 (1− u)d−iui, 0 ≤ u ≤ 1. (1.2)

Definition1.8[18]: Let U = {u0, u1, ..., um} be a nondecreasing sequence of real numbers,

i.e., ui ≤ ui+1, i = 0, ..., m-1. The ui are called knots, and U is the knot vector. The ith

B-spline basis function of p-degree(order p+ 1), denoted by Ni,p(u), is defined as

Ni,0(u) =

 1, ui ≤ u < ui+1;

0, otherwise.
(1.3)

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (1.4)

Definition1.9[18]: A p-degree n-D B-spline hyper surface is defined as

S(u1, u2, ..., un) =

N1∑
i1=0

N2∑
i2=0

...

Nn∑
in=0

Pi1,i2,...,in

n∏
j=1

Nij ,d(uj) (1.5)

Lemma1.1[2]: Let p(x, y) ∈ Pk. If certain n zeros (xi, yi)(i=1, ..., n), n ≥ k+1 of a linear

polynomial

`(x, y) = ax+ by + c, qquada2 + b2 6= 0
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are also the zeros of p(x, y). Then p(x, y) is exactly dividable by `(x, y), that is, there is a

polynomial q(x, y) ∈ Pk−1 such that

p(x, y) = `(x, y)q(x, y) (1.6)

. Lemma1.2[2]: Let p(x, y) ∈ Pk, and q(x, y) be an irreducible algebraic polynomial. If

p(x, y) and q(x, y) have more than km common zeros, then p(x, y) is divisible by q(x, y).

Namely, there is a r(x, y) ∈ Pk−m such that p(x, y) = q(x, y)r(x, y).

Theorem1.3[2]: Let the representation of z = s(x, y) on the two arbitrary adjacent cells Di

and Dj be

z = pi(x, y) and z = pj(x, y)

where pi(x, y) and pj(x, y) ∈ Pk. In order to let s(x, y) ∈ Cµ(Di

⋃
Dj), if and only if there

is a polynomial qij(x,y)∈ Pk−(µ+1)d such that

pi(x, y)− pj(x, y) = [`ij(x, y)]µ+1qij(x, y), (1.7)

where Di and Dj have common interior edge

Γij : `ij(x, y) = 0,

and the irreducible algebraic polynomial `ij ∈ Pd.

Theorem1.4[2]: Let 4 be a straight line partition of D. The multivariate spline functions

s(x, y) ∈ Sµk (4) exists, if and only if for every interior mesh segment, there exists a smooth

cofactor of the s(x,y), and satisfies the global conformality condition

∑
Av

[`ij(x, y)]µ+1qij(x, y) ≡ 0, (1.8)
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where Av goes through all the interior mesh points, `ij ≡ aix + biy + ci = 0 is an interior

mesh segment around Av, and qi(x, y) ∈ Pk−µ−1 is the smooth cofactor on `i(x, y).

1.3 Main idea of this paper

In this section, I will show you the main idea of this paper by a picture. In this paper,

we build 2 different boundary selection methods, by combining those two methods, we find

the boundary image. We build a new simple method to extract the closed boundary from

the boundary image. Then we automatically matching the corresponding closed boundaries

between two given image, produce feature points and affine transformation for the corre-

sponding feature points. By using the feature points, we construct the triangulation. As

finding the mapping is the key for image registration. We obtain the mapping by using the

Multivariate Spline Functions which is affine transformation valued, not a traditional Spline

Function. This Multivariate Spline function is the mapping which defined on this triangu-

lation. We given two method for constructing this mapping. One is called Pre-Selection

Automatic Image Registration by using Multivariate Spline Method, The other is called

Adding point Automatic Image Registration by using Multivariate Spline function Method.

By the way, we did a lot of experiments for satellite images, at present, the automatic image

registration method given in this paper works well for all current experiments, see chapter 5

for more details.

For the detail of each part of this automatic image registration method will be shown in

chapter 2, chapter 3 and chapter 4.
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Figure 1.3: main idea of this paper
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Chapter 2: AN EDGE OF OBJECT RECOGNITION METHOD
FOR MULTIVARIATE SPLINE METHOD

In this chapter, a boundary selecting method will be given for satellite image. In order to

satisfy the multivariate spline Method, our boundary selection method is used for finding

the object in the image which the objects’ boundary has a closed curve. We will talk about

our boundary selecting method step by step in this chapter, further more, this method will

works for finding the closed curve. This Method include 2 boundary selection method. We

combine these two boundary selection method, so that the new boundary selection will works

well for the Multivariate Spline Method.

2.1 Pre-boundary Selection Method 1

In this section, we will introduce the first boundary selection method which we called pre-

boundary selection method 1. There are two steps for this method. Each step will be given

in the following sections.

2.1.1 Otsu’s method

As we know, most of satellite images are RGB images. There already have many methods

to convert RGB image to gray image, such as using the three values of each pixel in RGB

image to convert it into one value. So we don’t talk about it in our paper.

Firstly, in order to find the boundary, we will try to convert gray image to binary image. To

the best of my knowledge, the Otsu’s Method is one of the best simple and feasible method

to find the threshold for a given gray image. The other method is fisher linear discriminant.
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Here is the Otsu’s method[20]:

1.Searching for the threshold that minimizes the intra-class variance (the variance within

the class), defined as a weighted sum of variances of the two classes ω0 and ω1:

σ2
ω = ω0(t)σ2

0 + ω1(t)σ2
1 (2.1)

where ω0(t) =
∑t

i=1 p(i) and ω0(t) =
∑n

i=t+1 p(i), t is the threshold, p = n(i)/N is the

probability.

2.Otsu shows that minimizing the intra-class variance is the same as maximizing inter-class

variance:

σ2
b (t) = ω2 − σ2

ω = ω0(µ0 − µT )2 + ω1(µ1 − µT )2 = ω0(t)ω1(t)[µ0(t)− µ1(t)]2 (2.2)

which is expressed in terms of class probabilities ω and class means µ.

where µ0(t) =
∑t−1

i=0
ip(i)
ω0

, µ1(t) =
∑L

i=t
ip(i)
ω1

,µT =
∑L

i=0 ip(i).

As inter-class variance is first order, and intra-class variance is second order, so using the

maximizing inter-class variance.

Note: intra-class variance: σ2
ω = ω0σ

2
0 + ω1σ

2
1, inter-class variance: σ2

b = ω0(µ0 − µT )2 +

ω1(µ1 − µT )2

code:
function[thresholdotsu] = ThresholdingOtsu(Image)

nbins = 256;

counts = imhist(Image, nbins);

p = counts/sum(counts);

fort = 1 : nbins

qL = sum(p(1 : t));

qH = sum(p(t + 1 : end));
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miuL = sum(p(1 : t). ∗ (1 : t)′)/qL;

miuH = sum(p(t + 1 : end). ∗ (t + 1 : nbins)′)/qH ;

sigmab(t) = qL ∗ qH ∗ (miuL −miuH )2;

end

As Otsu’s method is roughly a one-dimensional, discrete analog of Fisher’s Discriminant

Analysis, we can use Fisher’s Discriminant Analysis as well.

Here is the Finisher’s Discriminant Analysis[18]:

Let

J(ω) =
ωT ∗ SB ∗ ω
ωT ∗ Sw ∗ ω

(2.3)

where SB = (µ1 − µ2)(µ1 − µ2)T is called Between-class scatter, Sw = S1 + S2 is called

Between-class scatter, Si = (x− µi)(x− µi)T , µi = 1
N

∑
xεωi

x

Finding the ω which can maximin the J(ω) is the key. By solving the following equation:

S−1
ω SBω = λω (2.4)

we can find this ω. Actually, without solving the equation,

ω = S−1
ω ∗ (µ1 − µ2) (2.5)

In the picture, the first picture show a direction of line which works bad for separating the

Figure 2.1: Finisher’s Discriminant
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given points, the second picture show the right direction ω which separate the given points

well. We can use this method to convert RGB image to gray image too.

In this paper, we will use first method as example, which is called Otsu’s method, as the

first step of finding the boundary.

Here is the input images(we take 2 satellite images as input):

Figure 2.2: Satellite017 Figure 2.3: Satellite018

Here is output images by using the Otsu’s method:

Figure 2.4: Satellite0171 Figure 2.5: Satellite0181
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2.1.2 Pre-boundary Determining

In this section, by using the result of gray images in the last section, we will find the boundary.

we call this method as pre-boundary determining Method 1.

As the image is gray image (i.e. the value of each pixel is 0 or 1), it will easy for us to

find the boundary, here is the method: First, in order to make the zero and non-zero points

Figure 2.6: 4 pixels

separately, we multiply each pixel by n, such as n = 2:

f(i, j) = f(i, j) ∗ n (2.6)

Second, for each pixel f(i, j), find the threshold R by multiply a scale on the different

between maximum and minimun of its n2 − 1 neighbourhoods (take n = 2 as example see

Figure 2.6). we can use this scale to control the boundary even if the given image is not a 0

or 1 image. If the different between f(i, j) and its three neighbourhoods is greater than the

threshold R, we will treat this point to be a boundary point. For ∀i, j ∈ Z+

R(i, j) = α(maxi,j=1,2(f(i, j))−mink=0,1(f(i+ k, j + k))) (2.7)

where α is the scale, α ∈ (0, 1).
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Note: The scale α ∈ (0, 1) is using for control the number of the boundary points. For any

input images, a bigger scale will give us less boundary points.

Here is the code:
functionimage1 = edge3(image1, d)

[m,n] = size(image1);

image1(m, :) = 0;

image1(:, n) = 0;

fori = 1 : (m− 1)

forj = 1 : (n− 1)

R = (max(max(image1(i : i + 1, j : j + 1)))−min(min(image1(i : i + 1, j : j + 1))))/d;

ifabs(image1(i, j)− image1(i + 1, j)) > R||abs(image1(i, j)− image1(i + 1, j + 1)) > R||abs(image1(i, j)− image1(i, j + 1)) > R

image1(i, j) = 100;

else

image1(i, j) = 0;

end

end

end

Here are the output images(see Figure 2.7 and Figure 2.8):

Figure 2.7: Satellite0172 Figure 2.8: Satellite0182

Form the out put image, some of close curves are show clearly. But there are a lot of

non-useful close curves too, we called it noisy curves. We want to select the exact object’s

boundary as a close curve for us to use in the further, so we need try to remove those noisy

curves.
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2.2 Pre-boundary Selection Method 2

In this section, we will talk about the second method for finding image’s boundary, called

pre-boundary selection method 2. The following subsection will show the method step by

step.

2.2.1 Find image gradient by using sobel operator

We are trying to use the derivative for boundary selection. As this is one of the most general

mathematic idea for finding the boundary of image. After the researching, we got the second

method in hand.

As the 2-D image has 2 dimensions, in order to have both 2 dimensions direction derivative

include in our method for boundary selection, of cause, we will try to use the image gradient,

such as gradient’s magnitude and gradient’s direction. The image gradient is a directional

change in the intensity or color in an image, its may be used to extract information from

images. To find the image gradient, there are some operators for us to use. For example,

Sobel, Prewitt, Central Difference and so on.

In this paper, we used sobel operator to find the image gradient. Here is the Multidimensional

discrete convolution formula:

f(n1, n2, ..., nk) =

m1∑
i1=−m1

m2∑
i2=−m2

...

mk∑
ik=−mk

h(i1, i2, ..., ik)x(n1 − i1, n2 − i2, ...., nk − ik) (2.8)

First, we need calculate the derivative for x-axis and y-axis.

For generally 2-D case,

Gx(i, j) = f(i+ 1, j)− f(i, j) (2.9)

Gy(i, j) = f(i, j + 1)− f(i, j) (2.10)
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where f(i, j) is the value of (i, j)’s pixel in image matrix A.

For 2-D sobel operator,

Gx(i, j) = α ∗


−1 0 1

−2 0 2

−1 0 1

 ∗ A (2.11)

Gy(i, j) = α ∗


−1 −2 −1

0 0 0

1 2 1

 ∗ A (2.12)

where ∗ is discrete convolution, A is a given image matrix, α is a parameter constant, usually

α = 1.

The gradient magnitude:

G(i, j) =
√
Gx(i, j)2 +Gy(i, j)2 (2.13)

The gradient direction:

Θ(i, j) = arctan(
Gy(i, j)

Gx(i, j)
) (2.14)

Here are the output images(see Figure 2.9 and Figure 2.10):

Figure 2.9: 017 magnitude Figure 2.10: 018 magnitude

According to the Figure 2.9 and 2.10, the results are not good enough for us to use it as the
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boundary of the given image, of cause, we can’t find any object on the out put images ether.

So we need further steps to make it works.

Note: The gradient magnitude image can give us some information about the value of the

directional derivative, so we should us it for boundary searching. But the gradient direction

can’t, it show some information about the direction, we didn’t use it for boundary selection.

2.2.2 Find boundary by using Image Gradient

In last section, we obtain the image gradient. In this section, we will try to use the gradient’s

magnitude to find the boundary of the given image. The basic idea is similar as the Pre-

boundary selection method 1, such as find the boundary point, set boundary point value

nonzero and other points value zero. So our boundary image should be a binary image too.

But the fuzzy mathematics will be used in this method, the reason is that we can’t determine

which pixel is the boundary or not(see Figure 2.9 and 2.10), even using human eye directing,

it’s still difficult to find the boundary points directly. As we try to use the fuzzy to do

the boundary selection, how to find the degree of membership for each pixels in the given

gradient’s magnitude image is the key for Pre-boundary selection method 2. The range of

degree of membership is [0, 1].

By the way, because those two method - Pre-boundary selection method 1 and Pre-boundary

selection method 2, are the advance preparation for the boundary selection, may not be

the exact boundary, we can use fuzzy mathematical method to help us for Pre-boundary

selection, even the boundary image may be include some of non-boundary pixels. But

disadvantage and advantage always come together. Because of this, in this method, we can

also use the degree of membership to control the number of boundary points, so that we can
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control the sharpness level of the boundary image. This is really helpful for us to find the

image’s finial edge.

The simplest method for calculate the degree of membership for each pixel is as follow: In

order to separate the value of each pixel well, firstly we square each pixels. Secondly, in order

to evaluate the degree of membership, as you know, the range of the degree of membership

is between 0 and 1, first step we find the maximum value and minimum value for the given

image matrix Am∗n.

Mf = max(i,j)(f(i, j)), mf = min(i,j)(f(i, j)). (2.15)

By using the equation 2.16, we can calculate the degree of membership for each pixel by

expression 2.16:

f(i, j) = (f(i, j)−mf )/Mf ∀i, j ∈ Z, 0 ≤ i ≤ m, 0 ≤ j ≤ n. (2.16)

The results are as follow(see Figure 2.11 and 2.12): When we obtain the degree of membership

Figure 2.11: 017 degree of membership Figure 2.12: 018 degree of membership

for each pixel, we can choose a threshold ε(see equation 2.17) for Figure 2.11 and 2.12 so
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that I can reduce the non-boundary pixels.

ε = 0.1n n > 0 (2.17)

So, we can use n to control the threshold ε. The boundary points will be all pixels which

the degree of membership is greater than ε, the Figure 2.13 and 2.14 are the pro-boundary

images. From the output image Figure 2.13 and 2.14, it is clearly that the boundary of the

Figure 2.13: 017 n=1.25 Figure 2.14: 018 n=1.25

objects such as cars in the image may have some breakpoints, and this is means that there

are some boundary points missing in this pro-boundary images. So, Dilation ([3] 9.1) for

this pro-boundary image A is need to make sure that we already include the boundary points

as many as we can. There are some other methods such as opening or closing Digital Image

Processing 9.3.

Dilation for Matrix:

Let A and B are matrix. The dilation of A and B, denoted as A
⊕

B, is defined as

A
⊕

B = {z | (B̂)z
⋂

A 6= φ} (2.18)
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Formula 2.18 is equivalent to Formula 2.19.

A
⊕

B = {z | (B̂)z
⋂

A ⊂ A} (2.19)

where B̂ = {z | z = −x,∀x ∈ B} is called the reflection of setB, Bz = {x | x = a−z,∀a ∈ B}

is called the translation of set B by point z = (z1, z2).

Take

B =


0 1 0

1 1 1

0 1 0

 (2.20)

This matrix B will be simplest matrix for us to do the dilation with the pro-boundary image

A. we pick up four-neighborhoods of each boundary points as the boundary points, of cause,

if this point is not a boundary point. We should mention that A
⊕

B is a set including all

non-zero points when we do the discrete convolution of matrix A and B. Such as expression

2.21 and 2.22, expression 2.22 may not be zero if A(1, 1) 6= 0, under this hypothesis, the

point (0,1) will be a new boundary point, as image matrix should count begin with (1,1)

and (0,1) can’t be a point in the pro-boundary image A.

f(0, 0) =
1∑

i=−1

1∑
j=−1

B(i, j) ∗ A(0− i, 0− j) = B(−1.− 1) ∗ A(1, 1) = 0 ∗ A(1, 1) = 0. (2.21)

f(0, 1) =
1∑

i=−1

1∑
j=−1

B(i, j) ∗ A(0− i, 1− j) = B(−1.0) ∗ A(1, 1) = A(1, 1) (2.22)

Note: Because the convolution formula require matrix B from a negative number to a positive

number, the size of matrix B should be odd ∗ odd, and 3 is the minimum odd number to be

the size of a matrix. This is the Pre-boundary selection method 2. From output image (the

figure 2.15 and figure 2.16), we find that the special objects in the original image(see figure
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Figure 2.15: 017 delation Figure 2.16: 018 delation

2.2 and 2.3) already include in the new pro-boundary image, and most of the noise edge in

the figure 2.7 and 2.8 are vanished. This is really good for us to find the boundary of the

given image.

2.3 Boundary Selection Method by using Method 1 and Method 2

The last step of our Boundary Selection Method for Multivariate Spline Method is find

the intersection part of the output images from Pre-boundary selection method 1 and Pre-

boundary selection method 2. Let Image Matrix A and B be the output image matrix

form Pre-boundary selection method 1 and Pre-boundary selection method 2 separately. As

addition and subtraction matrix is faster than For-loop in MATLAB, we find the intersection

by this way:

1. Let C = B − A.

2. We set the value of pixels which’s value is negative equals to 0 in image matrix C.

3. The boundary image matrix will equal to B − C. So, the boundary points which only

belongs to Method 1 will vanished.

So, the figure 2.17 and 2.18 are the boundary image by using our Boundary Selection Method
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Figure 2.17: 017 boundary image Figure 2.18: 018 boundary image

for Multivariate Spline Method.

2.4 Edge of Object Recognition Method by using Boundary Selection Method

In this section, we will talk about an Edge of Object Recognition Method by using the

Boundary Selection Method which we have already talked before, we called this Object

Recognition Method as Ending Point Zero Method.

As we have already obtained the boundary images(Figure 2.17 and Figure 2.18) for the input

images(Figure 2.2 and Figure 2.3). We will use it as example to show the Edge of Object

Recognition Method. As the edge of objects should be a closed circle, our goal is to find all

the closed circle in the boundary image.

First Step: The Ending Point Zero Method is inspected the boundary image column by

column to find the nonzero pixels. Take a 480 × 640 image as example, this is a 480 rows

and 640 columns’ image, the order of the inspection is form [1,1] to [1,480] then move to next

column form [2,1] to [2,480] and so on, until we find an nonzero pixel in boundary image.

Second Step: The Ending Point Zero Method need a searching direction so that we can

find the next point after we obtain an nonzero pixel. There are 4 directions such as up-right,

up-left, down-right, and down-left. Each Direction has a direction matrix. The size of the
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direction matrix is changeably. Usually, bigger size of direction matrix give us more object

in the result image. Each pixel of a direction matrix should be ordered. The order is flexible

depend on what we needed. In this paper, we use 3 by 3 matrix as our direction matrix,

look at Table 2.1 and 2.2 below, ’1, 2, 3, 4, 5, 6, 7, 8’ represent the order of each pixel which

is the picking up priority for each pixel in the direction matrix.

3 4 1

5 2 6
origin pixel 7 8

(a) up-right diection

1 4 3

6 2 5
8 7 origin pixel

(b) up-left diection

Table 2.1: up direction

origin pixel 7 8

5 2 6
3 4 1

(a) down-right diection

8 7 origin pixel

6 2 5
1 4 3

(b) down-left diection

Table 2.2: down direction

If every pixel is zero, we will change the direction to next direction. As we have 4 directions

the order of the direction is up-right, down-right, then down-left and up-left, and then up-

right. So that we can find a close curve from the boundary image. The direction of next

pixel will be set as the current direction. Note:

• The direction of initial pixel is up-left.

• If the direction didn’t change, the direction of next pixel will be set as the current pixel’s

direction, otherwise, the direction of next pixel will be set as the current direction.

Third Step: In Ending Point Zero Method,
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• case 1 is that the direction is changed 4 times, we still didn’t find the non-zero pixel,

we will set the current pixel as zero, then move to step one.

• Case 2 is the current pixel is the initial pixel or belong to a common 3 by 3 matrix.

We will take those pixel as a edge of an object and set them as zero, then move to step

one to find new close curves.

The Ending Point Zero Method result is as follow, see Figure 2.19 and 2.20, the blue curve

show all the pixel we pick up in the boundary image by using Ending Point Zero Method

which is the edge of object we find in the given image.

Figure 2.19: 017 edge of objects Figure 2.20: 018 edge of objects
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Chapter 3: THE DESCRIPTION OF MULTIVARIATE SPLINE
METHOD

3.1 Introduction

In this chapter, multivariate spline method for image registration is introduced step by step.

This method is based on the two dimensional spline function. As we know, a lot of researchers

working on the image registration by using spline and many papers have been published,

most methods using the multilevel B-splines method for image registration, our method is

based on the multivariate spline functions for image registration, whereas our method is more

reasonable, flexible and easy to control. To our knowledge, multivariate spline function is the

first on the application of the actual meaning of multi-dimensional spline functions for image

registration. Take “Directly Manipulated Free-Form Deformation image registration”[14] for

example, which is a paper published by Nicholas J. Tustison in 2009 on IEEE Transactions

on Image Processing. The main idea of [14] is using B-spline functions to approximate the

demand function. Actually, Bezier curve, a special case of the B-spline curve, is used to

approximate the demand function.

As we know, the two dimensional Bezier curve function combines two one-dimensional Bezier

curve bases directly. It is easy for us to get the general form, and it is easy for us to do the

calculation, since the bases are as follows:

Bi,d(u)= ( di ) (1− u)d−iui for 0 ≤ u ≤ 1 and 0 ≤ i ≤ d

What we need to do is to use the given conditions to calculate the control point or weight

for each Bezier curve base. The success or failure of the affair is all due to the general

form, because the domain of the 1-D Bezier curve bases is 0 ≤ u ≤ 1, and two-dimensional

Bezier curve function combined two of one dimensional Bezier curve bases directly, then
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Figure 3.1: Control Lattice for B-spline Function

the control lattice should be composed by unit squares, and overlaid on the domain of the

interpolation area where all of the control points are nodes of control lattice(like Figure

3.1). In this way, the relationship between the interpolation points and the partition of the

domain is independent. This problem is fatal, since they multiply the two one-dimension

Bezier bases directly to get the two-dimension interpolation function. Even though they

have extended to three dimensions or n dimensions, this problem is still fatal. Even if we use

the general B-spline bases, we still have this kind of problem. We can use any other shape of

polygon as the domain for any given piecewise polynomial, except the square or rectangle.

Clearly, this is because this kind of B-spline interpolation is not a real two-dimensional spline

interpolation, but instead a one-dimensional spline interpolation. we will use the multivariate

spline functions which are the real 2-D spline function fir the core technology, and I will give

the general form of the two-dimensional spline function and use it to deal with 2D image

registration. In order to use this core technology, we find a good algorithm to make it become

true. In this chapter, I will introduce it step by step in the following section, and use the

breast MRI as an example to explain our method, since breast MRI registration is a very

hot research topic in recent years.
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3.2 Feature Points

In this section, we will introduce the definition of feature points where finding the corre-

sponding feature points is first step of our method.

Definition3.1: Feature points is a set of two groups of corresponding points which are cho-

sen from the multiple images, say {X1, X2, ..., Xn} belong to one image and {Y1, Y2, ..., Yn}

belong to other image, where

Xi → Yi, for i=1,2,. . . ,n.

Each Xi and Yi is a group of the points which are chosen from each image. Here are the

corresponding rules for the feature points of Xi and Yi.

(1) Xi and Yi belongs to the similar part of each image for i=1,2,. . . ,n.

(2) The sharpness of Xi and Yi looks like the letter ’X’ or ’Y’, simultaneously, for i=1,2,. . . ,n.

(3) Choose the intersection point as the first point of Xi and Yi, and choose the corresponding

point around the intersection point on the corresponding side as other points of the Xi and

Yi for i=1,2,. . . ,n.

In this way, we get the feature points Xi and Yi. Take figures 3.2-3 as an example:

Figure 3.2: Feature Point Example X Figure 3.3: Feature Point Example Y

Clearly, the red point in the Figure 3.1 my feature point, say X1, and the corresponding red

point in Figure 3.2 is the corresponding feature point Y1. Here, we called intersection the
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corresponding point as the center point of the feature point or interpolation point.

Are the feature points useful? The answer is affirmative. In the real world, there is a lot of

intersecting curves such as the crossroads, vertices of a building and so on. For the image

registration of kind of images are easy, and our method works very well on them. These

types of images are not our concern. The point is the CT and MR images. Those kind of

images are much more complex. Could we find the feature points on these kinds of images?

The answer is yes. Here is an example:

Figure 3.4: Input Example I Figure 3.5: Input Example I’

These two images(Figure 3.4 and Figure 3.5) are breast MRIs. Figure 3.4 is the original

breast MRI and difficult for us to find the feature points. We can use software ImageJ to do

the brightness and contrast(B&R) with the original breast MRI to get Figure 3.5. Clearly,

we can find the as many intersecting curves as we want. That is because we make the image

clearer by using software ImageJ. As we know, there are connective tissues and ducts in the

breast.

Take the Figure 3.4 and Figure 3.6 as an example, where those two images are the MRI for the

same person which is sampled at different times, different angles and different compressions.
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Figure 3.6: Input Example II Figure 3.7: Breast Structure

Here are the feature points:

YSETS1=[ 137.75 138.88 138.5 139.25 139.25; 13.17 14.3 12.42 15.05 11.67];

XSETS1=[ 119.68 120.81 120.44 121.57 121.19; 49.3 50.06 48.55 50.81 48.55];

YSETS2=[ 185.45 185.08 184.23 188.75 188.56 189.78; 18.16 18.63 17.41 19.38 20.23

21.08];

XSETS2=[ 166.07 165.04 164.38 169.55 168.89 169.74; 57.49 57.87 56.64 59.37 59.56

60.12];

YSETS3=[ 110.93 109.24 106.98 109.52 107.83 112.63 114.6; 21.73 21.45 20.89 24.84

25.97 21.45 20.04];

XSETS3=[ 91.17 89.48 86.09 90.04 86.66 94 96.25; 57.02 56.45 56.45 58.99 60.69 55.61

54.76];

YSETS4=[ 202.2 202.11 201.45 202.67 201.45; 31.1 30.77 31.24 31.61 29.73];

XSETS4=[ 180.94 180.75 180.28 181.41 180.09; 70 69.72 70.38 70.76 68.5];

YSETS5=[202.2 202.58 202.86 202.01 201.82; 103.69 103.97 104.35 104.06 104.53];

XSETS5=[178.49 178.77 179.05 178.21 178.02; 139.25 139.54 139.91 139.63 140.01];
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YSETS6=[209.35 208.51 211.33 208.03 205.59 210.76; 127.21 125.61 122.04 129.47 131.73

124.01];

XSETS6=[189.4 188.28 191.38 187.81 184.89 190.72; 160.61 159.3 156.94 163.34 165.51

157.7];

YSETS7=[75.84 75.55 75.27 76.5 76.5 74.61; 91.93 90.99 92.49 91.55 92.77 93.06];

XSETS7=[48.55 47.99 47.61 48.74 49.12 46.47; 135.77 135.02 136.53 135.58 137.09 137];

We will use YSET(i)(: , 1) as interpolation points in following sections, where i = 1, 2, 3, 4,

5, 6, 7. For example, YSET(1)(: , 1) = [137.75; 13.17].

3.3 Best Affine Transformation

In this section, we will introduce Best Affine Transformations which include translation,

scaling, similarity transformation, reflection, rotation, shear mapping, and compositions of

them in any combination and sequence.

3.3.1 Evaluating Best Affine Transformation By Using Least Squares Algorithm

In the last section, we introduce the feature point. We assume each pair of corresponding

feature points are transformed by an affine transformation. It is doable, since the feature

point occupies a small local area in each breast MRI, and it can be considered as an affine

transformation if the area is small enough, where the transformation in this area is indepen-

dent with respect to the whole transformation function, although the whole transformation is

a non-rigid transformation. According to the data structure of the digital image, the smallest

subarea of digital images is pixel. That is, we have to obtain all the affine transformations

pixelwisely. Firstly, we find the affine transformations for each interpolation points.

Now, we focus on how to calculate the affine transformation under the feature points Xi
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and Yi. In the last section, we mentioned Xi = {Xi1, Xi2, ..., Xin} and Yi = {Yi1, Yi2, ..., Yin}

where Xij and Yij are the corresponding points that belong to the ith feature point. We

need find a matrix A and b, such that AXij + b = Yij satisfies all j=1,2 ... n, where

A =

 a11 a12

a21 a22

 and b =

 b11

b21

.

Usually it is impossible to find the A and b to fit with all AXij + b = Yij for the ith feature

point respectively, since there is at least four corresponding points in each feature points.

We can use the Least Squares algorithm(2.3) to find a suitable match.

F =
1

2

∑
j

tj|AXij + b− Yij|2 (3.1)

In Equation 3.1, tj represents the weight of the corresponding points Xij and Yij.

We will consider the more general case, that is the number of points in each feature point are

not equal to each other. We also calculate the Least Squares Algorithm in a more general

case.

3.3.2 N-D M-points Least-Squares Algorithm

In last section, Least-Squares Algorithm(2.3) is required for finding the affine transformations

for all of the feature points. As you know, the variable of the Least-Squares Algorithm(3.1)

is a matrix, and we will do the calculation for the general form of the Least-Squares Algo-

rithm(2.4) which has m corresponding pairs of points and the vector space is n-dimensional

with m ≥ n+1.

F =
1

2

m∑
i=0

ti|AXi + b− Yi|2 (3.2)
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In Equation 2.2 A =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


and b =



b11

b21

...

bn1


, ti is the weight of each

corresponding points Xi and Yi,

Now, we need to find an A and b to get the minA,b { F }, and, as we know, the partial

derivative should be zero at the extreme point. In this way, we can obtain (3.3)


∂F
∂apq

= 0, 1 ≤ p, q < n; (1)

∂F
∂bp

= 0, 1 ≤ p < n. (2)
(3.3)

Assume Fi = 1
2
〈AXi + b+ Yi, AXi + b+ Yi〉 for i=1,2,...,m. Where F=

∑m
i=0 Fi.

In this way, by using equation (3.3) (1), we have that:

∂Fi
∂apq

=

〈
∂A

∂apq
Xi, AXi + b+ Yi

〉
= 〈xipep, AXi + b+ Yi〉

= xip(e
T
pAXi + eTp b− eTp Yi) = xip(

n∑
k=1

apkxik + bp − yip),

where ep = ( 0 0 . . . 1p 0 . . . 0 )T , Xi = ( xi1 xi2 . . . xin )T and

Yi = ( yi1 yi2 . . . yin )T

It is implies that

∂F

∂apq
=

m∑
r=1

ti
∂Fi
∂apq

=
m∑
i=1

tixip

n∑
k=1

(apkxik + bp − yip)

=
n∑
k=1

(
m∑
i=1

tixipxik)apk + (
m∑
i=1

tixip)bq −
m∑
i=1

tixipyip = 0.
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By using 2.5(2) we have that:

∂Fi
∂bp

= 〈ep, AXi + b+ Yi〉 = eTpAXi + eTp b− eTp Yi

=

(
ap1 ap2 . . . apn

)


xi1

xi2
...

xin


+ bp − yip =

n∑
k=1

apkxik + bp − yip.

This is implies that:

∂F

∂bp
=

m∑
i=1

ti
∂Fi
∂bp

=
m∑
i=1

ti(
n∑
k=1

apkxik + bp − yip) =
n∑
k=1

(
m∑
i=1

tixik)apk + bp −
m∑
i=1

tiyip = 0.

Now we obtain two equations:


∑n

k=1 (
∑m

i=1 tixiqxik)apk + (
∑m

i=1 tixiq)bq =
∑m

i=1 tixiqyip (1)∑n
k=1 (

∑m
i=1 tixik)apk + bp =

∑m
i=1 tiyip (2).

(3.4)

As you know, we need separation of variables: A =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


and b =
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( b11 b21 . . . bn1 )T out, so that we can do the calculation easily though the computer.

So we obtain this form from the equation system 2.4 as follow:



a11 a12 . . . a1n bp

a21 a22 . . . a2n bp
...

...
. . .

... bp

an1 an2 . . . ann bp


×



∑m
i=1 tixi1xi1

∑m
i=1 tixi2xi1 . . .

∑m
i=1 tixinxi1

∑m
i=1 tixi1∑m

i=1 tixi1xi2
∑m

i=1 tixi2xi2 . . .
∑m

i=1 tixinxi2
∑m

i=1 tixi2
...

...
. . .

...
...∑m

i=1 tixi1xin
∑m

i=1 tixi2xin . . .
∑m

i=1 tixinxin
∑m

i=1 tixin∑m
i=1 tixi1

∑m
i=1 tixi2 . . .

∑m
i=1 tixin 1



=



∑m
i=1 tixi1yi1

∑m
i=1 tixi2yi1 . . .

∑m
i=1 tixinyi1

∑m
i=1 tiyi1∑m

i=1 tixi1yi2
∑m

i=1 tixi2yi2 . . .
∑m

i=1 tixinyi2
∑m

i=1 tiyi2
...

...
. . .

...
...∑m

i=1 tixi1yin
∑m

i=1 tixi2yin . . .
∑m

i=1 tixinyin
∑m

i=1 tiyin


(3.5)

Now we assume that

M =



∑m
i=1 tixi1xi1

∑m
i=1 tixi2xi1 . . .

∑m
i=1 tixinxi1

∑m
i=1 tixi1∑m

i=1 tixi1xi2
∑m

i=1 tixi2xi2 . . .
∑m

i=1 tixinxi2
∑m

i=1 tixi2
...

...
. . .

...
...∑m

i=1 tixi1xin
∑m

i=1 tixi2xin . . .
∑m

i=1 tixinxin
∑m

i=1 tixin∑m
i=1 tixi1

∑m
i=1 tixi2 . . .

∑m
i=1 tixin 1
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N =



∑m
i=1 tixi1yi1

∑m
i=1 tixi2yi1 . . .

∑m
i=1 tixinyi1

∑m
i=1 tiyi1∑m

i=1 tixi1yi2
∑m

i=1 tixi2yi2 . . .
∑m

i=1 tixinyi2
∑m

i=1 tiyi2
...

...
. . .

...
...∑m

i=1 tixi1yin
∑m

i=1 tixi2yin . . .
∑m

i=1 tixinyin
∑m

i=1 tiyin



B =



s1x11 s2x21 . . . smxm1

s1x12 s2x22 . . . smxm2

...
...

. . .
...

s1x1n s2x2n . . . smxmn

s1 s2 . . . sm



C =



s1y11 s2y21 . . . smym1

s1y12 s2y22 . . . smym2

...
...

. . .
...

s1y1n s2y2n . . . smymn


Above ti = s2

i and m ≥ n+1, now we get a very good optimization for the equation system

2.6 such as M = B ∗ BT ,N = C ∗ BT and X=[A b] with X ∗ B ∗ BT=C*BT . Furthermore,

as m ≥ n+1 we can obtain a unique solution for X. This is because Rank(B)=n+1 as m ≥

n+1, then Rank(M)=Rank(B ∗BT )=n+1.

In fact, as we use affine transformations, Rank(A)=2, Rank(b)=2, with

X=

 a11 a12 b1

a21 a22 b2

,

B =


s1x11 s2x21 . . . smxm1

s1x12 s2x22 . . . smxm2

s1 s2 . . . sm
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and

C =

s1y11 s2y21 . . . smym1

s1y12 s2y22 . . . smym2

,

where m ≥ 3. So, we need choose at least 3 corresponding points for each feature point. As

a matter of fact, we choose at least 4 corresponding points for each feature point and we set

t1 =0.9 since this is the intersection point of two curves.

3.4 Delaunay Triangulation

In this section, we will talk about the Delaunay triangulation.

In the last section, we are sampling some feature points, include the four corners, then we

need obtain a partition that depends on our feature points and four corner points. It is

because this method is based on the local transformation, those corresponding points and

corner points have to be the interpolation points to control the interpolation function in each

local area. This implies that the partition of the given image is dependent on those points.

There is a convenient way to do the partition with breast MRI - triangulation. As we know,

the triangle is the simplest polygon, so it is easy for us to get the partition with a triangle.

There is a proven technique of triangulation method to deal with our triangulation problem,

named Delaunay Triangulation.

Definition3.2: In mathematics and computational geometry, a Delaunay triangulation for

a set P of points in a plane is a triangulation DT(P) such that no point in P is inside the

circumcircle of any triangle in DT(P), see Figure 2.8.

Here are some properties, which is suitable for our method, about Delaunay triangulation:

1. Convex hull property (I will use it in next subsection)

2. Circumcircle property: In the Delaunay Triangulation, the circumcircle of any triangle is



39

Figure 3.8: Empty Circumcircle of Delaunay Triangulation

Figure 3.9: Delaunay Triangulation Schematic Diagram

empty (contains no interpolation points ).

3. Closest pair property: The closest pair of interpolation points are neighbors in the De-

launay triangulation.

4. Locally: When we add a new interpolation point, the triangulation is only changed in a

local area of this point, see Figure 3.9.

5. Unique: Under the same interpolation point set, the Delaunay triangulation is unique.

It is clear that the Delaunay triangulation is a kind of partition determined by the interpo-

lation points and it is unique, so it has a good property for our algorithm.

How to get the Delaunay triangulation under our center points of feature points:

1. Use four corner points to get a big triangle which is content themselves(this ptriangle

include all the center points).

2. Adding points: put one point in this triangle. This point should belong to some triangle.

Then we do the empty Circumcircle test, remove the triangle which is on longer Delaunay,



40

Figure 3.10: Delaunay Triangulation

and retriangulate the cavity with a fan around the new vertex, then we get a new Delaunay

Triangulation, see Figure 3.9.

3. Adding the points one by one and do the step 2. See Figure 3.10

3.5 Application Of Multivariate Spline Interpolation

In this section, the multivariate spline function will be discussed by using matrix variable.

In the previous section, I take org168 (Figure 3.4) and org911(Figure 3.6) as input image, I

will deform org911 and this source image with the deforming mapping or multivariate spline

function:

S : Source Image(I2)→ Output Image(R), denote by S(x, y) = (xo, yo), (3.6)

S(4) =



S1(x, y) (x, y) ∈ D1

S2(x, y) (x, y) ∈ D2

...

Sn(x, y) (x, y) ∈ DN

Si(x, y) =

a11i(x, y) a12i(x, y) b1i(x, y)

a21i(x, y) a22i(x, y) b2i(x, y)

 (3.7)
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Figure 3.11: Unit Triangle

where 4 is Delaunay Triangulation of input image, denote by D1, D2, ..., DN , N is the

number of triangles in the partition, (x, y)∈ source image, (xo,yo) ∈ Output Image and

a11i(x, y), a21i(x, y), a12i(x, y), a22i(x, y), b1i(x, y), b2i(x, y) ∈ P2 for all i=1, 2, ..., N.

On the other hand, there is no change with org168 except translation so I call it reference

image with the mapping:

T : Reference Image(I1)→ Output Image(R), denote by T (x, y) = (xo, yo), (3.8)

where (x, y)∈ reference image and (xo,yo) ∈ Output Image.

As we know, multivariate spline function is a piecewise polynomial, and we already have the

domain of very piecewise by using Delaunay triangulation in the last section. Here, we need

take care that all coefficients of the spline function is 2 by 3 matrix. Now, take any triangle

in the Delaunay triangulation for example see Figure 3.11. Now, the restricted expression of

the multivariate spline function S under the 4ABC is very important.

Clearly, A, B and C are the interpolation points, as we used center point of feature point

as interpolation point. In section 3.3, we already got the value for all interpolation points.

In order to get an appropriate and more accurate transformation, we will also initialize the

partial differential value on each interpolation point(see equation 3.11 and 3.12).

∂S(x, y)

∂x
=

∂a11i (x,y)

∂x

∂a12i (x,y)

∂x

∂b1i (x,y)

∂x

∂a21i (x,y)

∂x

∂a22i (x,y)

∂x

∂b2i (x,y)

∂x

 (3.9)
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∂S(x, y)

∂y
=

∂a11i (x,y)

∂y

∂a12i (x,y)

∂y

∂b1i (x,y)

∂y

∂a21i (x,y)

∂y

∂a22i (x,y)

∂y

∂b2i (x,y)

∂y

 (3.10)

In this way, we have three vertices with two partial derivatives and their value as given

conditions. Totally, we have nine matrices given conditions in this triangle domain. We

can use binary quadratic polynomial as an interpolation function on this triangle domain,

and use the Powell-Sabin Scheme to do the refinement on this triangle domain. It is because

binary quadratic polynomials have six degrees of freedom for its coefficients and binary cubic

polynomials have ten degrees of freedom for its coefficients, so we choose binary quadratic

polynomial as an interpolation function with Powell-Sabin Scheme. This is also one reason

that we use the Delaunay triangulation as the partition method for our algorithm. As we

know, Powell-Sabin Scheme has been proved in function form, now it will be extended to

matrix form so that it can be used for our algorithm.

3.5.1 Generalization Of Powell-Sabin Scheme On Matrix Variable

In this section, we will extend the Powell-Sabin Scheme to matrix form. No matter in theory

or in practical application, this work is very useful. Here is our problem, we need to find a

suitable way to refine the triangle, like Powell-Sabin Scheme. As we know, there are four

methods to refine the triangle, see Figure 3.12-3.15 for the triangle refinements. In figure

Figure 3.12: Triangle Refinement Method 1 Figure 3.13: Triangle Refinement Method 2

3.12-3.15, we require Φ(x, y)= Si(x, y) to be a quadratic polynomial on every small triangle

and belong to C1[4ABC], hence, a11i(x, y), a12i(x, y), b1i(x, y), a21i(x, y), a22i(x, y) and

b2i(x, y) ∈ C1[4ABC]. In method 1, 2 and 4, the point P, Q and R are arbitrarily chosen on
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Figure 3.14: Triangle Refinement Method 3 Figure 3.15: Triangle Refinement Method 4

the triangle side. In method 2, point O is also an arbitrary interior point of the triangle. In

method 3, AP, BQ and CR are concurrent.

In method 1, we subdivide triangle into four triangle. This subdivision is not suitable since it

has only 8*6 degrees of freedom, but we have totally 9*6 given conditions, as each coefficient

has 6 degrees of freedom. So this triangle should be divided into more than four parts.

Method 2 is suitable which will proved later. Method 4, may not be symmetric when we put

all the Delaunay triangle together, is not suitable neither. In Method 3, there are 12 small

triangles, and the degree of freedom is 12*6, so usually we can not get a unique solution with

9*6 given conditions, therefore, this method is not suitable.

Theorem 3.5.1: There is a uniqueness binary quadratic polynomial interpolation function

by using method 2.

Now, we show that method 2 is suitable. we have six given condition such as S(A), S(B),

S(C), ∂S(A)
∂x

, ∂S(B)
∂x

, ∂S(C)
∂x

, ∂S(A)
∂y

, ∂S(B)
∂y

and ∂S(C)
∂y

and all of them are 2 by 3 matrix. Assume

all of them is zero. Then a11i(A)=0, a11i(B)=0, a11i(C)=0,
∂a11i (A)

∂x
=0,

∂a11i (B)

∂x
=0,

∂a11i (C)

∂x
=0,

∂a11i (A)

∂y
=0,

∂a11i (B)

∂y
=0 and

∂a11i (C)

∂y
=0. Firstly, show a11i(x, y)=0.

1. Show that a11i(x, y) |BC=0

Without loss of generality, assume lBC on the X-axes, or translate it if not. Then

 a11i(x, y) |BP= ax2 + bx+ c, x ∈ BP

a11i(x, y) |CP= a11i(x, y) |BP +λ(x− xp)2, x ∈ CP
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Figure 3.16: Triangle Refinement Method2 Subdivision OBC

Since a11i(B) |BP=0, a′11i
(B) |BP=0, a11i(C) |CP=0 and a′11i

(C) |CP=0, then a=b=c=λ=0.

Therefore a11i(x, y) |BC=0.

2. Show that Oa11i(x, y) |BC=0, see Figure 3.15. Assume a11i(x, y) |OPB=P1 and a11i(x, y) |OPC=P2.

Since a11i(x, y) |BC=0, by using Lemma 1.1, we have


P1 = Pb(x, y)lBP , (x,y)∈MOBP and Pb(x, y)∈ P1

P2 = Pc(x, y)lCP , (x,y)∈M OCP and Pc(x, y)∈ P1

P1 − P2 = λ(lOP )2

We consider the directional derivative along OP, then: DOPP1 = DOPP2 + λDOP (lOP )2.

Assume lOP :mx+ ny + l = 0, then the direction vector is (n,−m). Now we have that:

λDOP (lOP )2 = λ(2 ∗ lOP ∗m ∗ n− 2 ∗ lOP ∗m ∗ n) = 0

We obtain that DOPP1 = DOPP2, As P1 ∈
∏

3, then DOPP1 = DOPP2 ∈
∏

2.

Assume DOPP1 = ax+b, as DOPP1(B)=0 and DOPP2(C)=0, then a=b=0.

Therefore DOPP1 = DOPP2=0, then Oa11i(x, y) |BC=0.

3. Show that P1 = P2.
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As Oa11i(x, y) |BC=0, similarly, we can proof a11i(x, y) and Oa11i(x, y) are zero on the perime-

ter of triangle ABC. By using lemma 1.1, it means that:


P1 = f1 ∗ (lBC)2, (x,y)∈MOBP

P2 = f2 ∗ (lBC)2, (x,y)∈M OCP

P1 − P2 = λ(lOP )2

Hence, (f1-f2) (lBC)2 = λ(lOP )2. As we know, ((lBC)2, (lOP )2) = 1, otherwise, P1 = P2 =

0. Since (f1-f2) (lBC)2 - λ(lOP )2 ≡ 0, then f1 = f2 and λ = 0. Therefore P1 = P2.

4. Show that a11i(x, y)=0.

Since P1 = P2, Oa11i(x, y) |BC=0 and a11i(x, y) |BC=0, then a11i(x, y) |OBC = λ1(lBC)2.

Similarly, we can obtain that:


a11i(x, y) |OBC= λ1(lBC)2, (1)

a11i(x, y) |OAC= λ2(lAC)2, (2)

a11i(x, y) |OBA= λ3(lBA)2, (3)

By using Theorem 1.3, we can obtain that:


a11i(x, y) |OBC −a11i(x, y) |OAC= λ4(lOC)2, (4)

a11i(x, y) |OAC −a11i(x, y) |OBA= λ5(lOA)2, (5)

a11i(x, y) |OBA −a11i(x, y) |OBC= λ6(lBO)2, (6)

Now, our subdivision reduce as Figure 3.16. By using (1), (2) and (4), we have λ1(lBC)2 -

λ2(lAC)2 = λ4(lOC)2. Since lBC , lAC and lOC are in the same plane, then there exists m and

n, such that lOC = m lBC + n lAC . Substituted it, we can obtain that:

λ1(lBC)2 − λ2(lAC)2 = λ4 ∗ (m ∗ lBC + n ∗ lAC)2
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Figure 3.17: Triangle Refinement Method2 Retrograde Triangle

λ1(lBC)2 − λ2(lAC)2 − λ4 ∗ (m ∗ lBC + n ∗ lAC)2 ≡ 0

(λ1 − λ4m)(lBC)2 − (λ2 + λ4n)(lAC)2 − 2λ4mnlBC lAC ≡ 0

As we know, (lBC , lAC) = 1, otherwise, BC and AC coincide. For this reason, we obtain that

((lBC)2, (lAC)2, lBC lAC) = 1. This is implies λ1 − λ4m = λ2 + λ4n = λ4mn = 0.

Now, we consider λ4mn = 0.

Case 1. mn 6= 0, then λ4 = 0. By using (1), (2) and (4), we can obtain λ1 = λ2 = 0.

Therefore λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = 0. Therefore a11i(x, y)=0.

Case 2. mn = 0, assume m = 0. Then lOC = n lAC . This implies that OC and AC coincide,

clearly, a11i(x, y) |OAC = 0. and we can also obtain that:

 a11i(x, y) |OBC= λ1(lBC)2, a11i(x, y) |OBC= α1(lAC)2.

a11i(x, y) |OBA= λ3(lBA)2, a11i(x, y) |OBA= α3(lAC)2.
(3.11)

As we know, (lBC , lAC) = 1 and (lBA, lAC) = 1, then by using equation 2.13 we can obtain

that λ1 = λ3 = 0.∴ a11i(x, y)=0.

In this way, we can proof that a11i(x, y), a12i(x, y), b1i(x, y), a21i(x, y), a22i(x, y) and b2i(x, y)

≡ 0. So, under this conditions, we can obtain Si(x,y) ≡ 0.

As we know, by using our given conditions, we can obtain a linear equations system, denote

by RX = d, where R is a (9*6) by (9*6) matrix, X and d are a (9*6) by 1 matrices. What

we done here is that: assume d = 0, then X = 0. So, R is a non-single matrix. By using
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this subdivision (method 2), the interpolation function is uniqueness.

3.5.2 Expression Of Multi-Variate Spline Function

In this section, we will show how to calculate the multi-variate spline function.

From last section, we know that method 2 (Figure 3.13) is a suitable subdivision. Since

the point O is arbitrarily chosen in method 2, now we choose it as the incenter for each

triangle(See Figure 3.18).

Figure 3.18: Triangle Refinement Method2
Use Incenter

Figure 3.19: Triangle Refinement Method2
Subdivision

We connected the incenter for each two triangles which has common edge and denote the

intersection point as the point in that triangle’s edge. In this way, we obtain the subdivision

for the Delaunay Triangulation, see Figure 3.19(didn’t connect incenter with three vertices).

Here is the formal to calculate the incenter of triangle:

O =
aA+ bB + cC

a+ b+ c

Where O, A, B and C are coordinate for those four points, a =| BC |, b =| AC | and c =|

AB |. Before we calculate the multi-variate spline function for our algorithm, we need to

introduce the barycentric coordinate system which is defined by August Ferdinand Mbius, as

we will calculate the multi-variate spline function under the barycentric coordinate system.
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Figure 3.20: Unit Triangle in Euclidean Coordinates

Barycentric coordinates are also known as area coordinates, because the coordinates of

P with respect to triangle ABC are proportional to the (signed) areas of PBC, PCA and

PAB(see Figure 3.20). Assume the coordinate of point P=(α1, α2, α3), then

α1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xp xB xC

yp yB yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xB xC

yA yB yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xp xC

yA yp yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xB xC

yA yB yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xB xp

yA yB yp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xB xC

yA yB yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.12)

This is implies that:

1. α1 + α2 + α3 = 1.

2. The coordinate of three vertices are (1, 0, 0), (0, 1, 0) and (0, 0, 1).

3. For any given point P ∈ 4 ABC, there exist u, v, w ≥ 0 and satisfy property (1), s.t. P

= α1A + α2B + α3C.

As we know, in a Euclidean coordinate system, the coordinates always change, when we

worked on different triangle. But we do not need to worry about it in a barycentric coordinate

system, since the coordinates of three vertices will never change and the coordinates of all
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inside point is a linear combination of the coordinates of three vertices. More over, by using

the above properties, we can obtain some relationship between those two systems. Here are

two lemmas about the direction differential in a barycentric coordinate system.

Lemma3.5.1[2]:

DTj−Tiαk =


1, if j=k

−1, if i=k

0, otherwise

(3.13)

where (x, y) ∈ R2 and (α1, α2, α3) ∈ barycentric coordinate system, T1, T2, T3 are three

vertices of the triangle.

Lemma3.5.2[2]: For any given function f(x), let y = x1 - x2, denote ti = (αi1, αi2, αi3) as

the barycentric coordinate of xi, and (β1, β2, β3) =t1 - t2. Then we have:

Dyf(x) = Dx1−x2f(x) = β1
∂f(t)

∂α1

+ β2
∂f(t)

∂α2

+ β3
∂f(t)

∂α3

(3.14)

Here, f(t) is obtained by replacing argument x in f(x) with its area coordinate t.

Now, we calculate the multi-variate spline function: We will use Method 2(see Figure 2.13),

The given condition is S(A), S(B), S(C), ∂S(A)
∂x

, ∂S(B)
∂x

, ∂S(C)
∂x

, ∂S(A)
∂y

, ∂S(B)
∂y

and ∂S(C)
∂y

By

using Lemma 2.5.2, we can obtain that all of the directional derivative of three vertices

such as DA−RS(A), DA−OS(A), DA−QS(A), DB−RS(B), DB−OS(B), DB−PS(B), DC−PS(C),

DC−OS(C), DC−QS(C). Firstly, we calculate the value and directional derivative for points

P, Q, R, O. By using Theorem 1.4 we can obtain that:
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1. Point O with its coordinate (αO, βO, γO):



2S(O) +DA−OS(O) = 2S(A) +DO−AS(A) (1)

2S(O) +DB−OS(O) = 2S(B) +DO−BS(B) (2)

2S(O) +DC−OS(O) = 2S(C) +DO−CS(C) (3)

αODA−OS(O) + βODB−OS(O) + γODC−OS(O) = 0 (4)

By using (1)∗αO + (2)∗βO + (3)∗γO - (4), we obtain:

S(O) =
αO(2S(A) +DO−AS(A)) + βO(2S(B) +DO−BS(B)) + γO(2S(C) +DO−CS(C))

2

Hence, we can obtain:

DA−OS(O) = 2S(A) +DO−AS(A)− 2S(O)

DB−OS(O) = 2S(B) +DO−BS(B)− 2S(O)

DC−OS(O) = 2S(C) +DO−CS(C)− 2S(O)

2. Point P with its coordinate (0, βP , γP ), here, αP = 0:



2S(P ) +DO−PS(P ) = 2S(O) +DP−OS(O) (1)

2S(P ) +DB−PS(P ) = 2S(B) +DP−BS(B) (2)

2S(P ) +DC−PS(P ) = 2S(C) +DP−CS(C) (3)

βPDB−PS(P ) + γPDC−PS(P ) = 0 (4)

By using (1)∗αP + (2)∗βP + (3)∗γP - (4), we obtain:

S(P ) =
αP (2S(O) +DP−OS(O)) + βP (2S(B) +DP−BS(B)) + γP (2S(C) +DP−CS(C))

2



51

Hence, we can obtain:

DO−PS(P ) = 2S(O) +DP−OS(O)− 2S(P )

DB−PS(P ) = 2S(B) +DP−BS(B)− 2S(P )

DC−PS(P ) = 2S(C) +DP−CS(C)− 2S(P )

3. Point Q with its coordinate (αQ, 0, γQ), here, βQ=0:



2S(Q) +DA−QS(Q) = 2S(A) +DQ−AS(A) (1)

2S(Q) +DO−QS(Q) = 2S(O) +DQ−OS(O) (2)

2S(Q) +DC−QS(Q) = 2S(C) +DQ−CS(C) (3)

αQDA−QS(Q) + βQDB−QS(Q) + γQDC−QS(Q) = 0 (4)

By using (1)∗αQ + (2)∗βQ + (3)∗γQ - (4), we obtain:

S(Q) =
αQ(2S(A) +DQ−AS(A)) + βQ(2S(O) +DQ−OS(O)) + γQ(2S(C) +DQ−CS(C))

2

Hence, we can obtain:

DA−QS(Q) = 2S(A) +DQ−AS(A)− 2S(Q)

DO−QS(Q) = 2S(O) +DQ−OS(O)− 2S(Q)

DC−QS(Q) = 2S(C) +DQ−CS(C)− 2S(Q)
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4. Point R with its coordinate (αR, βR, 0), here, γR=0:



2S(R) +DA−RS(R) = 2S(A) +DR−AS(A) (1)

2S(R) +DB−RS(R) = 2S(B) +DR−BS(B) (2)

2S(R) +DO−RS(R) = 2S(O) +DR−OS(O) (3)

αRDA−RS(R) + βRDB−RS(R) + γRDC−RS(R) = 0 (4)

By using (1)∗αR + (2)∗βR + (3)∗γR - (4), we obtain:

S(R) =
αR(2S(A) +DR−AS(A)) + βR(2S(B) +DR−BS(B)) + γR(2S(O) +DR−OS(O))

2

Hence, we can obtain:

DA−RS(R) = 2S(A) +DR−AS(A)− 2S(R)

DB−RS(R) = 2S(B) +DR−BS(B)− 2S(R)

DO−RS(R) = 2S(O) +DR−OS(O)− 2S(R)

By using the above method and under the barycentric coordinate system, it is easy to

find that we obtain a similar form results, it is a pretty form, and it’s easy for program

implementation.

Second Step: Now, we consider the unit triangle, a general piece after subdivision(see Figure

3.21).

Assume the given condition on this unit are S(u), S(v), S(w), Du−vS(v), Dv−wS(w) and

Dw−uS(u). As a matter of fact, we know all the vertices’ value and directional derivative.

Let

S|4uvw = P (x1, x2, x3) = ax2
1 + bx1x2 + cx2

2 + dx1x2 + ex2x3 + fx2
3 (3.15)

where a, b, c, d, e, f are 2 by 3 matrix and x1 + x2 + x3 = 1. Then we can obtain that:
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Figure 3.21: Unit Triangle in Barycentric Coordinate

P (u) = P (1, 0, 0) = a = S(u)

P (v) = P (0, 1, 0) = c = S(v)

P (w) = P (0, 0, 1) = f = S(w)

(3.16)

By using Lemma 3.5.2, we obtain that:

1. u - v = (1, 0, 0) - (0, 1, 0) = (1, -1, 0), hence,

Du−vP (v) = Du−vP (0, 1, 0) = b− 2c = b− 2S(v) (3.17)

So, b = Du−vP (v) + 2S(v).

2. v - w = (0, 1, 0) - (0, 0, 1) = (0, 1, -1)

Dv−wP (w) = Dv−wP (0, 0, 1) = e− 2f = e− 2S(w) (3.18)

So, e = Dv−wP (w) + 2S(w).

3. w - u = (0, 0, 1) - (1, 0, 0) = (-1, 0, 1)

Dw−uP (u) = Dw−uP (1, 0, 0) = d− 2a = d− 2S(u) (3.19)
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So, d =Dw−uP (u) + 2S(u). By using the above method and under the barycentric coordinate

system, it is easy to find that we still can obtain a similar form results for the final multi-

variate spline function.

In this way, every point in the image(I1) has an affine transformation which is given by the

Multi-Variate Spline Function. By using the multi-variate spline functions, we can get our

image registration result.

3.6 Size Determination

In this section, we will talk about the size of output image. Since we will use the inverse

function of the multi-variate spline function to evaluate the gray value with the point on

the output image. As we know, the input coordinate (x,y) ∈ Z×Z, but output coordinate

may not belongs to Z×Z. So we use the inverse function of Multi-Variate Spline Function to

evaluation the output image. When we get the corresponding coordinate in the input image,

we can use some methods such as the nearest neighbor method, bilinear method and so on

to get the gray value for output image.

Now, the most important thing is that to determine the size of output image, so that we

can use the inverse function of Multi-Variate Spline Function to evaluation the gray value

on the output image. As we know, the size of output image should be big enough for the

Range(T ) and Range(S).

Firstly, we assume T is identical mapping, then the Range(T )= Domain(T ).

Secondly, we need calculate the Range(S). For the requirement and the convenience of

our method, we will use the image of the four corner points in the source image as the

corresponding four corner points in the output image.

Next, we need find the affine transformation for the four corner points.

I will use Shepard interpolation to find the affine transformation for the four corner points.
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We denote Pi as my center point of feature points and Ai, bi are the corresponding affine

transformation for the center point of feature points, i = 1, 2, ..., n. The Shepard interpo-

lation is given by :  Φ(Qij) =
∑n

i=1 d
−1
i [Ai bi]∑n

i=1 d
−1
i

di =
√

(xQij
− xPi

)2 + (yQij
− yPi

)2

(3.20)

, where i,j = 1, 2 and di is the distance between Qij and Pi.

Now, we can do the calculation to determine the size of the output image:

Firstly, we calculate the corresponding points of each interpolation point in output image.

Ri = Ai ∗Qi + bi (3.21)

, where Qi is the coordinate of ith interpolation point.

Secondly, we put the four vertices of reference image into {Ri}.

As {Ri} may have a negative coordinate, so we may translate the whole output image. Here

is the size and translation:

xmin = mini,j {xRij
} ymin = mini,j {yRij

}

xmax = maxi,j {xRij
} ymax = maxi,j {yRij

}
(3.22)

Hence, the size is equal to [xmax-xmin, ymax-ymin].

shiftx = |min {xmin, 0}| shifty = |min{ymin, 0}| (3.23)

3.7 Valuation Scheme

In this section, I will show a method to do the assignment for the point in the output image.

For the source image, it is a little difficult. Here are two methods:
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Method 1: Do a loop for all the point in the source image, determine the corresponding

triangle for the each point. We can use equation 3.12 to find the corresponding triangle:

α1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xp xB xC

yp yB yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xB xC

yA yB yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xp xC

yA yp yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xB xC

yA yB yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xB xp

yA yB yp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

xA xB xC

yA yB yC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
If all of α1, α2 and α3 are more than or equal to zero, then this is the corresponding triangle.

Algorithm 1:

1. Do the loop for all triangles in the Delaunay triangulation.

2. Use 3.12 to do the test.

3. If α1 ≥ 0, α2 ≥ 0 and α3 ≥ 0

4. Do loop for the subdivision triangles

5. Use 3.12 to do the test.

6. If α1 ≥ 0, α2 ≥ 0 and α3 ≥ 0

7. The point belongs to this triangle.

8. Else the point does not belong to this subdivision triangle.

9. Else the point does not belong to this subdivision triangle.

10. Use multi-variate spline function to do assignment for the point in output image.

Method 2: Do For Loop with each subdivision triangle, in each for loop we do the for loop

with the point in this triangle. It is easy to do for loop with all subdivision triangle. Now

we show how to do for loop with the point in the triangle:

Look at Figure 3.23, the line equations are as follow:
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Figure 3.22: Valuation Scheme Case1 Figure 3.23: Valuation Scheme Case2

`AB : fAB(x) = yB−yA
xB−xA

(x− xA) + yA

`AC : fAC(x) = yC−yA
xC−xA

(x− xA) + yA

`BC : f(x)BC = yB−yC
xB−xC

(x− xC) + yC

(3.24)

and the coordinate of D is (xD, fAC(xD)).

Algorithms2:

1. Arrange the vertices by xA ≤ xB ≤ xC .

2. If yB ≤ fAC(xD)

3. Use case2, p=-1, Else, use case1, p=1.

5. Do For Loop:

6. for i= [xA] : [xD]

7. for j= fAC(i) : p : fAB(i)

8. Use multi-variate spline functions to do the assignment for the point in output image.

9. for i= [xD] : [xC ]

10. for j= fAC(i) : p : fBC(i)

11. Use multi-variate spline functions to do the assignment for the point in output image.
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Chapter 4: AUTOMATIC IMAGE REGISTRATION BY USING
MULTIVARIATE SPLINE METHOD

In this chapter, the Automatic image Registration by using Multivariate Spline Method will

be introduced. As we already have an Edge of Object Recognition Method for Multivariate

Spline Method and Multivariate Spline Method in hand. Actually, it won’t difficult to build

an automatic Image Registration Method. Two methods will be given in this chapter, one

is called Pre-Selection Automatic Image Registration by using Multivariate Spline Method,

write as PAMSM for short. The other is called Adding point Automatic Image Registration

by using Multivariate Spline Method, write as AAMSM for short. Both of these two methods

are using the edge searching method and Multivariate Spline Method.

4.1 Pre-Selection Automatic Image Registration by using Multivariate Spline

Method

In this section, we will talk about the Pre-Selection Method for Automatic Image Regis-

tration by using Multivariate Spline Method which is builded by using the Edge of Object

Recognition Method and Multivariate Spline Method.

According to the Multivariate Spline Method, firstly, we need find the feature points. Ac-

cording to the section 2.4. we already find the edge of objects for the given satellite image,

such as Figure 2.2 and 2.1 as the input image, and the output image are Figure 2.19 and

2.20. As you know, the blue closed curves which are showed on the Figure 2.19 and 2.20

are the objects that we find by using the Ending Point Zero Method. The PAMSM is used

the blue closed curves as the feature points for each given input image. Then finding the

corresponding feature points for the image registration.
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In the PAMSM, as feature point is a set of points, we build the feature point by this way:

taking the centre point of each blue close curve as the first point and taking all of points on

the blue close curve as the other points, so that we have a points’ set as the feature point.

Now, each input images has a set of feature points which depends on how many closed curves

we can find on the given image.

To find the corresponding feature points, we need use the brute-force search or exhaustive

search, in computer science, which is a very general problem-solving technique that consists

of systematically enumerating all possible candidates for the solution and checking whether

each candidate satisfies the problem’s statement. So, we pick up one feature point one feature

point from one image, and try to find the corresponding feature points from the other image

by calculating the matching error.

The matching error is calculated by using the L-2 Norm. According to the section 3.3 Best

Affine Transformation, we can find the affine transformation for any pair of given feature

points. For example, take Xi = {x1i, x2i, ..., xni} as the feature point from one image where

{xki|k = 1, 2, ..., n} is a set of points on the one of blue closed curve of this image and its

centre point. And Yj = {y1j, y2j, ..., ymj} as the feature point from the other image where

{ypi|p = 1, 2, ...,m} is a set of points on the one of blue closed curve of this image and its

centre point. Then we can obtain the equation 4.1.

AXi + b = Yj i, j = 1, 2...n, (4.1)

where A =

 a11 a12

a21 a22

 and b =

 b11

b21

.

According to the section 3.3 Best Affine Transformation, before we computed the affine

transformation matrix A and column b, firstly, we need make the two given feature points



60

have equally number of points. Such as Xi include n points and Yj include m points, n and

m may not be equal.

For adding points method, in order to keep the position of center point, we are finding the

difference between n and m, adding points uniformly to the feature point with fewer points

or subtracting points uniformly from the feature points with more points. In fact, usually

it is difficult to add or subtract points completely uniformly. So the center points may be

changed after adding points.

Now, the number of selected pair of feature point from two given image is equal, say n. And

we can obtain the affine transformation matrix A and column b by using the equation 4.1.

The matching error is calculated by equation 4.2.

error =
1

n

n∑
k=1

√
(Axk1 + b− yk1)2 + (Axk2 + b− yk2)2 (4.2)

where

 xk1

xk1

 ∈ Xi and

 yk1

yk1

 ∈ Yj, AXi + b = Yj.

Next, as center point should be the first point, the order of other points can be changed in

the feature point, by changing the order of other points, we can keep the minimum error as

the matching error of the given pair of feature points.

Assume p < q, X = {X1, X2, ..., Xp} is the set of feature points which obtained from one

image, and Y = {Y1, Y2, ..., Yq} is the set of feature points which obtained from other image.

So we will obtain a p by q matrix of the matching error. Find the first P minimum matching

error of pair of feature points without replacement as the Pre - selected corresponding pair

of feature point. For each of Pre - selected corresponding pair of feature point Xi and

Yi, say selected from X = {X1, X2, ..., Xp} and Y = {Y1, Y2, ..., Yp}, there exist a affine

transformation matrix Ai and a column bi.
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NOTE1: Actually, those corresponding pair of feature points may not belong to the overlap

part of the two given images. But we assume that there are at least three corresponding

pair of feature points which belong to the overlap part so that we can use the Multivariate

Spline Method.

Next step is using the Multivariate Spline Method to find the first three corresponding pair

of feature points. We need use the brute-force search method, such as picking up three

corresponding pair of feature points by selecting three feature points from X and three

feature points from Y , then calculate the error by using the Multivariate Spline Method.

The Error is calculated by using L-2 Norm. Firstly, using the three corresponding pair of

feature points to do the image registration by using the Multivariate Spline Method, we can

obtain the mapping 3.6 as below:

S : Source Image(I2)→ Output Image(R), denote by S(x, y) = (xo, yo),

S(4) =



S1(x, y) (x, y) ∈ D1

S2(x, y) (x, y) ∈ D2

...

Sn(x, y) (x, y) ∈ DN

Si(x, y) =

a11i(x, y) a12i(x, y) b1i(x, y)

a21i(x, y) a22i(x, y) b2i(x, y)


Secondly, finding the overlap part on both of the two given images by using the mapping

S, assume all the pixels set belong to this overlap is Γ. As each pixel has a value on the

original given image, we pick up a pixel on the overlap part from one image, then using the

mapping S to find the corresponding pixel value on the other image so that we can calculate
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The Error.

The Error =
1

M

∑
(x,y)∈Γ

√
(I2(S(x, y))−R(x, y))2 (4.3)

Where M is the number of the pixel belong to Γ, I2 and R are the pixel value mapping of

given image.

The source of The Error related to several cases, such as the image taken with different

photographic equipment, different shooting angle and so on. Those cases may give the same

object different value in different picture, we called this error as Initial Error. The Initial

Error can be calculate by the mean of the difference of the sampling points. We can use the

pair of corresponding feature points which we can find as the sampling points. The error of

our Method can be approximate by the difference between The Error and the Initial Error.

In the chapter 5, The Error we showed is the total error, not only for our method error. In

fact, the initial error should be a constant γ > 0 which we can’t change by our method, so

The Error may be not 0.

We pick up the minimum error of The Error, and the three corresponding pair of feature

points which corresponding to this minimum error is what we need. Basic on those three

corresponding pair of feature points, we can add more corresponding feature points by cal-

culate The Error. We will build the new feature points by using those three corresponding

pair of feature points. The designing scheme is as follow:

• Using the center of testing feature points as the center of new feature points.

• Using the corresponding center point of the nearest three corresponding pair of feature

points as the other points of the new feature points respectively.

If we can’t find The Error which is less than the previous step’s error, it means that there

is no more corresponding pair of feature points in the given feature points’ set, so we can
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stop the searching. The Error of Pre-Selection Automatic Image Registration by using

Multivariate Spline Method is current error.

NOTE2: When we try to add the corresponding points, we will try to test the feature points

which near the three corresponding pair of feature points first. The reason is as follow:

• guarantee the testing feature points belongs to the overlap part.

• obtain a reasonable feature points, as we will build the new feature points by using the

three corresponding pair of feature points.

NOTE3: As we already have three corresponding feature points, we can find the affine

transformation matrix Ai and a column bi for the other feature point by using the mapping

3.6 which obtained by those three corresponding feature points. We call this matrix Ai and

a column bi as pre-matrix Ai and a pre-column bi, then we have 3 adding point method as

follow:

• Adding Point Method 1: For any given two feature points Xi and Yj which are from

two images, the pre-matrix Ai and a pre-column bi of feature point Xi is given. So, we

find other two sets X1
i and Y 1

j , see Equation 4.4. Then the new feature points can be

build as Xi = {centerponit,Xi, Y
1
j } and Yj = {centerponit,X1

i , Yj}.

X1
i = (Ai)

−1 ∗ (Yj − bi) Y 1
i = Ai ∗Xi + bi (4.4)

• Adding Point Method 2: For any given two feature points Xi and Yj, by using the

Equation 4.4, we can build it as Xi = Xi and Yj = {centerponit, Y 1
i }.

• Adding Point Method 3: For any given two feature points Xi and Yj, by using the

Equation 4.4, we can build it as Yi = Yi and Xj = {centerponit,X1
i }.
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By using those 3 adding points method, we can obtain a more accuracy affine transformation

matrix Ai and a column bi for the other feature points that may not change the Mapping

S too much, and finding the result image much faster. But, by using this method, the

convergency result image may be theoretically not the actual result image. Because the

affine transformation matrix Ai and a column bi for the other feature points which we find is

depend on the three corresponding feature points which we assumed before. In other world,

error → ε as n→∞ (4.5)

where ε 6= 0, n is the number of corresponding pair of feature points which we can find.

NOTE4: As we already have three corresponding feature points, assume the center point

of those three corresponding feature points is {Xcenter3} and {Y center3}, we can build

the next feature points by using {Xcenter3} and {Y center3} directly to find the next cor-

responding feature point. As we can find the center points of the left feature points, we

can build new feature points X = {center,Xcenter3} and Y = {center, Y center3}. By

calculating the The matching error or The Error, we can find the corresponding feature

point. But this method is more depending on those three corresponding feature points than

the NOTE3 method, and the center of the new feature points couldn’t change. So, this

isn’t a good method, we don’t recommend this method.

So, according to the PAMSM, more corresponding pair of feature point we can find, less

error of result image we can obtain. We can say that this method is reasonable, controllable

and flexible.
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4.2 Adding point Automatic Image Registration by using Multivariate Spline

Method

In this section, we will talk about the Adding point Automatic Image Registration by using

Multivariate Spline Method(AAMSM) which is also builded by using the Edge of Object

Recognition Method and Multivariate Spline Method. The most important difference be-

tween AAMSM and PAMSM is that the PAMSM requires that there are at least three

findable corresponding pair of feature points which belong to the overlap part of two given

image, but the AAMSM don’t need to satisfy this condition. Now, let’s talk about AAMSM

step by step.

According to the Multivariate Spline Method, firstly, we need find the feature points. Ac-

cording to the section 2.4. we already find the edge of objects for the given satellite image,

such as Figure 2.2 and 2.1 as the input image, and the output image are Figure 2.19 and

2.20. As you know, the blue closed curves which are showed on the Figure 2.19 and 2.20 are

the objects that we find by using the Ending Point Zero Method. The AAMSM need to use

the blue closed curves as the feature points for each given input image too. Then finding

the corresponding feature points for the image registration.

In the AAMSM, as feature point is a set of points, we build the feature point by this way:

taking the centre point of each blue close curve as the first point and taking all of points on

the blue close curve as the other points, so that we build a points’ set as the feature point.

In this way, we can find a set of feature points which depends on the number of closed curves

for each given images. In the AAMSM, the feature points will always be build by this way.

By the way, this is a different between AAMSM and PAMSM.

Similarly, in AAMSM, to find the corresponding feature points, we need use the brute-force

search. So, we pick up each feature point from one image, and try to find a corresponding

feature point from the other image. So, The matching error should be calculated.



66

In AAMSM, The matching error is also calculated by using the L-2 Norm. According

to the section 3.3 Best Affine Transformation, we can find the affine transformation for any

pair of given feature points. Like we already talked about in last section, similarly, we can

obtain the equation 4.2. Before we computed the affine transformation matrix A and column

b, firstly, we need make the two given feature points have equally number of points.

For adding points method, in the AAMSM, in order to keep the position of center point,

we are finding the LCM(Least Common Multiple) between n and m, so that we can adding

points complete uniformly for both two given feature points by adding the number of points

to LCM(n,m) which is usually greater than 3. This adding points method can keep

the center point of feature points better after adding points and given us less error, but

computation time is much more than the PAMSM’s.

Now, the number of selected pair of feature point from two given image is equal, say

LCM(n,m). And we can obtain the affine transformation matrix A and column b by using

the equation 4.1. In AAMSM, The matching error is also calculated by Equation 4.2.

Next, as center point should be the first point, the order of other points can be changed in

the feature point, by changing the order of other points, we can keep the minimum error as

the matching error of the given pair of feature points.

Assume p < q, X = {X1, X2, ..., Xp} is the set of feature points which obtained from one

image, and Y = {Y1, Y2, ..., Yq} is the set of feature points which obtained from other image.

So we will obtain a p by q matrix of the matching error. Find the pair of feature points

without replacement as the Pre - selected corresponding pair of feature point as many as we

can. For each of Pre - selected corresponding pair of feature point Xi and Yi, say selected from

X = {X1, X2, ..., Xp} and Y = {Y1, Y2, ..., Yp}, there exist a affine transformation matrix Ai

and a column bi.
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NOTE1: Actually, some of those feature points may not belong to the overlap part of the

two given images. So the number of corresponding pair of feature point is no more than P .

Next step, by using the brute-force search method, we have p ∗ q pair of feature points.

For each pair of feature points, we do the image registration Automatically by using the

Multivariate Spline Method, as we already found the minimum matching error and affine

transformation matrix A and column b for them. Then calculate The Error by using

Equation 4.3.

The third step, taking the pair of feature point which has the minimum Error as a pair of

corresponding feature point, then try to find the next pair of corresponding feature point.

Before to do the for loop,

Case 1: Do the for Loop directly, to find the pair of corresponding feature points as many

as we can, until The Error couldn’t be reduced any more.

Case 2: Refine the affine transformation matrix A and column b for other feature points by

using the the mapping 3.6 S. By using the 3 adding point method as follow:

• Adding Point Method 1: For any given two feature points Xi and Yj which are from

two images, the pre-matrix Ai and a pre-column bi of feature point Xi is given. So, we

find other two sets X1
i and Y 1

j , see Equation 4.4. Then the new feature points can be

build as Xi = {centerponit,Xi, Y
1
j } and Yj = {centerponit,X1

i , Yj}.

X1
i = (Ai)

−1 ∗ (Yj − bi) Y 1
i = Ai ∗Xi + bi (4.6)

• Adding Point Method 2: For any given two feature points Xi and Yj, by using the

Equation 4.4, we can build it as Xi = Xi and Yj = {centerponit, Y 1
i }.
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• Adding Point Method 3: For any given two feature points Xi and Yj, by using the

Equation 4.4, we can build it as Yi = Yi and Xj = {centerponit,X1
i }.

The pre-matrix Ai and a pre-column bi is calculated by those two case:

• The pre-matrix Ai and a pre-column bi is calculated by the current image registration

mapping S.

• The pre-matrix Ai and a pre-column bi is calculated by the image registration mapping

S which is obtained by using the nearest two or three corresponding feature points of

this feature point.

NOTE2: The center point shouldn’t change when we use those 2 adding points method.

The number of points of both feature points should equal the LCM(n,m) + 1.

The affine transformation matrix A and column b for other feature points will be calculated

by using the new feature point.

NOTE3: In case 1, abstractly, we can obtain a good result image which The Error will

go to zero as more and more pair of corresponding feature points can be found. But, as a

matter of fact, the method in chapter 2 is not good enough to find infinitely many pair of

corresponding feature points, so, most of times, there is not enough corresponding feature

points to make The Error go to zero. So, if there is only less than 10 pair of feature

points, case 1 may be stop the For Loop faster than case 2, because case 1 may not find

corresponding feature points as much as case2. In this case, case2 will give us a less error

result image. Otherwise, in theory, there should have infinitely many pair of corresponding

feature points on the overlap part of two images, The Error of case 1 will go to zero, not

case 2.
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NOTE4: In case 2, because the affine transformation matrix Ai and a column bi for the

other feature points which we find is depend on the three corresponding feature points which

we assumed before. In other world,

error → ε as n→∞ (4.7)

where ε 6= 0, n is the number of corresponding pair of feature points which we can find.

So, according to this method, first, we should assume that there is at least one pair of corre-

sponding point which can be found by Chapter 2’s Method. Second, similarly as PAMSM, in

this method, more pair of corresponding feature point can be found, less error of output im-

age we can obtain. This method is also reasonable, controllable and flexible, after improved

the boundary selection method, the AAMSM case 1 will works better.
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Chapter 5: MAIN RESULTS AND EXPERIMENTS
In this chapter, we will show some results by using breast MRI and do some comparison.

5.1 Results by using semi-automatic image registration by using Multivariate
Spline Function with MRI

In this section, we will show our results by using breast MRI.

First experiment:

Here are two input images:

Figure 5.1: MRI168 Figure 5.2: MRI911

The first step is to find the feature points. Here are the four corresponding feature points

that we used:

YSETS1=[ 137.75 138.88 138.5 139.25 139.25; 13.17 14.3 12.42 15.05 11.67];

XSETS1=[ 119.68 120.81 120.44 121.57 121.19; 49.3 50.06 48.55 50.81 48.55];

YSETS2=[ 185.45 185.08 184.23 188.75 188.56 189.78; 18.16 18.63 17.41 19.38 20.23

21.08];

XSETS2=[ 166.07 165.04 164.38 169.55 168.89 169.74; 57.49 57.87 56.64 59.37 59.56

60.12];
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YSETS3=[ 110.93 109.24 106.98 109.52 107.83 112.63 114.6; 21.73 21.45 20.89 24.84

25.97 21.45 20.04];

XSETS3=[ 91.17 89.48 86.09 90.04 86.66 94 96.25; 57.02 56.45 56.45 58.99 60.69 55.61

54.76];

YSETS4=[ 202.2 202.11 201.45 202.67 201.45; 31.1 30.77 31.24 31.61 29.73];

XSETS4=[ 180.94 180.75 180.28 181.41 180.09; 70 69.72 70.38 70.76 68.5];

Here are the four corresponding affine transformation results:

A1 =

1.0868 0.0837

0.0873 0.7170

 A2 =

1.5109 −0.9603

0.2556 0.6112



A3 =

 1.3341 −0.0588

−0.1210 0.8487

 A4 =

 0.9030 0.1273

−0.2431 1.2962



b1 =

−54.991

49.452

 b2 =

−170.38

−1.345

 b3 =

−97.736

91.790

 b4 =

−10.097

139.257



Figure 5.3: 4 Points Output Image Figure 5.4: 4 Points Source Image
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Figure 5.5: 4 Points Nipple Figure 5.6: 4 Points Inside Image

Figure 5.7: 4 Points Bad Part

From the output image(Figure 5.3-5.6), the nipple matched very well, and we also get a good

match for inside of the breast by checking the texture of output image. in order to see the

picture clearly, I did the enlargement for some feature parts(Figure 5.5-5.6).

At bottom of the image, the boundary do not match very well, see Figure 6.7. This is be-

cause the interpolation point is not enough and can not control it very well. The red point

on the picture are interpolation points we used, those points are not far from the nipple, so

the nipple matched very well.

Second experiment:

As we know, in the first experiment, it does not match very well on a small part of the



73

boundary. This time, we use six feature points to do the image registration, and we find two

more corresponding feature points on that part.

Here are the feature points:

YSETS1=[ 137.75 138.88 138.5 139.25 139.25; 13.17 14.3 12.42 15.05 11.67];

XSETS1=[ 119.68 120.81 120.44 121.57 121.19; 49.3 50.06 48.55 50.81 48.55];

YSETS2=[ 185.45 185.08 184.23 188.75 188.56 189.78; 18.16 18.63 17.41 19.38 20.23

21.08];

XSETS2=[ 166.07 165.04 164.38 169.55 168.89 169.74; 57.49 57.87 56.64 59.37 59.56

60.12];

YSETS3=[ 110.93 109.24 106.98 109.52 107.83 112.63 114.6; 21.73 21.45 20.89 24.84

25.97 21.45 20.04];

XSETS3=[ 91.17 89.48 86.09 90.04 86.66 94 96.25; 57.02 56.45 56.45 58.99 60.69 55.61

54.76];

YSETS4=[ 202.2 202.11 201.45 202.67 201.45; 31.1 30.77 31.24 31.61 29.73];

XSETS4=[ 180.94 180.75 180.28 181.41 180.09; 70 69.72 70.38 70.76 68.5];

YSETS5=[202.2 202.58 202.86 202.01 201.82; 103.69 103.97 104.35 104.06 104.53];

XSETS5=[178.49 178.77 179.05 178.21 178.02; 139.25 139.54 139.91 139.63 140.01];

YSETS6=[209.35 208.51 211.33 208.03 205.59 210.76; 127.21 125.61 122.04 129.47 131.73

124.01];

XSETS6=[189.4 188.28 191.38 187.81 184.89 190.72; 160.61 159.3 156.94 163.34 165.51

157.7];
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The last two corresponding feature points are the new input data. Here are the corresponding

affine transformation results:

A1 =

1.0868 0.0837

0.0873 0.7170

 A2 =

1.5109 −0.9603

0.2556 0.6112

 A3 =

 1.3341 −0.0588

−0.1210 0.8487



A4 =

 0.9030 0.1273

−0.2431 1.2962

 A5 =

0.9665 −0.1457

0.0495 0.9502

 A6 =

 1.2876 0.0937

−0.2748 0.78797



b1 =

−54.991

49.452

 b2 =

−170.38

−1.345

 b3 =

−97.736

91.790

 b4 =

−10.097

139.257



b5 =

−3.3022

54.4878

 b6 =

−162.611

208.445


From the affine transformation matrix we obtained, we find that the first four affine trans-

formation does not change, this means that we add two affine transformation, this is because

we used the Delaunay triangulation to do the division, when we add new point, the division

is only change at local area(Figure 3.9). That is also the reason that we must use Delaunay

triangulation to do the division for the multivariate spline function.

In this way, the adding points is only control the interpolation function locally, so the output

image will only change locally.

From our result(Figure 5.8-5.9), we can find that the two input images matched very well on

the boundary, as we add feature points around the bottom of the input image, and compare

with the Figure 5.3, they look the same on the upper half of the image, the nipple matched

as same as each other, by the way, there is some red nodes on the output image, all of them

are interpolation points. This is helpful for us to determine the best local area for us to add
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Figure 5.8: 6 Point Output Image Figure 5.9: 6 Point Deformed Output

the interpolation point if we need.

Here is the corresponding part of the 4 feature points and the 6 feature points of the image.

Figure 5.10: Bad for 4 Feature Point Figure 5.11: Good for 6 Feature Point

More over, those two Figure 5.12 and 5.13 are very useful for us to check about the Delaunay

triangulation and our algorithm. In those two pictures, the red point are the intersection

points that obtained by our algorithm, and I display them on this two Figure. It is clearly

that all the red the point on the intersection points in Figure 5.8, this mean our intersection

points are correct. In Figure 5.9, all of the new intersection points has red point on it, that

means our program and algorithm are correct for the refinement of each triangle.
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Figure 5.12: 6 Point Delaunay Triangulation Figure 5.13: 6 Point Subdivision Point

5.2 Results by using automatic image registration by using Multivariate Spline
Function with satellite images

First, we use two pair of satellite images as input image, the pair of satellite images is Figure

5.14 and 5.15, the other pair of satellite image is Figure 5.16 and 5.17.

Figure 5.14: firstpair1 Figure 5.15: firstpair2

Figure 5.16: secondpair1 Figure 5.17: secondpair2

By using the boundary finding Method in section 2.2, we obtain the boundary image see

Figure 5.18, 5.19, 5.20 and 5.21. In the section 2.2.2, we talked about the Equation 2.17,

the threshold ε is dependence on n.
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For the first pair of satellite images, we set n = 1.25. For For the second pair of satellite

images, we set n = 1.6. As the first image in those two pair of satellite images is same.

Clearly, the greater n return a image with more boundary point or more details.

Figure 5.18: boundary of first pair1 Figure 5.19: boundary of first pair2

Figure 5.20: boundary of second pair1 Figure 5.21: boundary of second pair2

By using the Edge of object Recognition Method in section 2.4, we obtain the edge images

see Figure 5.22, 5.23, 5.24 and 5.25. In the section 2.4, we talked about the Ending Point

Zero Method, the size of direction matrix is 3 by 3 and the number of points should greater

than 20 for each objects. If less than 20, we treat it as noisy circle.

The edge of object recognition Method will select some of bad object which is not an object,

just like the Figure 5.24. Not good for object recognition. But we will take care about

those bad object later by using the method what we talked in Chapter 5. In fact, those
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Figure 5.22: recognition of first pair1 Figure 5.23: recognition of first pair2

Figure 5.24: recognition of second pair1 Figure 5.25: recognition of second pair2

bad objects will be removed by our method as our method keep going. By the way, my

experiment computer’s CPU is Intel(R) Core(TM) i5-2400S @2.50GHZ, RAM is 8GB. The

software is MATLAB R2015b.

• For first pair of satellite images, Elapsed time is 13.656386 seconds for completing the

previous steps.

• For first pair of satellite images, Elapsed time is 19.056367 seconds for completing the

previous steps.

After we obtain the edge of object, we use the center of the edge of objects as the fea-

ture points, use the boundary points which on the edge of objects to calculate the affine

transformation matrix A and column b.
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For the first pair of satellite images, firstly, we use Pre-selection automatic image registration

by using multivariate spline method to do the image registration (PAMSM).

The result images with 3 pair of corresponding feature points. As we mentioned before, the

assumption for this method is that there are at least 3 pair of corresponding feature points

which we can find. Actually, by checking the Figure 5.22 and 5.23, there should have at

least 3 pair of corresponding feature points. And we find the 3 pair of corresponding feature

points by our method, further more, we obtain the result image.

Figure 5.26: the 3 point of first pair1 Figure 5.27: the 3 point of first pair2

Figure 5.28: Delaunay Triangulation
of first pair

Figure 5.29: transferred image of first pair2
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Figure 5.30: 3 point Result image1
of first pair

Figure 5.31: 3 point Result image2
of first pair

The error for this output image is round to 12. By the way, the error is calculate by the

Equation 4.3 which is the average difference of each points gray value between two input

image for their overlap part. The range of gray value for all pixels is 0 - 255. The Figure

5.26 and 5.27 is the input image with the 3 pair of corresponding feature points we used.

Figure 5.28 is the Delaunay Triangulation by this 3 pair of corresponding points. The red

circles shows the position of the left feature points which we didn’t use yet. The Figure 5.29,

5.30 and 5.31 are the result images, a part of Up-Left of the result image doesn’t match very

well, the non-overlap parts which is on the Up-Middle of the result image looks like not in

a correct position. Those give the registration result image an error.

Actually, there are several output image, we choose the minimum error output image as the

result image. Let’s look at a group of output image with a big error.

Look at the Figure 5.32 and 5.33, the red circle shows the wrong pair of corresponding feature

points we used for image registration. The Figure 5.34 show the Delaunay Triangulation by

using those 3 pair of feature points. There are 3 feature points which isn’t located in the

overlap part in Figure 5.34. This is one contradiction with Figure 5.22 and 5.23 which shows

only one object doesn’t belong to the overlap part. Figure 5.35, 5.36 and 5.37 are the output
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Figure 5.32: the 3 point of first pair1 b Figure 5.33: the 3 point of first pair2 b

Figure 5.34: 3 point Delaunay
Triangulation of first pair b

Figure 5.35: transferred image of first pair2 b

images which is really bad solution. This is a bad output image, I am not sure the error it is

because this are many output image, but I am sure that this is not the minimum error case.

As the minimum error case has already taken.

Next is the result images for Adding Point Method 2 with 4 corresponding feature points.

Firstly, we need using the adding point method which we talk about in section 4.1. Here I

will use the Adding point Method 2 as example to show the result image. This is because

the Adding point Method 2 is better than other two method (see section 5.3). When we

add the point for the object, the position of the center point may change. Now we will show

three groups of the re-center experiment results.
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Figure 5.36: Result image1 of first
pair b

Figure 5.37: Result image2 of first
pair b

Figure 5.38: 4 point re-center 11 Figure 5.39: 4 point re-center 12

Look at Figure from 5.38 to 5.43. Each two figure corresponding to a different pair of

corresponding feature points which we add into the 3 pair of corresponding feature points

result image(see Figure 5.30 and 5.31), as we have other 3 feature points left for us to use(see

Figure 5.28).

All of those output images are matched, but one part of result images don’t look as good as

3 pair of corresponding feature points result image which located at the dark area. In fact,

the error of those 3 group’s result image is round to 4 which is less than the error of 3 pair

of corresponding feature points result image. The reason is that all other part is matched

better than before as one more feature points added into our method. but the re-center give
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Figure 5.40: 4 point re-center 21 Figure 5.41: 4 point re-center 22

Figure 5.42: 4 point re-center 31 Figure 5.43: 4 point re-center 32

us a very clearly problem, that is one of the object doesn’t matched. Because we find the

position of object correctly which is clearly showed by Figure 5.22 to 5.25. the re-center

method change the position of objects, of cause, our image registration method will match

the re-center object but not the original object which’s also clearly showed by Figure from

5.38 to 5.43.

Now, Let’s check about the result images by Adding Point Method 2 with 4 corresponding

feature points without re-center. We are wondering that the re-center results will be removed

by the minimum error selection.

Look at Figure from 5.44 to 5.49, this is the result images after we adding a pair of corre-

sponding feature points for the 3 pair of corresponding feature points result image. In Figure
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Figure 5.44: the 4 point of first pair 1 Figure 5.45: the 4 point of first pair 2

Figure 5.46: 4 point Delaunay
Triangulation of first pair

Figure 5.47: transferred image of first pair2

5.46, the number of left points is 3, but not 4. So a pair of corresponding feature points

is found and added into the previous 3 pair of corresponding feature points result image.

Figure 5.47 showed that the position of this new point locate inside of the dark area at the

overlap part. By checking the Figure 5.48 and 5.49, both the dark area and Up-left part are

matched better than Figure 5.30. And the result images looks really better than before. In

fact, the error of this result image is round to 3 less than all previous result. So all of the

re-center method output results will be removed by the the minimum error selection. This

proved that the error which calculated by our method is reasonable and show our method

works well.
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Figure 5.48: 4 point Result image1 of
first pair

Figure 5.49: 4 point Result image2 of first pair

Now, let me show you our 5 pair of corresponding feature points result images by using

PAMSM. As we had already showed the re-center output images for 4 pair of corresponding

feature points result images by using PAMSM and its doesn’t work well, so we’ll only show

the result images which is without re-center. See Figure from 5.50 to 5.55.

Figure 5.50: the 5 point of first pair 1 Figure 5.51: the 5 point of first pair 2

As a feature point adding into the method and locating at the dark area of overlap part see

Figure 5.53, it is clearly that the dark part is matched very well, see Figure 5.54 and 5.55.

And I should say that the result image looks really good. But the error is still round to

3. So, error doesn’t change too much. The reason is that the affine transformation matrix
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Figure 5.52: 5 point Delaunay
Triangulation of first pair

Figure 5.53: transferred image of first pair2

Figure 5.54: 5 point Result image1 of
first pair

Figure 5.55: 5 point Result image2 of first pair

A and column b of the new feature points we used are depends on the previous 3 pair of

corresponding feature points result image, so the error for this method will not goes to 0,

but go to a small number ε, even we add more feature points into this method. May be the

ε approximate to 3 for those two input images by using PAMSM. We can check by adding

one more feature points, as we have other 1 point left there.

Finally, our method stop here, because the method couldn’t find one more matching points.

The error for all the output images by 6 pair of corresponding feature points result images

is greater than 3. So, our method stopped. Actually, there is one more feature points left,
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the reason for unable to find this pair of feature point is that the genuine transformation

matrix A and column b for this pair of feature points is calculated incorrectly by the Adding

Points Method. I guess the reason for Adding Points Method loss efficacy is that pair of

feature points is too far away form the previous feature points. This is also one reason that

the error for PAMSM may not go to 0.

As I want to check about what happened to 6 pair of corresponding feature points result

images, I change the program to registration with the last pair of corresponding feature

points, so that I can obtain the error and the result image. The result image is really bad,

and the error is 4.0130 which is greater than the 5 pair of corresponding feature points result

images. This is the reason that our method stop working at 5 pair of corresponding feature

points. Look at the Figure from 5.56 to 5.63, those are the output images for 6 pair of

corresponding feature points. It is clearly that the 6th feature points don’t match well, and

give the problem to the result image. This make the 6 pair of corresponding feature points

result images worse than the 5 pair of corresponding feature points result images.

Figure 5.56: 6 point for adding points Figure 5.57: 6 point for adding points

Now, we talked about the results by Adding point Automatic Image registration by using

Multivariate Spline Method (AAMSM). We still take the first group images as example.
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Figure 5.58: 6 point of first pair 1 Figure 5.59: 6 point of first pair 2

Figure 5.60: 6 point Delaunay
Triangulation

Figure 5.61: transferred image of first pair2

First, look at some output image for one pair of corresponding feature points which do not

exist in PAMSM.

The Figure from 5.64 to 5.72 shows the result image by using only one pair of feature points

in the first group satellite images. Take 3 figures as a group, each group of result image

is obtained by different pair of feature points. The selected feature point is showed in the

Figure 5.64, 5.67 and 5.70 which is the first image in the group. The last two images are the

result images which matched by the selected feature point. It is clearly that all the result
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Figure 5.62: 6 point Result image1
of first pair

Figure 5.63: 6 point Result image2
of first pair

Figure 5.64: transferred
image of first pair2

Figure 5.65: 1 point
Result image1 of first pair

Figure 5.66: 1 point
Result image2 of first pair

images from Figure 5.64 to 5.72 are matched but not a good registration. On other hand,

of cause, there are some other output images which isn’t matched, take some for example,

see Figure form 5.73 to 5.78. Those wrong matching output image will be removed by the

minimum error selection. In fact, all the one points output images isn’t good enough to be

a final result image.

The error for Figure from 5.64 to 5.72 are 15.1492, 15.728 and 16.6131. As the error are lager

than the PAMSM’s final result, even larger than 3 pair feature points result by PAMSM, I

will not talk too much about it. The reason is that one pair of feature point is not enough

for our Method. So, similarly, in order to obtain a good output images, we will add more
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Figure 5.67: transferred
image of first pair2

Figure 5.68: 1 point
Result image1 of first pair

Figure 5.69: 1 point
Result image2 of first pair

Figure 5.70: transferred
image of first pair2

Figure 5.71: 1 point
Result image1 of first pair

Figure 5.72: 1 point
Result image2 of first pair

feature points to get a better output image.

We will show the 3 pair of corresponding feature points result image by AAMSM directly

for comparison, ignore the 2 pairs of corresponding feature points result images. As there

are 6 ∗ 5 ∗ 4 choice to select 3 pair of corresponding feature points out the given 6 pair of

corresponding feature points. I will show some output images and the result images.

Look at Figure from 5.79 to 5.96, those figure show the 3 pair of corresponding feature points

result image by AAMSM, I selected 3 sets of result images from 6∗5∗4 sets of result images,

all those 3 sets of result image include the pair of corresponding feature points which can’t

find by PAMSM. By using the AAMSM, look at the red rectangle in Figure from 5.79 to

5.96, those images show the 6th feature point can be matched by AAMSM. The error of

those 3 sets of result images is round to 4.2, 4.3 and 4.3 which is greater than the PAMSM.
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Figure 5.73: transferred
image of first pair2

Figure 5.74: 1 point
Result image1 of first pair

Figure 5.75: 1 point
Result image2 of first pair

Figure 5.76: transferred
image of first pair2

Figure 5.77: 1 point
Result image1 of first pair

Figure 5.78: 1 point
Result image2 of first pair

But those results are good to show that AAMSM can match for all kinds of feature points,

this is the reason that the error of AAMSM will go to 0 as we can find enough pair of feature

points.

Look at the Figure from 5.97 to 5.102, we selected the set of result images which have same

3 pair of corresponding feature points with the PAMSM’s. The result image by AAMSM

look a little better than PAMSM’s. In fact, the error of those result image by AAMSM is

round to 3.9 which is also a little better than PAMSM’s. I am sure the reason is because

the Adding points Method by LCM is worked better for our method if there have the 3 pair

of corresponding feature points which we can find by our method. As we only find 6 objects

in the given first pair satellite images, this case may not good for finding the result image
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Figure 5.79: 3 point of first
pair 1 by AAMSM

Figure 5.80: 3 point of first pair 2 by AAMSM

Figure 5.81: 3 point Delaunay
Triangulation by AAMSM

Figure 5.82: transferred image of first pair2 by
AAMSM

by AAMSM, as there is not enough pair of corresponding feature points to use. So I won’t

show the 4 pair of corresponding feature points with the AAMSM’s at here, I will show it in

the next section as a comparison case.

What’s next, we will show the result image for the second group satellite images,see Figure

5.16 and 5.17. I just select 2 sets of output images from 10 ∗ 9 sets of output images as

example, see Figure from 5.103 to 5.108. The red dot point which shows on the Figure

5.103, 5.105, 5.106 and 5.108 is the feature point that selected for registration. The selected

feature points and the area which near those feature points are matched very well. The
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Figure 5.83: 3 point Result image1
of first pair by AAMSM

Figure 5.84: 3 point Result image2
of first pair by AAMSM

Figure 5.85: 3 point of first pair
1 by AAMSM

Figure 5.86: 3 point of first pair
2 by AAMSM

first set of output images looks better than the second set of output images. The reason is

that the image registration mapping S is closed to the mapping obtained by the correspond

feature point in Figure 5.103. So, when we try to calculate the transfer matrix for each

points, we can set the weight by the ratio of the error of their one point image registration

result image for each feature point when the number of feature points is less than .00001

times the number of image pixel, this may help to obtain a better result image.

Now, Let me show the result image of 3 pair of corresponding feature points for the second

group satellite images by using the AAMSM. Look at Figure from 5.109 to 5.114, Figure
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Figure 5.87: 3 point Delaunay
Triangulation by AAMSM

Figure 5.88: transferred image of first pair2 by
AAMSM

Figure 5.89: 3 point Result image1
of first pair by AAMSM

Figure 5.90: 3 point Result image2 of first pair
by AAMSM

5.109 and 5.110 show the 3 pair of feature points that we used which show as the red dot

points in the figure. Figure 5.111 is the Delaunay Triangulation and the left feature points

which didn’t use. Figure 5.113 and 5.114 are the result images, as all the feature points

which selected belongs to the left hand side of image, so the right-bottom part of result

image doesn’t match very well. For all other part of result image is matched by our method.

As both one feature points case and three feature points case are working well, and the error

is reducing as more feature points adding into the method for registration, this mean the

AAMSM will still work for other new group of satellite image. As AAMSM need enough
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Figure 5.91: 3 point of first pair
1 by AAMSM

Figure 5.92: 3 point of first pair
2 by AAMSM

Figure 5.93: 3 point Delaunay
Triangulation by AAMSM

Figure 5.94: transferred image of first pair2 by
AAMSM

feature points to show the final result image, so we stop at here without show the 4 or more

pair of corresponding feature points result images.

Finally, in order to show the PAMSM will work for all satellite image, let’s show some result

image for the 2nd group satellite images by using PAMSM. Look at Figure from 5.109 to

5.114 are the result image for 2nd group satellite images by using 3 pair of corresponding

feature points, Figure from 5.115 to 5.120 are the result image for 2nd group satellite images

by using 4 pair of corresponding feature points. It is very clearly that 1 more feature points

adding into our method makes the result image much better, especially the right-bottom
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Figure 5.95: 3 point Result image1
of first pair by AAMSM

Figure 5.96: 3 point Result image2 of first pair
by AAMSM

Figure 5.97: 3 point of first pair
1 by AAMSM

Figure 5.98: 3 point of first pair
2 by AAMSM

part becomes better than 3 pair of corresponding feature point’s result image. The error of

4 pair of corresponding feature points is 9.8942, the error of 3 pair of corresponding feature

points is 10.0023 which is greater than 9.8942. This show that the PAMSM works well, as

more feature points add into our method, the error will go smaller and smaller.
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Figure 5.99: 3 point Delaunay
Triangulation by AAMSM

Figure 5.100: transferred image of first pair2
by AAMSM

Figure 5.101: 3 point Result image1
of first pair by AAMSM

Figure 5.102: 3 point Result image2
of first pair by AAMSM

5.3 The Result Comparison

5.3.1 Comparison for MRI

In this section, I will compare the result between this paper and last paper.

In the last paper, we do image registration by using non-linear local affine transformations.

The main difference between those two methods is as follows:

1. In the last paper, we used the Shepard interpolation, so the interpolation points can not

control locally.
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Figure 5.103: transferred
image of first pair2

Figure 5.104: 1 point
Result image1 of first pair

Figure 5.105: 1 point
Result image2 of first pair

Figure 5.106: transferred
image of first pair2

Figure 5.107: 1 point
Result image1 of first pair

Figure 5.108: 1 point
Result image2 of first pair

2. In this paper, we used the multivariate spline function and require smoothness. So,

the result is smoothness on the boundary; this is a difference compared to the last paper’s

result. The results can be seen in Figure 5.127 and 5.128. We use some feature points as

input points, Figure 5.127 is the image registration result by using Shepard interpolation,

Figure 5.130 is the image registration result by using multivariate spline functions, it is

clearly that the result by using multivariate spline function is much better than before.

We add three feature points as input points for the shepard interpolation method, the result

is Figure 5.128. Clearly, it is not as good as the result by using multivariate spline functions

with 6 interpolation points(Figure 5.130) and 4 interpolation points(Figure 5.129).

Figure from 5.131 to 5.136 are the result image for ANTS, ANTS is designed by UPenn and

other University from 2004 until now. ANTS is one of the best automatic-image registration
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Figure 5.109: 3 point
image1 of 2nd group

Figure 5.110: 3 point
image2 of 2nd group

Figure 5.111: 3 point
Delaunay Triangulation

Figure 5.112: transferred
image of 2nd group

Figure 5.113: 3 point
of 2nd group

Figure 5.114: 3 point
of 2nd group

tool-kit at present. Compare with ANTS result images, it is very clear that the result image

which produced by our method is much better.

NOTE: Here is the Similarity Metric Acronyms for ANTS: CC = Fast Cross Correlation,

PR = Cross Correlation, MSQ = Mean Squared difference, MI = Mutual Information.

5.3.2 Comparison for satellite images

In this section, we will compare the result image for satellite images. We will do comparison

with our method between different case. we will also do comparison between our method

and other method by using the same input satellite image.
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Figure 5.115: 3
point image1 of
2nd group by PAMSM

Figure 5.116: 3
point image2 of
2nd group by PAMSM

Figure 5.117: 3 point
Delaunay Triangulation
by PAMSM

Figure 5.118: transferred
image of 2nd group
by PAMSM

Figure 5.119: 3 point
of 2nd group by PAMSM

Figure 5.120: 3 point
of 2nd group by PAMSM

Firstly, as we talk about in section 5.2, We will show the result image of 4 pair of correspond-

ing feature points by using AAMSM in section 5.3. now, we will do comparison by using

the AAMSM with different Adding Point Method which we talked in section 4.1. There are

3 group output image. Figure from 5.137 to 5.139 are result images of 4 feature points by

using AAMSM with Adding points Method 1, Figure 5.138 is Delaunay triangulation, Figure

5.137 is the transferred image and the selected feature points which shows as the red dot

points. Figure 5.139 is the registration result image. Figure from 5.140 to 5.142 are result

images of 4 feature points by using AAMSM with Adding points Method 2, Figure 5.141 is

Delaunay triangulation, Figure 5.140 is the transferred image and the selected feature points

which shows as the red dot points. Figure 5.142 is the registration result image. Figure from
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Figure 5.121: 4 point
image1 of 2nd
group by PAMSM

Figure 5.122: 4 point
image2 of 2nd
group by PAMSM

Figure 5.123: 4 point
Delaunay Triangulation
by PAMSM

Figure 5.124: transferred
image of 2nd
group by PAMSM

Figure 5.125: 4 point
of 2nd group
by PAMSM

Figure 5.126: 4 point
of 2nd group
by PAMSM

5.143 to 5.145 are result images of 4 feature points by using AAMSM with Adding points

Method 3, Figure 5.144 is Delaunay triangulation, Figure 5.143 is the transferred image and

the selected feature points which shows as the red dot points. Figure 5.145 is the registra-

tion result image. Comparing with the transferred image, we selected the same 4 feature

points to do the image registration for all of those 3 Adding Point Method, and we use the

AAMSM for all case. The only difference is that we use different Adding Point Method to

do comparison. Compare with the Delaunay Triangulation Figure for those 3 case, one of

feature points which is a circle located at right-bottom doesn’t belong to the overlap part

for the Adding Point Method 1 and 2 case. This is unreasonable. For the Adding Point

Method 3 case, all the left 3 feature points belong to the overlap part. This is reasonable,
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Figure 5.127: 6 Point Shepard
Interpolation

Figure 5.128: 9 Point Shepard
Interpolation

Figure 5.129: 4 Point Multivariate
Spline Function

Figure 5.130: 6 Point Multivariate
Spline Functions

so Adding Point Method 3 is better with less error than other 2 case. Compare with the

result image, the Adding Point Method 3 case is better. Compare with the error, the error

of Adding Point Method 1 case is 6.1417, the error of Adding Point Method 1 case is 4.5487,

he error of Adding Point Method 3 case is 4.0595. So the Adding Point Method 3 is better

than other two cases.

Secondly, We will use two non-automatic image registration methods which called Breast

Image Registration Using Non-Linear Local Affine Transformation and Multi-variate Spline

Functions Method, and two automatic image registration methods which are ANTS and this
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Figure 5.131: CC2 Figure 5.132: CC4 Figure 5.133: MI

Figure 5.134: PR2 Figure 5.135: PR4 Figure 5.136: MSQ

paper method to do the comparison. Of cause, we will use the same input image, so I use

the first group satellite images see Figure 5.14 and 5.15.

Firstly, we do image registration by using 4 pair of corresponding feature points case for

comparison. Look at the figure from 5.146 to 5.148. Figure 5.146 is the result image by using

the PAMSM with 4 pair of corresponding feature points. Figure 5.147 is the result image by

using the Multi-variate Spline Functions with 4 pair of corresponding feature points. Figure

5.148 is the result image by using the Non-Linear Local Affine Transformation with 4 pair

of corresponding feature points. Compare this paper result with other two result image, this

paper result looks better than the Non-Linear Local Affine Transformation results. Looks as

good as the Multi-variate Spline Functions result, the difference is that didn’t use same 4 pair

of corresponding feature points for registration, although the Multi-variate Spline Functions

result is non-automatic image registration. I should say that the edge finding method in this

paper works very well.

Secondly, we do image registration by using 5 or 6 pair of corresponding feature points case
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Figure 5.137: Delaunay
Triangulation by add1

Figure 5.138: transferred
image by add1

Figure 5.139: result by add1

Figure 5.140: Delaunay
Triangulation by add2

Figure 5.141: transferred
image by add2

Figure 5.142: result by add2

for comparison. For this paper method, we only use 5 pair of corresponding feature points

to do image registration. For other two method, use 6 pair of corresponding feature points

to do image registration. Look at the figure from 5.149 to 5.151. Figure 5.149 is the result

image by using the PAMSM with 5 pair of corresponding feature points. Figure 5.150 is the

result image by using the Multi-variate Spline Functions with 6 pair of corresponding feature

points. Figure 5.151 is the result image by using the Non-Linear Local Affine Transformation

with 6 pair of corresponding feature points. Compare this paper result with other two result

image, this paper result looks much better than the Non-Linear Local Affine Transformation

results. Looks as good as the Multi-variate Spline Functions result, as both of them has

only one clearly missing match area, although the Multi-variate Spline Functions result is

non-automatic image registration and one more feature points is used.

Now, look at the ANTS’s result image, see figure from 5.152 to 5.157. In my mind, this
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Figure 5.143: Delaunay
Triangulation by add3

Figure 5.144: transferred
image by add3

Figure 5.145: result by add3

Figure 5.146: 4 point
by PAMSM

Figure 5.147: 4 point
by Multi-variate Spline

Figure 5.148: 4 point
by Non-Linear Local Affine

is really clearly that all the result images from figure 5.146 to figure 5.151 are much better

than all of the ANTS result images.

So, this paper’s method, called automatic image registration by using multi-variate spline

functions method is the best Image Registration Method at present.
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Figure 5.149: 5 point
by PAMSM

Figure 5.150: 6 point
by Multi-variate Spline

Figure 5.151: 6 point
by Non-Linear Local Affine

Figure 5.152: CC2 Figure 5.153: CC4 Figure 5.154: MI

Figure 5.155: PR2 Figure 5.156: PR4 Figure 5.157: MSQ
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Chapter 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion for semi-automatic image registration by using Multivariate

Spline Function

In this paper, we found the expression of the multi-variate spline function. The principal

contributions of this thesis have been demonstrated by a new image registration method

by using multi-variate spline functions where this method can be used and works well for

all kinds of image registration problems. Compared with the previous similar articles, this

paper gives the first on the application of the multivariate spline functions and demonstrates

a suitable way to do image registration by using multivariate spline functions. Our main

contributions have been:

• In section 3.3.2 N-D M-points Least-Squares Algorithm, the general form of Least-

Squares Algorithm(3.4) have been calculated which has m corresponding pair of points

and the vector space is n-dimensional with m ≥ n+1. Here are the results:

X ∗B ∗BT = C ∗BT

whereX = [A b], corresponding pair of pointsXi = (xi1, xi2, ..., xin) and Yi = (yi1, yi2, ..., yin)

B =



s1x11 s2x21 . . . smxm1

s1x12 s2x22 . . . smxm2

...
...

. . .
...

s1x1n s2x2n . . . smxmn

s1 s2 . . . sm
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C =



s1y11 s2y21 . . . smym1

s1y12 s2y22 . . . smym2

...
...

. . .
...

s1y1n s2y2n . . . smymn


Where ti = s2

i and m ≥ n+1.

• In section 3.5.1 generalization of Powell-Sabin Scheme on matrix variables. Theorem

3.5.1 has been proved, which is the generalization of Powell-Sabin Scheme on matrix

variables. Here is the theorem:

Theorem 3.5.1: There is a unique binary quadratic polynomial interpolation function

by using method 2.

• In section 3.5.2 expression of multi-variate spline function. The multi-variate spline

function has been found to calculate all the affine transformations pixelwisely. This is

most important and most difficult part for our method.

6.2 Conclusion for automatic image registration by using Multivariate Spline

Function

In this paper, we introduce the automatic image registration by using Multivariate Spline

Function, there are two method, one is Adding point Automatic Image Registration by

using Multivariate Spline Method, the other is Pre-Selection Method for Automatic Image

Registration by using Multivariate Spline Method. Our conclusion are as follow:

• In chapter 4, the new method PAMSM and AAMSM work well and much better than

current method such as ANTS. Both of them has error analysis. For AAMSM, the

error will go to 0. For PAMSM, the error will go to a quit small number ε which ε > 0.
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• In section 4.1, the Adding Point Method 3 is better than other 2 method.

• Compare with AAMSM and PAMSM which is introduce in this paper, AAMSM is

fester and give us a better result image when there are not enough pair of corresponding

feature points. PAMSM can obtain a better result image when there are enough pair

of corresponding feature points.

• There are 3 adding point method, the Adding point Method 3 is better than other two

method. it will give us less error result image.

• In chapter 2, we introduce a new method for recognition the object in the given figure.

This method works well for satellite image.

• The edge of Object recognition method for multivariate spline method is not works

well for MRI breast image. As we lost of focus close curve, See figure 6.1. It just like

close curve located everywhere of the image or there is no close curve.

6.3 Future Work

In the future, there are some important and interesting works for us to complete.

• In chapter 2, the Boundary selection Method doesn’t work well for MRI image, we need

try to find a Method which works for MRI. We will try to improve our method by using

Watershed Method and Matrix Expansion Method. By the way, Matrix Expansion is

given by Xiquan Shi which is not published yet. She found a base for all dimension

Matrix space, and decomposed matrix fast with Fourier Expansion form.
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Figure 6.1: MRI bread image by edge find method
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• In section 3.2 feature points. We choose the feature points manually. So, in the future,

it is very useful to find a good method that can be automatically selected feature

points.

• In section 3.5 application of multivariate spline interpolation. We used the binary

quadratic polynomial as the function expression on each portions, in the future, we

will try to use the binary cubic polynomial as the function expression on each portions,

in order to find a good image registration method.

• In section 5.2 the result comparison. We do the comparison with methods, and we will

try to do comparison with more others method.

• In order to do the precise error analysis, it is very important that to find a suitable

method to do image restoration from 2D to a 3D image. In this way, we can obtain

the input image by using the 3D image.

• The boundary selection method should be improved so that it can works well with

MRI, such as reference the watershed Method to improved our Method.
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