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ABSTRACT

This dissertation uses the Ansatz method to solve for exact topological soliton solutions to

sine-Gordon type equations. Single, double, and triple sine-Gordon and sine-cosine-Gordon

equations are investigated along with dispersive and highly dispersive variations. After these

solutions are found, strong perturbations are added to each equation and the new solutions

are found. In solving both the perturbed and unperturbed sine-Gordon type equations,

constraints are imposed on the parameters. After finding exact solutions to the dispersive

sine-Gordon type equations, three new solutions to the 2D sine-Gordon equation are found.

These solutions include the domain wall, the breather, and the domain wall collision. Of

particular interest is the Domain wall collision to the 2D sine-Gordon equation, which to the

authors’ knowledge had not previously been presented in the literature.

The first chapter will begin by giving the historical context of solitons and the sine-Gordon

equation. It will be shown here that the results found in the later chapters will be im-

portant to the study of Josephson junctions, crystal dislocations, ultra-short optical pulses,

relativistic field theory, and elementary particles. This chapter will continue on to show the

derivation of the discrete sine-Gordon equation by means of the Hamiltonian. The continu-

ous sine-Gordon equation will be shown to arise from the discrete version in the long wave

limit. This approximation will also show how the higher order dispersion terms arise. This

chapter will conclude by explaining the Ansatz method in detail. It will also show some

other common methods for the study of solitons.

The second, third, and fourth chapters will find exact solutions to the strongly perturbed

sine-Gordon type equations using the Ansatz method. The sine-Gordon type equations

studied will include the single, double, and triple sine-Gordon equations, and all of their
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sine-cosine-Gordon analogs. In addition to these equations, higher order dispersive versions

will also be studied. These will include both fourth and sixth order dispersion.

The fifth chapter will find exact solutions to the 2D sine-Gordon equation. This study

will also be carried out using the Ansatz method. However, in this case special relativity

will be used to turn a stationary solution into a moving solution. This will be performed in

the analog sense to how it is commonly done for the 1D sine-Gordon equation.

The sixth chapter will summarize the dissertation and give some final remarks.
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Chapter I: INTRODUCTION

1.1 HISTORICAL CONTEXT

This dissertation falls within the larger study of solitons and solitary waves. As such, the

reader may be aided by the following definitions. A solitary wave is a localized wave that

propagates without distortion of its size or shape. A soliton is a special solitary wave that

may interact or collide with other solitons and emerge unchanged except for possibly a

phase shift. Solitons are formed by nonlinear partial differential equations when the non-

linear forces, which cause a steepening effect, are exactly balanced by the dispersive forces,

which cause a flattening effect [12].

A topological soliton (TS) is a special type of soliton that can only occur when a particular

medium allows for degenerate ground states. A TS is therefore a soliton whose boundary

points end in topologically different ground states. For any TS, the ground state boundary

points are fixed and can never jump to a different ground state. Therefore one TS may never

transform into a TS with a different topology having different endpoints. A double soliton

in the context of this dissertation is a TS with twice the height of a single TS, where a single

TS has endpoints on adjacent ground states. A triple soliton has three times the height of

a single TS. A kink is another term for a TS [8].

The sine-Gordon equation (SGE) has applications to Josephson junctions, crystal dislo-

cations, ultra-short optical pulses, relativistic field theory, and elementary particles [1].

A Josephson junction is a pair of superconductors separated by a thin material that is

not superconducting. Brian Josephson predicted that a pair of superconducting electrons
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could tunnel through the non-superconducting material [30]. Certain materials, called super-

conductors, have a special property that when they are cooled below a critical temperature,

the electrical resistance drops to zero and the magnetic fields are expelled from within the

material. Because of this, an electric current can maintain itself indefinitely without a power

source.

In a Josephson junction, a direct supercurrent exists across the weak link between the two

superconductors in the absence of an applied voltage. A supercurrent is a current within

a superconductor, or a current that does not dissipate. If a voltage is applied across this

barrier, an alternating current will develop [2].

Josephson junctions are found in computer circuitry, increasing the speed of computations.

They are also found in Superconducting Quantum Interfering Devices (SQUIDs). SQUIDs

can measure minute changes in voltages and magnetic fields. Because of this, SQUIDs can

be used to measure neural activity in the brain, heart activity [21], and even submarine

detection [23].

(a) Standard lattice (b) Inserted half-plane

Figure 1.1: Edge Dislocation
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(a) Standard Lattice (b) Slipped half-plane

Figure 1.2: Screw Dislocation

A crystal dislocation is an irregularity within the crystal structure. There are two types

of dislocations. An edge dislocation occurs when one plane of atoms only extends half-way

through the crystal. This causes the planes to bend around it. A screw dislocation looks like

the Riemann surface of the complex logarithm. Dislocations can also be a combination of

the two types. Studying these dislocations can help material scientists improve the strength

of metals. The kink solitons of the SGE can be used to model the interactions of these

dislocations [19].

Ultrashort pulses allow scientists to study ultrashort processes and allow for optical data

transmission. Some ultrashort processes of interest include electron dynamics within semi-

conductors, light-induced phase changes of metals, plasma dynamics, and chemical reactions

[37]. Light pulses can be used to transmit data at very high rates due to high optical fre-

quencies [39].
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In relativistic field theory, kinks can be used to model undiscovered particles such as mag-

netic monopoles and cosmic strings [36].

Recently, researchers have begun studying the sine-cosine-Gordon equation (SCGE). One

of the first such studies was done by Wazwaz in 2006 [43]. This work was later expanded

on by Kuo and Hu in 2009 [33] to show how the SCGE can be used to model a spin 1/2

chain. Throughout this dissertation solutions to the sine-cosine-Gordon type equations will

be found alongside their SG type equation analogs.

In all of the above applications, the SGE is not enough to sufficiently model each situa-

tion. Instead there are other terms beyond the normal SGE that are required for a more

accurate description of the underlying physics. Perturbation terms are often times added

to the SGE to represent these extra qualities. Weak perturbation analysis is used when

the extra terms are very small in comparison to the regular SGE terms [18, 28]. However,

since the physics demands these terms are of the same order, they must be called strong

perturbations [13, 15, 20].

The 2D SGE has applications to ferromagnetic media [34] and light bullets. Typical pulses

of light consist of an envelope containing hundreds or even thousands of internal oscillations.

The usual way to study these light pulses is by the Nonlinear Schrdinger Equation (NLSE),

which approximates the slowly varying envelope. Light bullets are ultra-short optical pulses

that have only a few oscillations within the wave envelope. This means the oscillations are

on the same order of magnitude as the envelope itself. Because of this, the NLSE no longer

accurately approximates the wave dynamics. It was found that the 2D SGE is a better

approximation for this phenomenon [44].
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This dissertation studies three new solutions to the 2D SGE. These solutions all have imme-

diate 1D analogs to the 1D SGE. The domain wall is the 2D generalization of the kink. The

domain wall collision is the 2D generalization of soliton collisions of the 1D SGE. Breathers

of the SGE are also generalized to their 2D counterparts.

The goal of this dissertation is to find exact solutions to strongly perturbed sine-Gordon

(SG) type equations and the 2D SGE. This will be accomplished by means of the Ansatz

method.

1.2 SINE GORDON EQUATION DERIVATION

The discrete SGE describes a harmonically coupled chain of atoms in a periodic potential.

The Hamiltonian of this system is given by [42]

H =
∑
n

1

2
q̇2n +

1

2∆x2
(qn+1 − qn)2 + a(1− cos qn)

where each atom is coupled to its nearest neighbors by linear springs. Each atom also

experiences a local potential with energy a(1 − cos q). The Hamiltonian equations are of

course

dqn
dt

=
∂H
∂pn

and
dpn
dt

= −∂H
∂qn

where the momentum pn in this case is just q̇n. Solving the Hamiltonian equations leads to

the discrete SGE, given by [26]

q̈n −
1

∆x2
(qn+1 − 2qn + qn−1) + a sin qn = 0
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where qn represents the displacement of the nth atom and ∆x is the lattice spacing parameter.

The second-order difference can be approximated by

1

∆x2
(qn+1 − 2qn + qn−1) = 2

∞∑
m=0

∆x2m

(2m+ 2)!
∂mxxqxx(n∆x)

The first few terms of the Taylor expansion are

1

∆x2
(qn+1 − 2qn + qn−1) = qxx(n∆x) +

∆x2

12
qxxxx(n∆x) +

∆x4

360
qxxxxxx(n∆x) + · · ·

The continuous SGE is thus the first-order approximation to the discrete SGE representing

a crystal lattice. The dispersive SGE is the second-order approximation, and the highly

dispersive SGE is the third-order approximation.

In the same way that the continuous SGE was derived from the above Hamiltonian, slightly

modified versions lead to the double and triple SG equations.

H =
∑
n

1

2
q̇2n +

1

2∆x2
(qn+1 − qn)2 + a1(1− cos qn) +

a2
2

(1− cos 2qn)

This Hamiltonian, with the addition of the (a2/2)(1− cos 2qn) term leads to the double SGE

qtt − qxx + a1 sin q + a2 sin 2q = 0

and the addition of the final term (a3/3)(1− cos 3qn)

H =
∑
n

1

2
q̇2n +

1

2∆x2
(qn+1 − qn)2 + a1(1− cos qn) +

a2
2

(1− cos 2qn) +
a3
3

(1− cos 3qn)
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leads to the triple SGE

qtt − qxx + a1 sin q + a2 sin 2q + a3 sin 3q = 0

1.3 DESCRIPTION OF THE ANSATZ METHOD

There are many methods of finding solutions to nonlinear partial differential equations. Some

of the more popular methods include Lie symmetry analysis [7, 40, 41], the exp-function

method [4, 13, 14, 15, 16, 40], the tanh method [27], the G′/G method [4, 13, 15, 16, 40], the

F -expansion method [3, 16], the mapping method [4, 7, 14], semi-inverse variational principle

[6, 4], traveling waves [5, 13, 14, 16, 27, 41], and the Ansatz method [3, 7, 15, 20, 24, 38, 40].

This dissertation uses the Ansatz method to find exact solutions to SG type equations.

The typical nonlinear wave equation that will be studied in this dissertation is of the form

qtt − qxx + L(q) +N(q) = 0 (1.1)

where x and t represent partial derivatives with respect to space and time respectively, and

where L(q) represents the linear terms, including derivatives of q, and N(q) represents the

nonlinear terms, including derivatives of q. The Ansatz method requires a guess for the

solution. Call this guess the particular solution q̂(x, t). Once an initial guess is made for

q̂(x, t), that solution is put into the original nonlinear wave equation (1.1)

q̂tt − q̂xx + L(q̂) +N(q̂) = 0
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The above equation is then simplified down to a sum of linearly independent functions,

0 =
n∑
i=0

ciFi(x, t) (1.2)

where ci are the constant coefficients of the linearly independent functions Fi(x, t). In order

to satisfy (1.2), it is necessary to set all coefficients equal to zero

ci = 0 ∀i ∈ {0, 1, 2, . . . , n}

In completing this step, one of two things will happen. If a critical parameter must be set

to zero, then the particular solution q̂(x, t) has been proven to be invalid. Otherwise, this is

proof that q̂(x, t) is a particular solution to (1.1). In the latter case, setting the ci to zero will

lead to some constraints on the parameters of (1.1) and the internal parameters of q̂(x, t).
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Chapter II: TOPOLOGICAL SOLITONS DUE TO THE

SINE-GORDON EQUATION AND ITS TYPE

This first section of this chapter will study the SGE and other similar equations without

higher order dispersion terms. The same equations with the addition of fourth-order and

sixth-order dispersion will be studied in chapters three and four, respectively.

2.1 SINE-GORDON EQUATION

The SGE studied in this chapter is

qtt − k2qxx + a sin q = 0 (2.1)

The kink Ansatz that will be used to solve this equation, given by [20], is

q(x, t) = 4 arctan {A exp [B(x− vt)]} (2.2)

The variable E will be used henceforth, where E = A exp[B(x − vt)]. Inserting (2.2) into

(2.1) yields

4
E − E3

(1 + E2)2
[
B2
(
v2 − k2

)
+ a
]

= 0

Solving for B gives

B = ±
√

a

k2 − v2

It turns out that A = ±e−Bx0 represents the starting location of the soliton at x0. Positive

A represents a bright soliton whereas negative A represents a dark soliton. The sign of A ·B

determines the direction of the internal twist in the kink. These things hold true whenever

the solution structure is an arctangent of an exponential.
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The bright solution to the unperturbed SGE is

q(x, t) = 4 arctan

{
exp

[
±
√

a

k2 − v2
(x− x0 − vt)

]}

The result above is already well known [1, 8, 18, 20, 26, 28, 31]. Now that we have the exact

solution to the unperturbed SGE, we will use the same Ansatz to find the exact solution

to the strongly perturbed SGE. The variable R will be used to hold all of the perturbation

terms, where

R = βqt + γqx + δqxt + λqtt + σqxxt + νqxxxx (2.3)

In Josephson junctions, β represents the dissipative losses of electrons tunneling across a

dielectric barrier, γ comes about from an inhomogeneous part of the local inductance, δ

accounts for the diffusion, λ results from an inhomogeneity of the capacitance, σ arises due

to current losses along the barrier, and ν contains the higher order spatial dispersion [31].

The perturbed SGE is thus

qtt − k2qxx + a sin q = R

Using the same Ansatz from (2.2), we get the governing equation

0 =
(
E − E3

) (
1 + E2

)2 [
B2
(
v2 − λv2 + δv − k2

)
+ a
]

+ E
(
1 + E2

)3
[B (βv − γ)]

+
(
E − 6E3 + E5

) (
1 + E2

) [
B3σv

]
−
(
E − 23E3 + 23E5 − E7

) [
B4ν

] (2.4)

which has four linearly independent functions E, E3, E5, and E7. Each must have its

coefficient set to zero. Let c1 = B(βv − γ), c2 = B2(v2 − λv2 + δv − k2) + a, c3 = B3σv,
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c4 = −B4ν. Then solving (2.4) is equivalent to solving the matrix equation



1 1 1 1

3 1 −5 −23

3 −1 −5 23

1 −1 1 −1





c1

c2

c3

c4


=



0

0

0

0


(2.5)

Since this matrix has full rank, the only solution is the trivial solution. Setting the coefficients

to zero gives the following results:

γ = βv

σ = 0

ν = 0

(2.6)

The final result of the matrix equation (2.5) is

B = ±
√

a

k2 − δv − (1− λ)v2

The bright soliton solution to the perturbed SGE is

q(x, t) = 4 arctan

{
exp

[
±
√

a

k2 − δv − (1− λ)v2
(x− x0 − vt)

]}

with the constraints found in (2.6). These results have already been reported in [20], and

are reproduced here in order to show the method that will be used henceforth.

2.2 SINE-COSINE-GORDON EQUATION

The SCGE is

qtt − k2qxx + a sin q + b cos q = 0 (2.7)
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The kink Ansatz for this equation is

q(x, t) = 4 arctan {A exp [B (x− vt)]}+ C (2.8)

Inserting (2.8) into (2.7) gives

0 = 4
[
B2
(
v2 − k2

)
+ a cosC − b sinC

] (
E − E3

)
+ (a sinC + b cosC)

(
1− 6E2 + E4

)
which gives the following two relationships:

C = − arctan

(
b

a

)
B = ±(a2 + b2)

1
4

√
k2 − v2

The solution to the unperturbed SCGE is

q(x, t) = 4 arctan

{
exp

[
±(a2 + b2)

1
4

√
k2 − v2

(x− x0 − vt)

]}
− arctan

(
b

a

)

The perturbed SCGE is

qtt − k2qxx + a sin q + b cos q = R

where R again contains all of the perturbation terms from (2.3). Using the same Ansatz

from (2.8), we get the governing equation

0 =
(
E − E3

) (
1 + E2

)2 [
B2
(
v2 − λv2 + δv − k2

)
+ a cosC − b sinC

]
+ E

(
1 + E2

)3
[B (βv − γ)] +

(
E − 6E3 + E5

) (
1 + E2

) [
B3σv

]
−
(
E − 23E3 + 23E5 − E7

) [
B4ν

]
+
(
1− 6E2 + E4

) (
1 + E2

)2
[a sinC + b cosC]

(2.9)
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Setting the coefficients of the linearly independent functions in (2.9) to zero as was done in

section 2.1 leads to the same matrix equation (2.5) with the extra condition that

C = − arctan

(
b

a

)

The conditions for this equation are the same as (2.6) with the addition of

B = ± (a2 + b2)
1
4√

k2 − δv − (1− λ)v2

The solution to the perturbed SCGE is

q(x, t) = 4 arctan

{
exp

[
± (a2 + b2)

1
4√

k2 − δv − (1− λ)v2
(x− x0 − vt)

]}
− arctan

(
b

a

)

2.3 DOUBLE SINE-GORDON EQUATION

The double sine-Gordon equation (DSGE) is

qtt − k2qxx + a1 sin q + a2 sin 2q = 0 (2.10)

The first Ansatz we will investigate is

q(x, t) = 2 arctan {A sinh [B(x− vt)]} (2.11)

Substituting (2.11) into (2.10) gives the following equation

B2
(
v2 − k2

) [(
1− 2A2

)
S − A2S3

]
+ a1

[
S + A2S3

]
+ 2a2

[
S − A2S3

]
= 0
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where S = sinh[B(x− vt)]. Setting the coefficients of S and S3 both to zero leads to the two

constraints

A = ±
√

a1
a1 − 2a2

B = ±
√

2a2 − a1
k2 − v2

The first solution to the unperturbed DSGE is

q(x, t) = 2 arctan

{√
a1

a1 − 2a2
sinh

[
±
√

2a2 − a1
k2 − v2

(x− vt)

]}

For the soliton to exist, it is necessary that 2a2 > a1 and a1 < 0.

The second Ansatz for (2.10), found in [18], is

q(x, t) = 2 arctan {A tanh [B(x− vt)]} (2.12)

The resulting equation from combining (2.10) and (2.12) is

2B2
(
1 + A2

) (
k2 − v2

) (
T − T 3

)
+ a1

(
T + A2T 3

)
+ 2a2

(
T − A2T 3

)
= 0

where T = tanh[B(x− vt)]. Once the coefficients of T and T 3 are set to zero, the resulting

relationships are

A = ±
√
a2 + a1
a2 − a1

B = ±1

2

√
a22 − a21

a2 (k2 − v2)
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The second solution to the unperturbed DSGE is

q(x, t) = 2 arctan

{√
a2 + a1
a2 − a1

tanh

[
±1

2

√
a22 − a21

a2 (k2 − v2)
(x− vt)

]}

where a2 > |a1|.

The perturbed DSGE is

qtt − k2qxx + a1 sin q + a2 sin 2q = R

Using the first Ansatz, (2.11), we get the equation

0 = c2
[(

1− 2A2
)
S +

(
1− 4A2

)
S3 −

(
1 + 2A2

)
S5 − S7

]
− a1

[
S + 3S3 + 3S5 + S7

]
+ 2a2

[
S + S3 − S5 − S7

]
+ c1

[
1 + 3S2 + 3S4 + S6

]
cosh[B(x− vt)]

+ c3
[(

1− 2A2
)
−
(
5− 4A2

)
S2 −

(
5− 6A2

)
S4 + S6

]
cosh[B(x− vt)]

+ c4
[(

1− 20A2 + 24A4
)
S +

(
1 + 56A2 − 24A4

)
S3 +

(
21− 20A2

)
S5 − 3S7

]
where c1 = B(βv − γ), c2 = B2[(1 − λ)v2 + δv − k2], c3 = B3σv, and c4 = B4ν. From

this equation, we can see that c1 and c3 must both be zero, and the remaining part can be

summarized in the following matrix



1 1 1− 2A2 1− 20A2 + 24A4

3 1 1− 4A2 1 + 56A2 − 24A4

3 −1 −1− 2A2 21− 20A2

1 −1 −1 −3





−a1

2a2

c2

c4


=



0

0

0

0
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This matrix reduces to 

1 0 1− A2 0

0 1 −A2 0

0 0 0 1

0 0 0 0


which gives the result c4 = 0 and two other relationships that can be used to solve for A and

B. The constraints for this equation are those in (2.6) plus

A = ±
√

a1
a1 − 2a2

B = ±

√
2a2 − a1

k2 − δv − (1− λ)v2

The first solution to the perturbed DSGE is

q(x, t) = 2 arctan

{√
a1

a1 − 2a2
sinh

[
±

√
2a2 − a1

k2 − δv − (1− λ)v2
(x− vt)

]}

with the constraints found in (2.6) and 2a2 > a1 and a1 < 0.

Using the second Ansatz, (2.12), we get the equation

0 = −c2(1 + A2)T (1− T 2)(1 + A2T 2)2 +
a1
2
T (1 + A2T 2)3 + a2T (1− A2T 2)(1 + A2T 2)2

+
c1
2

[1− (1− A2)T 2 − A2T 4](1 + A2T 2)2

+ c3(1 + A2)(1− T 2)[1− 3(1 + A2)T 2 + A2T 4](1 + A2T 2)

− 4c4(1 + A2)(1− T 2)

[
(2 + 3A2)T − (3 + 8A2 + 3A4)T 3 + A2(5 + 3A2)T 5 +

1

2
A2T 7

]

where c1 = B(βv − γ), c2 = B2[(1 − λ)v2 + δv − k2], c3 = B3σv, and c4 = B4ν. It is

immediately clear that c1 = c3 = c4 = 0, which means σ = ν = 0. The remaining part can
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be summarized in the following matrix equation



−1− A2 1 1

1− A2 − 2A4 3A2 A2

2A2 + A4 − A6 3A4 −A4

A4 + A6 A6 −A6




c2

1
2
a1

a2

 =



0

0

0

0


This matrix reduces to 

A−2 + 2 + A2 0 −1

A−2 − A2 2 0

0 0 0

0 0 0


These two relationships can be used to solve for A and B

A =

√
a2 + a1
a2 − a1

B = ±1

2

√
a22 − a21

a2 [k2 − δv − (1− λ)v2]

The second solution to the perturbed DSGE is

q(x, t) = 2 arctan

{√
a2 + a1
a2 − a1

tanh

[
±1

2

√
a22 − a21

a2 [k2 − δv − (1− λ)v2]
(x− vt)

]}

with the constraints found in (2.6) and a2 > |a1|.
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Chapter III: TOPOLOGICAL SOLITONS DUE TO THE

SINE-GORDON EQUATION WITH FOURTH ORDER

DISPERSION

This chapter adds fourth order dispersion to the SG type equations. Equations with a

fourth order dispersion term are commonly referred to as Boussinesq type equations by their

resemblance to the Boussinesq equation:

qtt − qxx + a
(
q2
)
xx

+ bqxxxx = 0

The Boussinesq equation is an approximate equation for shallow water waves [9], similar to

the well-known Korteveg de Vries (KdV) equation [10, 32]. Both equations model solitary

waves, or solitons, along the surface of shallow water. For further discussion of the Boussinesq

equation, see [13, 15].

3.1 SINE-GORDON EQUATION WITH FOURTH ORDER DISPERSION

The SGE with fourth order dispersion is

qtt − k2qxx − dqxxxx + a sin q = 0 (3.1)

The Ansatz for (3.1), given by [28], is

q(x, t) = 8 arctan {A exp [B(x− vt)]} (3.2)

The 8 here means that this is in fact a double soliton. This can occur when two identical

solitons interact and combine to form a single unit. A deeper discussion of this process can
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be found in [8]. The governing equation is

0 = −B2(k2 − v2)
(
E + E3 − E5 − E7

)
− dB4

(
E − 23E3 + 23E5 − E7

)
+ a

(
E − 7E3 + 7E5 − E7

)
This leads to the system of equations according to the powers of E



1 1 1

1 −23 −7

−1 23 7

−1 −1 −1




c1

c2

a

 =



0

0

0

0


where c1 = −B2(k2 − v2) and c2 = −dB4. Solving the above system leads to the pair of

relations

B = ±

√
2
3
a

k2 − v2

v = ±

√
k2 −

√
4

3
ad

which put the following two restrictions on the parameters a and d

a > 0

0 < d <
3k4

4a

The solution to the unperturbed dispersive SGE is

q(x, t) = 8 arctan

exp

±
√

2
3
a

k2 − v2
(x− x0 − vt)
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This result agrees with the results found in [28]. The perturbed dispersive SGE is

qtt − k2qxx − dqxxxx + a sin q = R

Using the same Ansatz from (3.2), we have

0 = c1(E + 3E3 + 3E5 + E7) + c2(E + E3 − E5 − E7) + c3(E − 5E3 − 5E5 + E7)

+ c4(E − 23E3 + 23E5 − E7) + c5(E − 7E3 + 7E5 − E7)

where c1 = B(βv − γ), c2 = −B2[k2 − δv − (1 − λ)v2], c3 = B3σv, c4 = −B4(d + ν), and

c5 = a. Solving the above equation is equivalent to solving the following matrix equation



1 1 1 1 1

3 1 −5 −23 −7

3 −1 −5 23 7

1 −1 1 −1 −1





c1

c2

c3

c4

c5


=



0

0

0

0



Solving the above system leads to the following equalities

σ = 0

γ = βv

B = ±

√
2
3
a

k2 − δv − (1− λ)v2

v =

−δ ±
√
δ2 + 4(1− λ)

(
k2 −

√
4a
3

(d+ ν)
)

2(1− λ)
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which require the following inequalities to hold true

λ 6= 1

a > 0

0 < d+ ν <
3

4a

(
k2 +

δ2

4(1− λ)

)2

The solution to the perturbed SGE with fourth order dispersion is

q(x, t) = 8 arctan

exp

±√ 2
3
a

k2 − δv − (1− λ)v2
(x− x0 − vt)


3.2 SINE-COSINE-GORDON EQUATIONWITH FOURTHORDERDISPER-

SION

The SCGE with fourth order dispersion is

qtt − k2qxx − dqxxxx + a sin q + b cos q = 0 (3.3)

The Ansatz for this equation is

q(x, t) = 8 arctan {A exp [B(x− vt)]}+ C (3.4)

It is necessary to set C = − arctan(b/a) in order to eliminate the even exponents caused by

the cosine term. Combining (3.3) and (3.4), we have

0 = (v2 − k2)B2
(
E + E3 − E5 − E7

)
− dB4

(
E − 23E3 + 23E5 − E7

)
+
√
a2 + b2

(
E − 7E3 + 7E5 − E7

)
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Solving the same system of equations from section 3.1 leads to the similar pair of relations

B = ±

√
2
3

√
a2 + b2

k2 − v2

v = ±

√
k2 −

√
4

3
d
√
a2 + b2

which put the following restriction on the parameter d

0 < d <
3k4

4
√
a2 + b2

The solution to the unperturbed dispersive SCGE is

q(x, t) = 8 arctan

exp

±
√

2
3

√
a2 + b2

k2 − v2
(x− x0 − vt)

− arctan

(
b

a

)

The perturbed dispersive SCGE is

qtt − k2qxx − dqxxxx + a sin q + b cos q = R

Using the previous Ansatz, the governing equation is

0 = c1(E + 3E3 + 3E5 + E7) + c2(E + E3 − E5 − E7) + c3(E − 5E3 − 5E5 + E7)

+ c4(E − 23E3 + 23E5 − E7) + c5(E − 7E3 + 7E5 − E7)

where c1 = B(βv − γ), c2 = −B2[k2 − δv − (1 − λ)v2], c3 = B3σv, c4 = −B4(d + ν), and

c5 =
√
a2 + b2. This leads to the same matrix equation as before, and that implies the
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following equalities

σ = 0

γ = βv

B = ±

√
2
3

√
a2 + b2

k2 − δv − (1− λ)v2

v =

−δ ±

√
δ2 + 4(1− λ)

(
k2 −

√
4
3
(d+ ν)

√
a2 + b2

)
2(1− λ)

which require the following inequalities

λ 6= 1

0 < d+ ν <
3

4
√
a2 + b2

(
k2 +

δ2

4(1− λ)

)2

Hence, the solution to the perturbed dispersive SCGE is

q(x, t) = 8 arctan

exp

±
√

2
3

√
a2 + b2

k2 − δv − (1− λ)v2
(x− x0 − vt)

− arctan

(
b

a

)

3.3 DOUBLE SINE-GORDON EQUATION WITH FOURTH ORDER DIS-

PERSION

The DSGE with fourth order dispersion is

qtt − k2qxx − dqxxxx + a1 sin q + a2 sin 2q = 0 (3.5)
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The Ansatz for this equation, due to [15], is

q(x, t) = 4 arctan {A exp [B(x− vt)]} (3.6)

Inserting (3.6) into (3.5) yields

0 =
[
(v2 − k2)B2 + a1

] (
E + E3 − E5 − E7

)
− dB4

(
E − 23E3 + 23E5 − E7

)
+ 2a2

(
E − 7E3 + 7E5 − E7

)
This leads to the system of equations according to the powers of E



1 1 1

1 −23 −7

−1 23 7

−1 −1 −1




c1

c2

c3

 =



0

0

0

0


where c1 = a1 − B2(k2 − v2), c2 = −dB4, and c3 = 2a2. Solving the above system leads to

the pair of relations

B = ±

√
a1 + 4

3
a2

k2 − v2

v = ±

√
k2 −

(
a1 +

4

3
a2

)√
3d

2a2

which put the following two restrictions on the parameters a1, a2, and d

a2 · d > 0

0 < a1 +
4

3
a2 < k2

√
2a2
3d
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The solution to the unperturbed dispersive DSGE is

q(x, t) = 4 arctan

exp

±
√
a1 + 4

3
a2

k2 − v2
(x− x0 − vt)


The perturbed dispersive DSGE is

qtt − k2qxx − dqxxxx + a1 sin q + a2 sin 2q = R

Using the Ansatz found in (3.6), the governing equation is

0 = c1(E + 3E3 + 3E5 + E7) + c2(E + E3 − E5 − E7) + c3(E − 5E3 − 5E5 + E7)

+ c4(E − 23E3 + 23E5 − E7) + c5(E − 7E3 + 7E5 − E7)

where c1 = B(βv − γ), c2 = a1 −B2[k2 − δv − (1− λ)v2], c3 = B3σv, c4 = −B4(d+ ν), and

c5 = 2a2. Solving the above equation is equivalent to solving the following matrix equation



1 1 1 1 1

3 1 −5 −23 −7

3 −1 −5 23 7

1 −1 1 −1 −1





c1

c2

c3

c4

c5


=



0

0

0

0
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Solving the above system leads to the following equalities

σ = 0

γ = βv

B = ±

√
a1 + 4

3
a2

k2 − δv − (1− λ)v2

v =

−δ ±
√
δ2 + 4(1− λ)

[
k2 −

(
a1 + 4

3
a2
)√

3
2a2

(d+ ν)
]

2(1− λ)

which require the following inequalities to hold true

λ 6= 1

a1 +
4

3
a2 > 0

0 <
d+ ν

a2
<

2

3

(
k2 + δ2

4(1−λ)

a1 + 4
3
a2

)2

The solution to the perturbed DSGE with fourth order dispersion is

q(x, t) = 8 arctan

exp

±√ a1 + 4
3
a2

k2 − δv − (1− λ)v2
(x− x0 − vt)


These results agree with those found in [15].

3.4 DOUBLE SINE-COSINE-GORDON EQUATION WITH FOURTH OR-

DER DISPERSION

The double sine-cosine-Gordon equation (DSCGE) with fourth order dispersion is

qtt − k2qxx − dqxxxx + a1 sin q + b1 cos q + a2 sin 2q + b2 cos 2q = 0 (3.7)
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The Ansatz for this equation is

q(x, t) = 4 arctan {A exp [B(x− vt)]}+ C (3.8)

It is necessary to set C = − arctan(b1/a1) and to ensure

a2
b2

=
a21 − b21
2a1b1

in order to eliminate the even exponents caused by the cosine terms. These imply the pair

of simplifications

a1 sin q + b1 cos q =
√
a21 + b21 sin q

a2 sin 2q + b2 cos 2q =
a2(a

2
1 − b21) + 2a1b1b2
a21 + b21

sin 2q

Combining (3.7) and (3.8) gives us the governing equation

0 =

[√
a21 + b21 −B2(k2 − v2)

] (
E + E3 − E5 − E7

)
− dB4

(
E − 23E3 + 23E5 − E7

)
+ 2

a2(a
2
1 − b21) + 2a1b1b2
a21 + b21

(
E − 7E3 + 7E5 − E7

)
Solving the same system of equations from section 3.3 leads to the similar pair of relations

B = ±

√
(a21 + b21)

3
2 + 4

3
[a2(a21 − b21) + 2a1b1b2]

(k2 − v2)(a21 + b21)

v = ±

√√√√k2 −

(
a21 + b21 +

4

3
· a2(a

2
1 − b21) + 2a1b1b2√

a21 + b21

)√
3
2
d

a2(a21 − b21) + 2a1b1b2
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which put the following restrictions on the parameter a1, a2, b1, b2, and d

d
[
a2(a

2
1 − b21) + 2a1b1b2

]
> 0

0 < (a21 + b21)
3
2 +

4

3

[
a2(a

2
1 − b21) + 2a1b1b2

]
(a21 + b21)

3
2 +

4

3

[
a2(a

2
1 − b21) + 2a1b1b2

]
< k2

√
(a21 + b21) [a2(a21 − b21) + 2a1b1b2]

3
2
d

The solution to the unperturbed dispersive DSCGE is

q(x, t) = 4 arctan

exp

±
√

(a21 + b21)
3
2 + 4

3
[a2(a21 − b21) + 2a1b1b2]

(k2 − v2)(a21 + b21)
(x− x0 − vt)


− arctan

(
b1
a1

)

The perturbed dispersive DSCGE is

qtt − k2qxx − dqxxxx + a1 sin q + b1 cos q + a2 sin 2q + b2 cos 2q = R

Using the Ansatz found in (3.8) and the previously found relationships for C, a1, b1, a2, and

b2, we have

0 = c1(E + 3E3 + 3E5 + E7) + c2(E + E3 − E5 − E7) + c3(E − 5E3 − 5E5 + E7)

+ c4(E − 23E3 + 23E5 − E7) + c5(E − 7E3 + 7E5 − E7)

where c1 = B(βv−γ), c2 =
√
a21 + b21−B2[k2− δv− (1−λ)v2], c3 = B3σv, c4 = −B4(d+ν),

and c5 = 2[a2(a
2
1 − b21) + 2a1b1b2]/(a

2
1 + b21). The matrix equation is therefore the same as it
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was in the previous section. This leads to the following equalities

σ = 0

γ = βv

B = ±

√
(a21 + b21)

3
2 + 4

3
[a2(a21 − b21) + 2a1b1b2]

[k2 − δv − (1− λ)v2] (a21 + b21)

v =
1

2(1− λ)

−δ ±
δ2 + 4(1− λ)

k2 −(a21 + b21 +
4

3
· a2(a

2
1 − b21) + 2a1b1b2√

a21 + b21

)

×

√
3
2
(d+ ν)

a2(a21 − b21) + 2a1b1b2


1
2


in which case the following inequalities must also hold true

λ 6= 1[
a2(a

2
1 − b21) + 2a1b1b2

]
(d+ ν) > 0

0 < (a21 + b21)
3
2 +

4

3

[
a2(a

2
1 − b21) + 2a1b1b2

]
a21 + b21 +

4

3
· a2(a

2
1 − b21) + 2a1b1b2√

a21 + b21
<

(
k2 +

δ2

4(1− λ)

)√
a2(a21 − b21) + 2a1b1b2

3
2
(d+ ν)

The solution to the perturbed dispersive DSCGE is

q(x, t) = 4 arctan

exp

±
√

(a21 + b21)
3
2 + 4

3
[a2(a21 − b21) + 2a1b1b2]

[k2 − δv − (1− λ)v2] (a21 + b21)
(x− x0 − vt)


− arctan

(
b1
a1

)
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Chapter IV: TOPOLOGICAL SOLITONS DUE TO THE

SINE-GORDON EQUATION WITH SIXTH ORDER

DISPERSION

Higher order dispersion terms mainly come about from stronger interactions of the highly

discretized SGE, see [11]. Just as the fourth order dispersion term gave way to double

solitons, the sixth order dispersion term will yield triple solitons. For further discussion of

the discretized SGE and these triple solitons, see [8].

4.1 SINE-GORDON EQUATION WITH SIXTH ORDER DISPERSION

The SGE with sixth order dispersion is

qtt − k2qxx − d1qxxxx − d2qxxxxxx + a sin q = 0 (4.1)

The Ansatz for this equation, found in [28], is

q(x, t) = 12 arctan {A exp [B(x− vt)]} (4.2)

The 12 here means this is a triple soliton. Plugging (4.2) into (4.1) gives us

0 = −B2(k2 − v2)
(
E + 3E3 + 2E5 − 2E7 − 3E9 − E11

)
− d1B4

(
E − 21E3 − 22E5 + 22E7 + 21E9 − E11

)
− d2B6

(
E − 237E3 + 1682E5 − 1682E7 + 237E9 − E11

)
+
a

3

(
3E − 55E3 + 198E5 − 198E7 + 55E9 − 3E11

)
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This leads to the system of equations according to the powers of E



1 1 1 3

3 −21 −237 −55

2 −22 1682 198

−2 22 −1682 −198

−3 21 237 55

−1 −1 −1 −3





c1

c2

c3

c4


=



0

0

0

0

0

0


where c1 = −B2(k2−v2), c2 = −d1B4, c3 = −d2B6, and c4 = a/3. Solving the above system

leads to the pair of relations

B = ±

√
23
45
a

k2 − v2

v = ±
√
k2 − 23

30

√
ad1

which put the following four restrictions on the parameters a, d1, and d2

a > 0

d2 =
3

20

√
d31
a

0 < d1 <
900k4

529a

The solution to the unperturbed highly dispersive SGE is

q(x, t) = 12 arctan

exp

±
√

23
45
a

k2 − v2
(x− x0 − vt)
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The perturbed SGE with sixth order dispersion is

qtt − k2qxx − d1qxxxx − d2qxxxxxx + a sin q = R

Using the same Ansatz as in (4.2) yields

0 = B(βv − γ)
(
E + 5E3 + 10E5 + 10E7 + 5E9 + E11

)
−B2(k2 − δv − (1− λ)v2)

(
E + 3E3 + 2E5 − 2E7 − 3E9 − E11

)
+B3σv

(
E − 3E3 − 14E5 − 14E7 − 3E9 + E11

)
−B4(d1 + ν)

(
E − 21E3 − 22E5 + 22E7 + 21E9 − E11

)
− d2B6

(
E − 237E3 + 1682E5 − 1682E7 + 237E9 − E11

)
+
a

3

(
3E − 55E3 + 198E5 − 198E7 + 55E9 − 3E11

)
This is equivalent to the matrix equation



1 1 1 1 1 3

5 3 −3 −21 −237 −55

10 2 −14 −22 1682 198

10 −2 −14 22 −1682 −198

5 −3 −3 21 237 55

1 −1 1 −1 −1 −3





c1

c2

c3

c4

c5

c6


=



0

0

0

0

0

0
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where c1 = B(βv − γ), c2 = −B2(k2 − δv − (1 − λ)v2), c3 = B3σv, c4 = −B4(d1 + ν),

c5 = −d2B6, and c6 = a/3. Solving the above system gives us

σ = 0

γ = βv

d2 =
3

20

√
(d1 + ν)3

a

B = ±

√
23
45
a

k2 − δv − (1− λ)v2

v =

−δ ±
√
δ2 + 4(1− λ)

(
k2 − 23

30

√
a(d1 + ν)

)
2(1− λ)

with constraints

λ 6= 1

a > 0

0 < d1 + ν <
900

529a

(
k2 +

δ2

4(1− λ)

)2

The solution to the perturbed highly dispersive SGE is

q(x, t) = 12 arctan

exp

±√ 23
45
a

k2 − δv − (1− λ)v2
(x− x0 − vt)


4.2 SINE-COSINE-GORDON EQUATION WITH SIXTH ORDER DISPER-

SION

The SCGE with sixth order dispersion is

qtt − k2qxx − d1qxxxx − d2qxxxxxx + a sin q + b cos q = 0 (4.3)
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The Ansatz for this equation is

q(x, t) = 12 arctan {A exp [B(x− vt)]}+ C (4.4)

First, set C = − arctan(b/a). Then (4.3) and (4.4) give us

0 = −(k2 − v2)B2
(
E + 3E3 + 2E5 − 2E7 − 3E9 − E11

)
− d1B4

(
E − 21E3 − 22E5 + 22E7 + 21E9 − E11

)
− d2B6

(
E − 237E3 + 1682E5 − 1682E7 + 237E9 − E11

)
+

1

3

√
a2 + b2

(
3E − 55E3 + 198E5 − 198E7 + 55E9 − 3E11

)
Solving the same system of equations from section 4.1 leads to the similar pair of relations

B =

√
23
45

√
a2 + b2

k2 − v2

v =

√
k2 − 23

30
(a2 + b2)

1
4

√
d1

which put the following pair of restrictions on parameters d1 and d2

d2 =
3

20
· d

3
2
1

(a2 + b2)
1
4

0 < d1 <
900k4

529
√
a2 + b2

The solution to the unperturbed highly dispersive SCGE is

q(x, t) = 12 arctan

exp

√ 23
45

√
a2 + b2

k2 − v2
(x− x0 − vt)

− arctan

(
b

a

)
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The perturbed SCGE with sixth order dispersion is

qtt − k2qxx − d1qxxxx − d2qxxxxxx + a sin q + b cos q = R

Using the same Ansatz from (4.4), we have

0 = B(βv − γ)
(
E + 5E3 + 10E5 + 10E7 + 5E9 + E11

)
−B2(k2 − δv − (1− λ)v2)

(
E + 3E3 + 2E5 − 2E7 − 3E9 − E11

)
+B3σv

(
E − 3E3 − 14E5 − 14E7 − 3E9 + E11

)
−B4(d1 + ν)

(
E − 21E3 − 22E5 + 22E7 + 21E9 − E11

)
− d2B6

(
E − 237E3 + 1682E5 − 1682E7 + 237E9 − E11

)
+

1

3

√
a2 + b2

(
3E − 55E3 + 198E5 − 198E7 + 55E9 − 3E11

)
This leads to the same matrix equation from section 4.1 where c1 = B(βv − γ), c2 =

−B2[k2 − δv − (1− λ)v2], c3 = B3σv, c4 = −B4(d1 + ν), c5 = −d2B6, and c6 =
√
a2 + b2/3.

The relationships now are

σ = 0

γ = βv

d2 =
3

20

(d1 + ν)
3
2

(a2 + b2)
1
4

B = ±

√
23
45

√
a2 + b2

k2 − δv − (1− λ)v2

v =

−δ ±
√
δ2 + 4(1− λ)

(
k2 − 23

30
(a2 + b2)

1
4
√
d1 + ν

)
2(1− λ)
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with constraints

λ 6= 1

0 < d1 + ν <
900

529
√
a2 + b2

(
k2 +

δ2

4(1− λ)

)2

The solution to the perturbed highly dispersive SCGE is

q(x, t) = 12 arctan

exp

±
√

23
45

√
a2 + b2

k2 − δv − (1− λ)v2
(x− x0 − vt)

− arctan

(
b

a

)

4.3 TRIPLE SINE-GORDON EQUATION WITH SIXTH ORDER DISPER-

SION

The triple sine-Gordon equation (TSGE) with sixth order dispersion is

qtt − k2qxx − d1qxxxx − d2qxxxxxx + a1 sin q + a2 sin 2q + a3 sin 3q = 0 (4.5)

The Ansatz for (4.5), due to [28], is

q(x, t) = 4 arctan {A exp [B(x− vt)]} (4.6)

Plugging (4.6) into (4.5) gives us

0 =
[
a1 −B2(k2 − v2)

] (
E + 3E3 + 2E5 − 2E7 − 3E9 − E11

)
− d1B4

(
E − 21E3 − 22E5 + 22E7 + 21E9 − E11

)
− d2B6

(
E − 237E3 + 1682E5 − 1682E7 + 237E9 − E11

)
+ 2a2

(
E − 5E3 − 6E5 + 6E7 + 5E9 − E11

)
+ a3

(
3E − 55E3 + 198E5 − 198E7 + 55E9 − 3E11

)
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This leads to the system of equations according to the powers of E



1 1 1 1 3

3 −21 −237 −5 −55

2 −22 1682 −6 198

−2 22 −1682 6 −198

−3 21 237 5 55

−1 −1 −1 −1 −3





c1

c2

c3

c4

c5


=



0

0

0

0

0

0


where c1 = a − B2(k2 − v2), c2 = −d1B4, c3 = −d2B6, c4 = 2a2, and c5 = a3. Solving the

above system leads to the following relations

B = ±

√
a1 + 4

3
a2 + 23

15
a3

k2 − v2

v = ±

√√√√
k2 −

(
a1 +

4

3
a2 +

23

15
a3

)√ 3
2
d1

a2 + 2a3

d2 =
2a3
15

( 3
2
d1

a2 + 2a3

) 3
2

which put the following four restrictions on the parameters a1, a2, a3, d1, and d2

d1(a2 + 2a3) > 0

0 < a1 +
4

3
a2 +

23

15
a3 < k2

√
a2 + 2a3

3
2
d1

The solution to the unperturbed highly dispersive TSGE is

q(x, t) = 4 arctan

exp

±
√
a1 + 4

3
a2 + 23

15
a3

k2 − v2
(x− x0 − vt)
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The perturbed TSGE with sixth order dispersion is

qtt − k2qxx − d1qxxxx − d2qxxxxxx + a1 sin q + a2 sin 2q + a3 sin 3q = R

Using the Ansatz found in (4.6) gives

0 = B(βv − γ)
(
E + 5E3 + 10E5 + 10E7 + 5E9 + E11

)
+
[
a1 −B2(k2 − δv − (1− λ)v2)

] (
E + 3E3 + 2E5 − 2E7 − 3E9 − E11

)
+B3σv

(
E − 3E3 − 14E5 − 14E7 − 3E9 + E11

)
−B4(d1 + ν)

(
E − 21E3 − 22E5 + 22E7 + 21E9 − E11

)
− d2B6

(
E − 237E3 + 1682E5 − 1682E7 + 237E9 − E11

)
+ 2a2

(
E − 5E3 − 6E5 + 6E7 + 5E9 − E11

)
+ a3

(
3E − 55E3 + 198E5 − 198E7 + 55E9 − 3E11

)
This is equivalent to the matrix equation



1 1 1 1 1 1 3

5 3 −3 −21 −237 −5 −55

10 2 −14 −22 1682 −6 198

10 −2 −14 22 −1682 6 −198

5 −3 −3 21 237 5 55

1 −1 1 −1 −1 −1 −3





c1

c2

c3

c4

c5

c6

c7



=



0

0

0

0

0

0
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where c1 = B(βv − γ), c2 = a1 − B2[k2 − δv − (1 − λ)v2], c3 = B3σv, c4 = −B4(d1 + ν),

c5 = −d2B6, c6 = 2a2, and c7 = a3. Solving this system results in the following equalities

σ = 0

γ = βv

d2 =
2a3
15

(
3

2
· d1 + ν

a2 + 2a3

) 3
2

B = ±

√
a1 + 4

3
a2 + 23

15
a3

k2 − δv − (1− λ)v2

v =

−δ ±
√
δ2 + 4(1− λ)

[
k2 −

(
a1 + 4

3
a2 + 23

15
a3
)√

3
2
· d1+ν
a2+2a3

]
2(1− λ)

with constraints

λ 6= 1

d1(a2 + 2a3) > 0

0 < a1 +
4

3
a2 +

23

15
a3 <

√
2

3
· a2 + 2a3
d1 + ν

(
k2 +

δ2

4(1− λ)

)

The solution to the perturbed highly dispersive TSGE is

q(x, t) = 4 arctan

exp

±√ a1 + 4
3
a2 + 23

15
a3

k2 − δv − (1− λ)v2
(x− x0 − vt)
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4.4 TRIPLE SINE-COSINE-GORDON EQUATION WITH SIXTH ORDER

DISPERSION

The triple sine-cosine-Gordon (TSCGE) equation with sixth order dispersion is

qtt − k2qxx − d1qxxxx − d2qxxxxxx + a1 sin q + b1 cos q

+ a2 sin 2q + b2 cos 2q + a3 sin 3q + b3 cos 3q = 0

(4.7)

The Ansatz for (4.7) is

q(x, t) = 4 arctan {A exp [B(x− vt)]}+ C (4.8)

It is necessary to set C = − arctan(b1/a1) and to ensure both

a2
b2

=
a21 − b21
2a1b1

and

a3
b3

= −a1
b1
· a

2
1 − 3b21
b21 − 3a21

to eliminate the even exponents of E from the cosine terms. These make the following three

simplifications

a1 sin q + b1 cos q =
√
a21 + b21 sin q

a2 sin 2q + b2 cos 2q =
a2(a

2
1 − b21) + 2a1b1b2
a21 + b21

sin 2q

a3 sin 3q + b3 cos 3q =
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

(a21 + b21)
3
2

sin 3q
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Combining (4.7) into (4.8) yields

0 =

[√
a21 + b21 −B2(k2 − v2)

] (
E + 3E3 + 2E5 − 2E7 − 3E9 − E11

)
− d1B4

(
E − 21E3 − 22E5 + 22E7 + 21E9 − E11

)
− d2B6

(
E − 237E3 + 1682E5 − 1682E7 + 237E9 − E11

)
+ 2

a2(a
2
1 − b21) + 2a1b1b2
a21 + b21

(
E − 5E3 − 6E5 + 6E7 + 5E9 − E11

)
+
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

(a21 + b21)
3
2

(
3E − 55E3 + 198E5 − 198E7 + 55E9 − 3E11

)
This gives rise to the same matrix equation from 4.3, where this time c1 =

√
a21 + b21 −

B2(k2 − v2), c2 = −d1B4, c3 = −d2B6, c4 = 2[a2(a
2
1 − b21) + 2a1b1b2]/(a

2
1 + b21), and c5 =

[a1a3(a
2
1 − 3b21)− b1b3(b21 − 3a21)]/(a

2
1 + b21)

3
2 . The solution to that system gives us

B = ± 1
√
k2 − v2(a21 + b21)

3
4

{
(a21 + b21)

2 +
4

3

[
a2(a

2
1 − b21) + 2a1b1b2

]√
a21 + b21

+
23

15

[
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

]} 1
2

v = ±

k2 −
(
a21 + b21 +

4

3

a2(a
2
1 − b21) + 2a1b1b2√

a21 + b21
+

23

15

a1a3(a
2
1 − 3b21)− b1b3(b21 − 3a21)

a21 + b21

)

×

√√√√ 3
2
d1

a2(a21 − b21) + 2a1b1b2 + 2
a1a3(a21−3b21)−b1b3(b21−3a21)√

a21+b
2
1


1
2

d2 =
2

15

[
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

] 3
2
d1

a2(a21 − b21) + 2a1b1b2 + 2
a1a3(a21−3b21)−b1b3(b21−3a21)√

a21+b
2
1


3
2
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and this gives way to the following constraints on the parameters a1, a2, a3, b1, b2, b3,d1, and

d2

d1

[
a2(a

2
1 − b21) + 2a1b1b2 + 2

a1a3(a
2
1 − 3b21)− b1b3(b21 − 3a21)√

a21 + b21

]
> 0

0 < a21 + b21 +
4

3

a2(a
2
1 − b21) + 2a1b1b2√

a21 + b21
+

23

15

a1a3(a
2
1 − 3b21)− b1b3(b21 − 3a21)

a21 + b21

< k2

√√√√a2(a21 − b21) + 2a1b1b2 + 2
a1a3(a21−3b21)−b1b3(b21−3a21)√

a21+b
2
1

3
2
d1

The solution to the unperturbed highly dispersive TSCGE is

q(x, t) = 4 arctan

{
exp

[
±
{

(a21 + b21)
2 +

4

3

[
a2(a

2
1 − b21) + 2a1b1b2

]√
a21 + b21

+
23

15

[
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

]} 1
2 (x− x0 − vt)

(a21 + b21)
3
4

√
k2 − v2

]}

The perturbed TSCGE with sixth order dispersion is

qtt − k2qxx − d1qxxxx − d2qxxxxxx + a1 sin q + b1 cos q

+ a2 sin 2q + b2 cos 2q + a3 sin 3q + b3 cos 3q = R
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Using the previous Ansatz from (4.8) gives the governing equation

0 = B(βv − γ)
(
E + 5E3 + 10E5 + 10E7 + 5E9 + E11

)
+

[√
a21 + b21 −B2(k2 − δv − (1− λ)v2)

] (
E + 3E3 + 2E5 − 2E7 − 3E9 − E11

)
+B3σv

(
E − 3E3 − 14E5 − 14E7 − 3E9 + E11

)
−B4(d1 + ν)

(
E − 21E3 − 22E5 + 22E7 + 21E9 − E11

)
− d2B6

(
E − 237E3 + 1682E5 − 1682E7 + 237E9 − E11

)
+ 2

a2(a
2
1 − b21) + 2a1b1b2
a21 + b21

(
E − 5E3 − 6E5 + 6E7 + 5E9 − E11

)
+
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

(a21 + b21)
3
2

(
3E − 55E3 + 198E5 − 198E7 + 55E9 − 3E11

)
This is again equivalent to the matrix equation from 4.3, where this time c1 = B(βv − γ),

c2 =
√
a21 + b21 − B2(k2 − δv − (1 − λ)v2), c3 = B3σv, c4 = −B4(d1 + ν), c5 = −d2B6,

c6 = 2[a2(a
2
1 − b21) + 2a1b1b2]/(a

2
1 + b21), and c7 = [a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)]/(a

2
1 + b21)

3
2 .
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Solving that system results in the following equalities

σ = 0

γ = βv

d2 =
2

15

[
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

]
×

 3
2
(d1 + ν)

a2(a21 − b21) + 2a1b1b2 + 2
a1a3(a21−3b21)−b1b3(b21−3a21)√

a21+b
2
1


3
2

B =
±1√

k2 − δv − (1− λ)v2(a21 + b21)
3
4

{
(a21 + b21)

2 +
4

3

[
a2(a

2
1 − b21) + 2a1b1b2

]
×
√
a21 + b21 +

23

15

[
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

]} 1
2

v =
1

2(1− λ)

− δ ±
δ2 + 4(1− λ)

k2 −(a21 + b21 +
4

3

a2(a
2
1 − b21) + 2a1b1b2√

a21 + b21

+
23

15

a1a3(a
2
1 − 3b21)− b1b3(b21 − 3a21)

a21 + b21

)

×

√√√√ 3
2
(d1 + ν)

a2(a21 − b21) + 2a1b1b2 + 2
a1a3(a21−3b21)−b1b3(b21−3a21)√

a21+b
2
1




1
2


with constraints

λ 6= 1

d1

[
a2(a

2
1 − b21) + 2a1b1b2 + 2

a1a3(a
2
1 − 3b21)− b1b3(b21 − 3a21)√

a21 + b21

]
> 0

0 < a21 + b21 +
4

3

a2(a
2
1 − b21) + 2a1b1b2√

a21 + b21
+

23

15

a1a3(a
2
1 − 3b21)− b1b3(b21 − 3a21)

a21 + b21

<

(
k2 +

δ2

4(1− λ)

)√√√√a2(a21 − b21) + 2a1b1b2 + 2
a1a3(a21−3b21)−b1b3(b21−3a21)√

a21+b
2
1

3
2
(d1 + ν)
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The solution to the perturbed highly dispersive TSCGE is

q(x, t) = 4 arctan

{
exp

[
±
{

(a21 + b21)
2 +

4

3

[
a2(a

2
1 − b21) + 2a1b1b2

]√
a21 + b21

+
23

15

[
a1a3(a

2
1 − 3b21)− b1b3(b21 − 3a21)

]} 1
2 (x− x0 − vt)

(a21 + b21)
3
4

√
k2 − δv − (1− λ)v2

]}
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Chapter V: 2D SINE GORDON EQUATION

5.1 INTRODUCTION

Many exact solutions have already been found to the 2D SGE [17, 22, 25, 35, 45]. This

dissertation presents three new exact solutions. This work was published in 2012 [29]. The

2+1 dimensional SGE studied here is

qtt − k21qxx − k22qyy + w2 sin q = 0 (5.1)

In order to match units, k1 and k2 are velocities and w is a frequency. The goal here is to

find an exact solution to (5.1). The first step is to eliminate the constants k1, k2, and w by

the change of variables

t′ = wt

x′ =
w

k1
x

y′ =
w

k2
y

(5.2)

This makes t′, x′, and y′ all unitless. If q(x, y, t) satisfies (5.1) then that same q(x′, y′, t′) will

satisfy the unitless equation

qt′t′ − qx′x′ − qy′y′ + sin q = 0 (5.3)

5.2 DOMAIN WALL SOLUTION

A standing wave solution to (5.3) is

q(x′, y′, t′) = 4 arctan {exp [B1(x
′ − x′0) +B2(y

′ − y′0)]} (5.4)
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where B1 and B2 are both unitless constants. This solution is called a domain wall. Inserting

(5.4) into (5.3) and grouping like terms yields

4
E − E3

(1 + E2)2
[
−B2

1 −B2
2 + 1

]
= 0

Where E(x, t) = exp [B1(x
′ − x′0) +B2(y

′ − y′0)]. This gives the single relation

B2
1 +B2

2 = 1 (5.5)

Thus either B1 or B2 can be a free parameter.

The Lorentz transformation for a unitless “velocity” ~v ′ with components v′1 in the x′ di-

rection and v′2 in the y′ direction is


c′t′′

x′′

y′′

 =


γ −β1γ −β2γ

−β1γ 1 + (γ − 1)
β2
1

β2 (γ − 1)β1β2
β2

−β2γ (γ − 1)β1β2
β2 1 + (γ − 1)

β2
2

β2



c′t′

x′

y′

 (5.6)

with constants

c′ = 1

v′ =
√

(v′1)
2 + (v′2)

2

β =
v′

c′
=
√

(v′1)
2 + (v′2)

2

β1 =
v′1
c′

= v′1 β2 =
v′2
c′

= v′2

γ =
1√

1− β2
=

1√
1− (v′1)

2 − (v′2)
2
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Of course, it is assumed that (v′1)
2 + (v′2)

2 < 1. Just as in the case for the 1+1 dimensional

SGE, let x′ → x′′ and y′ → y′′ under the Lorentz transformation. The standing wave solution

then transforms to

q(x′′, y′′, t′′) = 4 arctan {exp [B1(x
′′ − x′′0) +B2(y

′′ − y′′0)]}

The traveling wave solution to (5.3) is

q(x′, y′, t′) = 4 arctan

{
exp

[
1

(v′)2
(
B1[γ(v′1)

2 + (v′2)
2]

+ B2v
′
1v
′
2[γ − 1]) (x′ − x′0) +

1

(v′)2
(
B2[(v

′
1)

2 + γ(v′2)
2]

+ B1v
′
1v
′
2[γ − 1]) (y′ − y′0)− γ(B1v

′
1 +B2v

′
2)t
′
]} (5.7)

Inserting (5.7) into (5.3) leads to the same relation (5.5). While v′1 and v′2 represent the

unitless “velocities” in the x′ and y′ directions respectively, the true velocities in the x and

y directions are

v1 = k1v
′
1 v2 = k2v

′
2 (5.8)

Substituting (5.2) and (5.8) into (5.7) gives the traveling wave solution to (5.1)

q(x, y, t) = 4 arctan

{
exp

[
k21k

2
2

k21v
2
2 + k22v

2
1

(
B1

[
γ
v21
k21

+
v22
k22

]
+B2

v1v2
k1k2

[γ − 1]

)
w

k1
(x− x0) +

k21k
2
2

k21v
2
2 + k22v

2
1

(
B2

[
v21
k21

+ γ
v22
k22

]
+B1

v1v2
k1k2

[γ − 1]

)
w

k2
(y − y0)− γ

(
B1
v1
k1

+B2
v2
k2

)
wt

]} (5.9)

where γ is the same value as before

γ =
1√

1− v21
k21
− v22

k22
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The constraint that (v′1)
2 + (v′2)

2 < 1 becomes

v21
k21

+
v22
k22

< 1 (5.10)

Since x0 and y0 are arbitrary constants, t0 may be added without changing (5.9). Then (5.9)

becomes

q(x, y, t) = 4 arctan

{
exp

[
wk1k

2
2

k21v
2
2 + k22v

2
1

(
B1

[
γ
v21
k21

+
v22
k22

]
+B2

v1v2
k1k2

[γ − 1]

)
(x− x0) +

wk21k2
k21v

2
2 + k22v

2
1

(
B2

[
v21
k21

+ γ
v22
k22

]
+B1

v1v2
k1k2

[γ − 1]

)
(y − y0)− γw

(
B1
v1
k1

+B2
v2
k2

)
(t− t0)

]} (5.11)

The fully generalized topological soliton solution to (5.1) is (5.11) with free parameters v1,

v2, x0, y0, t0, and exactly one of B1 and B2 subject to constraints (5.5) and (5.10).

5.3 BREATHER SOLUTION

A second exact solution to (5.1) is called the breather solution. Again, using the change of

variables in (5.2), the oscillating but stationary breather solution to (5.3) is

q(x′, y′, t′) = 4 arctan {B0 sech [B1(x
′ − x′0) +B2(y

′ − y′0)] sin [B3(t
′ − t′0)]} (5.12)

assuming B0 6= 0, B3 6= 0, and B2
1 + B2

2 6= 0. Because B0 and B3 both carry a sign, it can

be assumed without loss of generality that B3 > 0 to avoid a redundancy. The breather

solution (5.12) is topologically different from the domain wall (5.4) in that it flattens out to
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0 when x2 + y2 →∞. Inserting (5.12) into (5.3) gives the following two relations

B2
1 +B2

2 +B2
3 = 1

B2
0B

2
3 = B2

1 +B2
2

These two conditions immediately lead to the relations

B2
3 =

1

1 +B2
0

(5.13a)

B2
1 +B2

2 =
B2

0

1 +B2
0

(5.13b)

which are the 2+1 dimensional analogs of the conditions for the 1+1 dimensional breather.

Without loss of generality, we may let B3 be the positive square root in (5.13a) because the

sign of B3 can be absorbed by B0 due to the fact that sin is an odd function. The primed

coordinates change to the double primed coordinates under the same Lorentz transformation

(5.6), leading to

q(x′′, y′′, t′′) = 4 arctan

{
B0 sech [B1(x

′′ − x′′0) +B2(y
′′ − y′′0)] sin

[
t′′ − t′′0√
1 +B2

0

]}

The moving breather solution to (5.3) is

q(x′, y′, t′) = 4 arctan

{
B0 sech

[
x′ − x′0
(v′)2

(
B1[γ(v′1)

2 + (v′2)
2] +B2v

′
1v
′
2[γ − 1]

)
+
y′ − y′0
(v′)2

(
B2[(v

′
1)

2 + γ(v′2)
2] +B1v

′
1v
′
2[γ − 1]

)
− γ(B1v

′
1 +B2v

′
2)(t

′ − t′0)
]

× sin

[
γ

t′ − t′0√
1 +B2

0

− γv′1
x′ − x′0√
1 +B2

0

− γv′2
y′ − y′0√
1 +B2

0

]}
(5.14)
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Substituting (5.2) and (5.8) into (5.14) gives the traveling breather solution to (5.1)

q(x, y, t) = 4 arctan

{
B0 sech

[
wk1k

2
2

k21v
2
2 + k22v

2
1

(
B1

[
γ
v21
k21

+
v22
k22

]
+B2

v1v2
k1k2

[γ − 1]

)
(x− x0) +

wk21k2
k21v

2
2 + k22v

2
1

(
B2

[
v21
k21

+ γ
v22
k22

]
+B1

v1v2
k1k2

[γ − 1]

)
(y − y0)− wγ

(
B1
v1
k1

+B2
v2
k2

)
(t− t0)

]
× sin

[
γw

t− t0√
1 +B2

0

− γwv1
k21

x− x0√
1 +B2

0

− γwv2
k22

y − y0√
1 +B2

0

]}
(5.15)

The fully generalized breather solution to (5.1) is (5.15) with free parameters v1, v2, x0, y0,

t0, B0, and exactly one of B1 and B2 subject to constraints (5.10) and (5.13b).

5.4 DOMAIN WALL COLLISION

A soliton-antisoliton pair solution to (5.3) is

q(x′, y′, t′) = 4 arctan {B0 sech[B1(x
′ − x′0) +B2(y

′ − y′0)] sinh[B3(t
′ − t′0)]} (5.16)

again assuming B0 6= 0, B3 6= 0, and B2
1 + B2

2 6= 0. This describes two interacting domain

walls that collide with perfect cancellation at t′ = t′0. Substituting (5.16) into (5.3) gives the

following two relations

B2
1 +B2

2 = B2
3 + 1

B2
1 +B2

2 = B2
0B

2
3
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These two relations can be immediately solved by

B2
3 =

1

B2
0 − 1

(5.17a)

B2
1 +B2

2 =
B2

0

B2
0 − 1

(5.17b)

It must then be assumed that

|B0| > 1 (5.18)

Since B0 and B3 both carry a sign, it can again be assumed without loss of generality that

B3 > 0. Allowing (5.16) to undergo the same Lorentz transformation in (5.6) yields

q(x′′, y′′, t′′) = 4 arctan

{
B0 sech [B1(x

′′ − x′′0) +B2(y
′′ − y′′0)] sinh

[
t′′ − t′′0√
B2

0 − 1

]}

The moving domain wall collision solution to (5.3) is therefore

q(x′, y′, t′) = 4 arctan

{
B0 sech

[
x′ − x′0
(v′)2

(
B1[γ(v′1)

2 + (v′2)
2] +B2v

′
1v
′
2[γ − 1]

)
+
y′ − y′0
(v′)2

(
B2[(v

′
1)

2 + γ(v′2)
2] +B1v

′
1v
′
2[γ − 1]

)
− γ(B1v

′
1 +B2v

′
2)(t

′ − t′0)
]

× sinh

[
γ

t′ − t′0√
B2

0 − 1
− γv′1

x′ − x′0√
B2

0 − 1
− γv′2

y′ − y′0√
B2

0 − 1

]}
(5.19)
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Substituting (5.2) and (5.8) into (5.19) gives the traveling domain wall collision solution to

(5.1)

q(x, y, t) = 4 arctan

{
B0 sech

[
wk1k

2
2

k21v
2
2 + k22v

2
1

(
B1

[
γ
v21
k21

+
v22
k22

]
+B2

v1v2
k1k2

[γ − 1]

)
(x− x0) +

wk21k2
k21v

2
2 + k22v

2
1

(
B2

[
v21
k21

+ γ
v22
k22

]
+B1

v1v2
k1k2

[γ − 1]

)
(y − y0)− wγ

(
B1
v1
k1

+B2
v2
k2

)
(t− t0)

]
× sinh

[
γw

t− t0√
B2

0 − 1
− γwv1

k21

x− x0√
B2

0 − 1
− γwv2

k22

y − y0√
B2

0 − 1

]}
(5.20)

The fully generalized domain wall collision to (5.1) is (5.20) with free parameters v1, v2, x0,

y0, t0, B0, and exactly one of B1 and B2 subject to constraints (5.10), (5.17b), and (5.18).

5.5 NUMERICAL SIMULATIONS

In this section we present numerical simulations to the solutions just obtained. These results

show similarities between the 2D solutions and 1D solutions.

In figure 5.1, the domain wall solution is shown. The parameters chosen are v1 = 1, v2 = 1,

x0 = 0, y0 = 0, t0 = 0, k1 = 2, k2 = 2, B1 = 1/2, B2 =
√

3/2. These numbers were chosen

to satisfy the constraints in (5.5) and (5.10).

Figure 5.2 shows the oscillating movement of the Breather in 2D. The 2D breather has a

resemblance to the 1D breather. The parameters chosen are v1 = 1, v2 = 1, x0 = 0, y0 = 0,

t0 = 0, k1 = 2, k2 = 2, B0 = 1, B1 = 1/2, B2 = 1/2. These parameters were chosen to

satisfy the constraints in (5.10), (5.13a), and (5.13b).

Finally in the domain wall collision we can see the instance just before the wall collision.
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(a) Solution at t = 0 (b) Solution at t = 6

(c) Solution at t = 10

Figure 5.1: Domain Wall Solution

We can see how the waves deform as they collide along the line y = −x. The parameters

chosen are v1 = 1, v2 = 1, x0 = 0, y0 = 0, t0 = 0, k1 = 2, k2 = 2, B0 = 3/2, B1 = 1/2,

B2 =
√

31/20 and B3 = 2/
√

5. These parameters were chosen to satisfy the constraints in

(5.10), (5.17a), (5.17b), and (5.18).
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(a) Solution at t = 0 (b) Solution at t = 1.5

(c) Solution at t = 2.25

Figure 5.2: Breather Solution

(a) Solution at t = −6 (b) Solution at t = 0

(c) Solution at t = 6

Figure 5.3: Domain Wall Collision
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Chapter VI: CONCLUSIONS

This dissertation studied exact solutions to SG type equations, including single, double,

and triple sine- and sine-cosine-Gordon equations. These equations included the standard

variation, fourth-order dispersion, and sixth-order dispersion. The solutions found are of

the topological soliton type, called kinks. After finding the solutions to each unperturbed

equation, exact solutions were found for the strongly perturbed variations of each equation.

These results will aid in the studies of Josephson junctions, crystal dislocations, ultra-short

optical pulses, relativistic field theory, and elementary particles.

Three new generalized traveling wave solutions were found for the 2D SGE. Numerical

simulations were presented to corroborate our results. The solutions obtained are natu-

ral analogs of solutions to the 1D SGE. It should be emphasized that the methods presented

here are straightforward and can be applied to other relativistic solitons and other 2D soliton

equations. These results are important for the study of ferromagnetic media and light bullets.

Future work should include the use of numerical methods to further study the solutions

found in chapters two through four and possibly find approximate solutions to these equa-

tions and other equations of this type. Multiple scale analysis should also be applied to

study the effects of weak perturbations on these equations. Future research should also be

done to link the particular solutions found in chapter five to observable phenomena.
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[17] P. G. Estévez and J. Prada. A generalization of the sine-gordon equation to 2+1 di-
mensions. Journal of Nonlinear Mathematical Physics, 11:164–179, 2004.

[18] A. Fabian, R. Kohl, and A. Biswas. Perturbation of topological solitons due to sine-
gordon equation and its type. Communications in Nonlinear Science and Numerical
Simulation, 14:1227–1244, 2009.

[19] S. P. Fitzgerald. Kink pair production and dislocation motion. Scientific Reports,
6:39708, 2016.

[20] A. Gharaati, N. Fathi, S. Johnson, and A. Biswas. Analytic solutions of fluxons in a non-
homogeneous josephson junction. Waves in Random and Complex Media, 22:249–259,
2012.

[21] C. Granata and A. Vettoliere. Nano superconducting quantum interference device: A
powerful tool for nanoscale investigations. Physics Reports, 614:1–69, 2016.

[22] G. Grella and M. Marinaro. Special solutions of the sine-gordon equation in 2+1 di-
mensions. Lettere al Nuovo Cimento, 23:459–464, 1978.

[23] D. U. Gubser. Navy programs in superconducting technology. Journal of Superconduc-
tivity, 11:1–4, 1998.

[24] J. V. Guzman, M. F. Mahmood, Q. Zhou, L. Moraru, S. Johnson, A. Biswas, and
M. Belic. Singular optical solitons in parabolic and dual-power law media. Journal of
Computational and Theoretical Nanoscience, 13:4825–4828, 2016.

58



[25] R. Hirota. Exact three-soliton solution of the two-dimensional sine-gordon equation.
Journal of the Physical Society of Japan, 35:1566, 1973.

[26] V. G. Ivancevic and T. T. Ivancevic. Sine-gordon solitons, kinks and breathers as phys-
ical models of nonlinear excitations in living cellular structures. Journal of Geometry
and Symmetry in Physics, 31:1–56, 2013.

[27] A. J. M. Jawad, S. Johnson, A. Yildirim, S. Kumar, and A. Biswas. Soliton solutions
to coupled nonlinear wave equations in (2+1)-dimensions. Indian Journal of Physics,
87:281–287, 2013.

[28] S. Johnson and A. Biswas. Perturbation of dispersive topological solitons. Physica
Scripta, 84:015002, 2011.

[29] S. Johnson, P. Suarez, and A. Biswas. New exact solutions for the sine-gordon equation
in 2+1 dimensions. Computational Mathematics and Mathematical Physics, 52:98–104,
2012.

[30] B. D. Josephson. Possible new effects in superconductive tunnelling. Physics Letters,
1:251–253, 1962.

[31] Y. Kivshar and B. Malomed. Dynamics of solitons in nearly integrable systems. Reviews
of Modern Physics, 61:763–915, 1989.

[32] D. J. Korteweg and G. de Vries. On the change of form of long waves advancing in a
rectangular canal, and on a new type of long stationary waves. Philosophical Magazine,
39:422–443, 1895.

[33] N. H. Kuo and C. D. Hu. A study of the solutions of the combined sinecosine-gordon
equation. Applied Mathematics and Computation, 215:1015–1019, 2009.

[34] H. Leblond and M. Manna. Nonlinear dynamics of two-dimensional electromagnetic
solitons in a ferromagnetic slab. Physical Review B, 77:224416, 2008.

[35] G. Leibbrandt. New exact solutions of the classical sine-gordon equation in 2+1 and
3+1 dimensions. Physical Review Letters, 41:435–438, 1978.

[36] A. Rajantie. Magnetic monopoles in field theory and cosmology. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical, and Engineering Sciences,
370:5705–5717, 2012.

[37] B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov. Modeling ultrafast laser
ablation. Journal of Physics D: Applied Physics, 50:193001, 2017.

[38] M. Savescu, S. Johnson, P. Sanchez, Q. Zhou, M. F. Mahmood, E. Zerrad, A. Biswas,
and M. Belic. Nematicons in liquid crystals. Journal of Computational and Theoretical
Nanoscience, 12:4667–4673, 2015.

59



[39] P. W. Smith and A. M. Weiner. Ultrashort light pulses. IEEE Circuits and Devices
Magazine, 4:3–7, 1988.

[40] G. W. Wang, T. Z. Xu, G. Ebadi, S. Johnson, A. Strong, and A. Biswas. Singular soli-
tons, shock waves, and other solutions to potential kdv equation. Nonlinear Dynamics,
76:1059–1068, 2014.

[41] G. W. Wang, T. Z. Xu, S. Johnson, and A. Biswas. Solitons and lie group analysis
to an extended quantum zakharovkuznetsov equation. Astrophysics and Space Science,
349:317–327, 2013.

[42] J. Wattis. Stationary breather modes of generalized nonlinear klein-gordon lattices.
Journal of Physics A: Mathematical and General, 31:3301–3323, 1998.

[43] A. M. Wazwaz. Travelling wave solutions for combined and double combined sinecosine-
gordon equations by the variable separated ode method. Applied Mathematics and
Computation, 177:755–760, 2006.

[44] J. X. Xin. Modeling light bullets with the two-dimensional sinegordon equation. Physica
D: Nonlinear Phenomena, 135:345–368, 2000.

[45] J. Zagrodzinsky. Particular solutions of the sine-gordon equation in 2+1 dimensions.
Physics Letters A, 72:284–286, 1979.

60


