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ABSTRACT

The �nite-di�erence time-domain (FDTD) method is a widely used numerical technique

for solving the time domain Maxwell's equations of electrodynamics. To accurately model

small structures in relatively large computational domain, the subgridding technique is ap-

plied to save computational cost. In this dissertation, we �rst investigate the stability of the

subgridding FDTD method and show the late-time instability due to temporal subcycling.

To overcome the late-time instability problem, we propose a novel stable iteration based tem-

poral subcycling FDTD algorithm for solving the Maxwell's equations in time domain. The

stability of our method is analyzed using eigenvalue test and veri�ed by performing long time

simulation of millions of steps. Through-the-wall radar imaging (TWRI) is emerging as a

viable technology for providing high quality image of enclosed structures. In our research, we

apply the proposed temporal subcycling FDTD algorithm to simulate the through-the-wall

radar (TWR) and employ a radar imaging method to reconstruct the object.
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Chapter 1

INTRODUCTION

Maxwell's equations are a set of partial di�erential equations governing the propagation of the

electromagnetic waves, representing the relationship between the electric �eld and the magnetic

�eld [23]. This set of di�erential equations is considered as one of the most important contributions

in the history of science. Maxwell's equations have been applied in diverse �elds such as geology,

biology, optics, medical treatment and others. In geology, the Ground Penetrating Radar (GPR)

and Through-the-Wall Radar (TWR) are good candidates among many applications of Maxwell's

equations[4, 6, 9, 18, 19].

Ultra Wide Band (UWB) radar o�ers unique capabilities among the wide variety of remote

sensing technologies. The ability to penetrate through non-metallic materials while retaining high

resolution is of high interest in many application areas, including through-wall detection and iden-

ti�cation of buried objects, and medical applications. There are many signi�cant applications for

UWB radar. The Ground Penetrating Radar (GPR) imaging is one of the most promising technolo-

gies for detection and identi�cation of buried objects [16]. GPR is a specialized radar that can be

used for producing images below the surface of the earth and makes use of optimized electromag-

netic pulses that backscatter from objects below the ground that are being detected. Detection of

buried objects is critical to safe operation when digging or operating vehicles around shale gas, oil,

ground water and others. Due to many features of UWB radar such as penetration capability, high

precision ranging, and low electromagnetic radiation, extensive research has been done for UWB

medical applications in cardiology, obstetrics, breath cancer detection, breath pathways and arteries

over the last decade [38]. Another important application is Through-the-wall radar (TWR) imag-

ing. Through-the-wall radar imaging (TWRI) is emerging as a viable technology for providing high

quality imagery of enclosed structures [33]. The technology highly available to detect and analyze

through obstacles such as walls, doors, and other visually opaque materials for police, �re �ghter,

and rescuer. TWRI makes use of electromagnetic waves below the S-band to penetrate through

building wall materials to not only determine if there are the targets inside a building structure
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but also to know where they are, with no direct vision of the inside. For instance, this technology

is employed for surveillance and detection of humans and interior objects in urban environments

(e.g. police or �re �ghter rescuer teams obtain the information about human inside the building),

and for search and rescue operations (e.g. when looking for people trapped inside buildings on �re

or buried under rubble). In most applications of through-the-wall radar imaging, researchers are

interested in human detection and analysis. Many sources have looked at using standard Doppler

radar [35] or using through wall UWB radar [27] to study human beings periodic motions.

In scienti�c computation, numerical methods, such as Finite Di�erence method, Finite Element

method, Finite Volume method, and Galerkin method, contribute great e�ort in solving Maxwell's

equations [42]. Among various numerical approaches, �nite di�erence method is often adopted

in solving Maxwell's equations with di�erent boundary conditions or initial conditions. In this

dissertation, we exclusively investigate �nite di�erence method.

The �nite-di�erence time-domain (FDTD) method is a widely used numerical technique for

solving the time domain Maxwell's equations of electrodynamics. The FDTD method is staggered

in both space and time on rectangular grids. Each �eld component is sampled and evaluated at a

particular space position and the magnetic and the electric �elds are obtained at di�erent instants

of time delayed by half the sampling time step [51, 41]. The time-dependent Maxwell's equations (in

di�erential form) are discretized using centered di�erence approximations. As an explicit numerical

method, the FDTD method is subject to the Courant-Friedrichs-Lewy (CFL) stability condition

[48, 40].

In [27], FDTD simulation and through wall radar experiment with UWB radar have been

carried out for human being's periodic motion detection. In addition, advanced signal processing

methods are presented to classify and to extract the human's periodic motion characteristic in-

formation, such as Micro-Doppler shift and motion frequency, from arm movement (isolated from

torso movement) [30] to the small bodily �uctuations associated with breathing and heart beats [7].

Charnley et al. [11] used FDTD method to analyze objects inside a room, with no direct vision

of the inside. In this dissertation, we apply the proposed temporal subcycling FDTD algorithm
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to simulate the TWR and employ a radar imaging method to reconstruct the object. In our case,

we have tried one-transmitter multiple-receivers set-up and multiple-transmitters multiple-receivers

set-up.

The accuracy and e�ciency of the FDTD method can be signi�cantly improved through the

use of subgrids [1, 34, 37, 49, 52, 55], to selectively re�ne the grid in certain regions of the com-

putation domain. In the last few decades there have been numerous investigations of subgridding

and adaptive mesh re�nement (AMR) algorithm strategies [24, 29, 43, 32, 12, 13, 54, 3, 28]. The

main advantages of such methods are the reduced computational resource requirements and the

increased computational e�ciency over methods using uniform mesh when the region of interest

occupies a small portion of the domain. The Huygens subgridding (HSG) technique [3] can achieve

arbitrarily large of the ratio of the spatial steps, as illustrated in [3] with ratios as large as 99. How-

ever, these subgridding algorithms su�er from the late-time instablity problem. Numerical studies

of this issue performed in the past such as [14, 24, 32, 36, 3] indicated that the stability of the

subgridding algorithm is sensitive to the interpolation method and the choice of the interpolated

�elds. In [50], spatial and temporal mesh interfaces are separated in order to obtain better stabil-

ity. In [28], a novel stable local spatial mesh re�nement algorithm was developed based on the use

invariant coordinate transformation of the Maxwell equations under logically rectangular grid and

fully anisotropic FDTD method.

In this dissertation, we �rst investigate the stability of the subgridding FDTD methods and

then propose a stable iteration based temporal subcycling FDTD algorithm. The subgridding

FDTD method we focus on applies separated spatial and temporal mesh interfaces (as shown in

Figure 1.1) so that the stability of spatial subgridding and temporal subcycling can be investigated

independently. We study stability using update matrix eigenvalue analysis. We compute the largest

eigenvalue of the update equations and perform long time simulation for millions of steps to verify

the ampli�cation of the solution. Our study shows that the spatial-only subgridding FDTD is stable

while the temporal-only subcycling FDTD is late-time unstable as the ampli�cation factor is slightly

larger than 1. The Yee FDTD algorithm by itself is second order accurate and stable. However, due
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to the staggering grids in space and time, for the subgridding FDTD, the symmetry and positiveness

of the update equations can be easily broken by the space-time interpolations required to produce

the boundary conditions for the re�ned patches, i.e., the interpolation on the coarse/�ne mesh

interface. In order to overcome the late-time instability problem due to the temporal subcycling,

we propose an iteration based temporal subcycling (ITS) FDTD algorithm. In general, as shown

in Figure 1.1, we use re�nement ratio 2:1 when designing and testing our subcycling algorithm.

Our numerical results show that the iteration based temporal interpolation algorithm preserves the

second-order accuracy of the original Yee scheme and is stable for long time simulation.

Figure 1.1: A two-dimensional subgridding mesh with separated spatial and temporal
coarse/�ne mesh interfaces.

The dissertation is organized as follows. Chapter 1 is the introduction. In Chapter 2, we re-

view the FDTD method for solving Maxwell's equations and the spatial subgridding and temporal

subcycling techniques. In Chapter 3, we present the proposed iteration based temporal subcycling

4



algorithm. The through-the-wall radar imaging detection analysis in presented in Chapter 4. Chap-

ter 5 shows numerical examples of di�erent subgridding/subcycling methods and application to the

through-the-wall radar simulations. Conclusion and future work are summarized in Chapter 6.

5



Chapter 2

THE FINITE-DIFFERENCE TIME-DOMAIN METHOD AND

SUBGRIDDING TECHNIQUES

2.1 Finite-Di�erence Time-Domain Method

The Maxwell's equations of electrodynamics consist of Faraday's Law of induction, Ampère's

Law, Gauss's Law for electric �elds, and Gauss's Law for magnetic �elds. These four laws can be

written in di�erential form as a set of partial di�erential equations:

∇× E = −∂B
∂t
,

∇×H =
∂D

∂t
+ J,

∇ ·D = ρ,

∇ ·B = 0,

(2.1)

where E and H represent the electric and magnetic �elds, respectively; D and B represent the

electric and magnetic �ux densities, respectively; J and ρ terms are the current density and charge

density. The constitutive relations between electric and magnetic �elds and �uxes are

D = εE,

B = µH,

(2.2)

where ε is the electric permittivity and µ is the magnetic permeability. The permittivity and

permeability in free space are ε0 = 8.854× 10−12 F/m and µ0 = 4π × 10−7 H/m.

To illustrate the FDTD method, we consider the two dimensional Maxwell's equations in

isotropic, homogeneous nondispersive media in transverse magnetic (TEz) mode (ignorable z-

coordinate)

ε0
∂Ex
∂t

=
∂Hz

∂y
,

ε0
∂Ey
∂t

= −∂Hz

∂x
,

µ0
∂Hz

∂t
=
∂Ex
∂y
− ∂Ey

∂x
.

(2.3)
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The discretized update equations using Yee FDTD method is given by

En+1
x i+ 1

2
,j

= En
x i+ 1

2
,j

+ (
∆t

ε0∆y
)(H

n+ 1
2

z i+ 1
2
,j+ 1

2

−Hn+ 1
2

z i+ 1
2
,j− 1

2

), (2.4)

En+1
y i,j+ 1

2

= En
y i,j+ 1

2

− (
∆t

ε0∆x
)(H

n+ 1
2

z i+ 1
2
,j+ 1

2

−Hn+ 1
2

z i− 1
2
,j+ 1

2

), (2.5)

H
n+ 1

2

z i+ 1
2
,j+ 1

2

= H
n− 1

2

z i+ 1
2
,j+ 1

2

+ (
∆t

µ0∆y
)(En

x i+ 1
2
,j+1
− En

x i+ 1
2
,j

)

− (
∆t

µ0∆x
)(En

y i+1,j+ 1
2

− En
y i,j+ 1

2

), (2.6)

where ∆t and ∆x and ∆y are the grid size in time and x and y spatial directions, respectively.

2.2 Perfectly Matched Layer Boundary Condition

It is necessary to apply a special boundary condition in order to absorb the outgoing waves.

The perfectly matched layer (PML) is a very e�cient absorbing boundary condition [2]. The PML

technique allows the electromagnetic waves to be absorbed with a controllable re�ection.

In this dissertation, we demonstrate and test our algorithms using the FDTD method in two-

dimension with PML boundary condition in the TEz case. The electromagnetic �eld involves four

components, Ex, Ey, Hzx, Hzy, and the Maxwell's equations in two dimensions can be written as

ε0
∂Ex
∂t

+ σyEx =
∂(Hzx +Hzy)

∂y
, (2.7)

ε0
∂Ey
∂t

+ σxEy = −∂(Hzx +Hzy)

∂x
, (2.8)

µ0
∂Hzx

∂t
+ σ∗xHzx = −∂Ey

∂x
, (2.9)

µ0
∂Hzy

∂t
+ σ∗yHzy =

∂Ex
∂y

. (2.10)

where the parameters σx and σy are electric conductivities; σ∗x and σ∗y are magnetic conduc-
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tivities. If σ∗x = σ∗y , then equation (2.7) to equation (2.10) can reduces to a set of three equations

involving three components Ex, Ey, and Hz = Hzx +Hzy.

2.3 Spatial Subgridding

First, we introduce the spatial subgridding FDTD method, where the computational domain

contains a coarse grid and a �ne grid, as shown in Figure 2.1. The FDTD method is applied to

solve the Maxwell's equations on the coarse and �ne meshes, and interpolation is required on the

calculation of the �elds near the bounday of the �ne grid (the interface between coarse and �ne

meshes). Here, we set the ratio of the coarse and �ne region grid sizes to be 2:1, so the solution

on the �ne mesh needs to be updated twice when the solutions on the coarse region advances for

one time step. For simplicity, we assume that the mesh is uniform along each co-ordinate direction,

but the scheme can be straightforwardly extended to non-uniform meshes [43]. In the following

discussion we show two interpolation algorithms for 2D TEz mode.

For example, if we want to calculate the magnetic �elds on �ne region boundary, we need to

interpolate the missing values using the coarse region magnetic �elds due to boundary truncation.

The missing values are the ghost values on �ne mesh boundary. It similar interpolation can be

applied to the electric �eld. The interpolation methods are presented in the following subsections.

The ratio of the mesh cell size of the main grid and subgrid is 1:2, meaning that the mesh cell size in

the main grid is ∆x and ∆y and in the subgrid is ∆x/2 and ∆y/2. Same ∆t is used when updating

coarse and �ne meshes.

In the following discussions, we show two ways of interpolating H ghost values. These two

interpolations are the spatial subgridding algorithm with Ghost H �eld on Coarse mesh (GHC)

method and the spatial subgridding algorithm with Ghost H �eld on Fine mesh (GHF) method.

2.3.1 The spatial subgridding algorithm with GHC

In the �rst case, we consider the case where the ghost boundary values is in the coarse region

as shown in Figure 2.2. We assume the magnetic �eld is in the center of the grid cell and the electric
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Figure 2.1: A two-dimensional spatial subgridding mesh with spatial coarse/�ne mesh ratio
2:1.

�eld is along the grid cell boundaries. In the coarse region, the magnetic �eld value is denoted by

Hzc and the electric �eld values are denoted by Exc and Eyc. In the �ne region, the magnetic �eld

value is denoted by Hfz and the electric �eld values are denoted by Efx and Efy, and the ghost

boundary value is denoted by Ĥfz.

Referring to the Fig. 2.2 which depict a regular coarse-�ne region boundary and de�ning

update as application of the Yee scheme equations (2.4)-(2.6), the algorithm can be summarized by

the following steps:

1. Update Hzc on the coarse mesh, from time step n− 1
2 to n+ 1

2 .

H
n+ 1

2

zc i+ 1
2
,j+ 1

2

← H
n− 1

2

zc i+ 1
2
,j+ 1

2

, by using En
xc i+ 1

2
,j+1

, En
xc i+ 1

2
,j
, En

yc i+1,j+ 1
2

, En
yc i,j+ 1

2
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2. Update Exc and Eyc on the coarse mesh, from n to n+ 1.

En+1
xc i+ 1

2
,j
← En

xc i+ 1
2
,j
, by using H

n+ 1
2

zc i+ 1
2
,j+ 1

2

, H
n+ 1

2

zc i+ 1
2
,j− 1

2

En+1
yc i,j+ 1

2

← En
yc i,j+ 1

2

, by using H
n+ 1

2

zc i+ 1
2
,j+ 1

2

, H
n+ 1

2

zc i− 1
2
,j+ 1

2

3. Interpolate magnetic �eld ghost values Ĥfz i− 1
4
,j− 1

4
, Ĥfz i+ 1

4
,j− 1

4
and Ĥfz i− 1

4
,j+ 1

4
using coarse

mesh Hzc i− 1
2
,j− 1

2
, Hzc i+ 1

2
,j− 1

2
, Hzc i− 1

2
,j+ 1

2
and Hzc i+ 1

2
,j+ 1

2
at time n+ 1

2 .

4. Update Hfz on the �ne mesh, from n− 1
2 to n+ 1

2 .

H
n+ 1

2

fz i+ 1
4
,j+ 1

4

← H
n− 1

2

fz i+ 1
4
,j+ 1

4

, by using En
fx i+ 1

4
,j+ 1

2

, En
fx i+ 1

4
,j
, En

fy i+ 1
2
,j+ 1

4

, En
fy i,j+ 1

4

5. Update Efx and Efy on the �ne mesh, from n to n+ 1.

En+1
fx i+ 1

4
,j
← En

fx i+ 1
4
,j
, by using H

n+ 1
2

fz i+ 1
4
,j+ 1

4

, H
n+ 1

2

fz i+ 1
4
,j− 1

4

En+1
fy i,j+ 1

4

← En
fy i,j+ 1

4

, by using H
n+ 1

2

fz i+ 1
4
,j+ 1

4

, H
n+ 1

2

fz i− 1
4
,j+ 1

4

6. Replace Hzc magnetic �eld by Hfz in the region where �ne grid overlaps coarse grid:

H
n+ 1

2

zc i+ 1
2
,j+ 1

2

=
1

4
(H

n+ 1
2

fz i+ 1
4
,j+ 1

4

+H
n+ 1

2

fz i+ 3
4
,j+ 1

4

+H
n+ 1

2

fz i+ 1
4
,j+ 3

4

+H
n+ 1

2

fz i+ 3
4
,j+ 3

4

).

7. Update Exc and Eyc on the coarse mesh as in step 2.

These steps are applied recursively at each re�nement level. In our formulation the magnetic

�eld is interpolated to obtain the ghost cell values. Therefore, electric �eld values at the interface

can be computed using the same Yee algorithm as in the interior. Exc i+ 1
2
,j+1, Exc i+ 1

2
,j , Eyc i+1,j+ 1

2

and Eyc i,j+ 1
2
in the unit cell of coarse region are updated from time step n to n+1, whileHzc i+ 1

2
,j+ 1

2

is updated from time step n− 1/2 to n+ 1/2. Each unit cell in the �ne region is divided into four

equal small cells as shown in Figure 2.2. Efx, Efy and Hfz in each unit cell of �ne region is updated
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Figure 2.2: The spatial subgridding with GHC for TEz mode. Blue triangles denote bound-
ary values of the magnetic ghost values.

using the same FDTD algorithm. After updating Hfz �led, we use the space averaged Hfz �leds

to replace Hzc �eld in each unit cell of the coarse region where it overlaps with the �ne region [5] in

step 6. The �nal step is to re-update the electric �eld by using the new magnetic �eld values from

the previous step on the coarse grid. In order to calculate the �ne region boundary electric �eld, we

need to use the coarse magnetic �eld to interpolate the missing �ne region magnetic �eld values.

In step 3, the magnetic �eld ghost value is interpolated from coarse mesh as follows,

Ĥ
n+ 1

2

fz i+ 1
4
,j− 1

4

=
5

8
H
n+ 1

2

zc i+ 1
2
,j− 1

2

+
1

8
H
n+ 1

2

zc i+ 1
2
,j+ 1

2

+
1

8
H
n+ 1

2

zc i− 1
2
,j+ 1

2

+
1

8
H
n+ 1

2

zc i− 1
2
,j− 1

2

, (2.11)

Ĥ
n+ 1

2

fz i− 1
4
,j+ 1

4

=
5

8
H
n+ 1

2

zc i− 1
2
,j+ 1

2

+
1

8
H
n+ 1

2

zc i+ 1
2
,j+ 1

2

+
1

8
H
n+ 1

2

zc i+ 1
2
,j− 1

2

+
1

8
H
n+ 1

2

zc i− 1
2
,j− 1

2

, (2.12)
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Ĥ
n+ 1

2

fz i− 1
4
,j− 1

4

=
5

8
H
n+ 1

2

zc i− 1
2
,j− 1

2

+
1

8
H
n+ 1

2

zc i+ 1
2
,j+ 1

2

+
1

8
H
n+ 1

2

zc i+ 1
2
,j− 1

2

+
1

8
H
n+ 1

2

zc i− 1
2
,j+ 1

2

. (2.13)

Interpolation in space is done using linear interpolation, as in equations (2.11)-(2.13). This linear

interpolation is used to calculate each ghost boundary value inside a dual cell with Hzc as four

corners. There is di�erent way of the interpolation with di�erent coe�cients of neighboring Hzc,

e.g.:

Ĥ
n+ 1

2

fz i+ 1
4
,j− 1

4

=
9

16
H
n+ 1

2

zc i+ 1
2
,j− 1

2

+
3

16
H
n+ 1

2

zc i+ 1
2
,j+ 1

2

+
3

16
H
n+ 1

2

zc i− 1
2
,j− 1

2

+
1

16
H
n+ 1

2

zc i− 1
2
,j+ 1

2

. (2.14)

Although the algorithm is given for a grid re�nement ratio 1:2, it can be extended to higher ratios.

2.3.2 The spatial subgridding algorithm with GHF

In the second case, we consider that the ghost boundary values is in the �ne region as shown

in Figure 2.3. Similar to the previous case, the magnetic �eld is in the center of the grid cell and

the electric �eld is along the grid cell boundaries. In the coarse region, the magnetic �eld value and

the electric �eld values are denoted by Hzc, Exc and Eyc. The magnetic �eld value and the electric

�eld values are denoted by Hfz, Efx and Efy in the �ne region, and the ghost boundary value is

denoted by Ĥfz.

Referring to the Fig. 2.3, the algorithm can be summarized by the following steps:

1. Update Hzc on the coarse mesh, form n− 1
2 to n+ 1

2 .

H
n+ 1

2

zc i+ 1
2
,j+ 1

2

← H
n− 1

2

zc i+ 1
2
,j+ 1

2

, by using En
xc i+ 1

2
,j+1

, En
xc i+ 1

2
,j
, En

yc i+1,j+ 1
2

, En
yc i,j+ 1

2

2. Update Exc and Eyc on the coarse mesh, from n to n+ 1.

En+1
xc i+ 1

2
,j
← En

xc i+ 1
2
,j
, by using H

n+ 1
2

zc i+ 1
2
,j+ 1

2

, H
n+ 1

2

zc i+ 1
2
,j− 1

2

En+1
yc i,j+ 1

2

← En
yc i,j+ 1

2

, by using H
n+ 1

2

zc i+ 1
2
,j+ 1

2

, H
n+ 1

2

zc i− 1
2
,j+ 1

2
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3. Interpolate magnetic �eld ghost values Ĥfz i+ 1
4
,j+ 1

4
, Ĥfz i+ 3

4
,j+ 1

4
and Ĥfz i+ 1

4
,j+ 3

4
using coarse

meshHzc i− 1
2
,j− 1

2
,Hzc i+ 1

2
,j− 1

2
,Hzc i− 1

2
,j+ 1

2
,Hzc i+ 1

2
,j+ 1

2
,Hzc i+ 3

2
,j− 1

2
,Hzc i+ 3

2
,j+ 1

2
,Hzc i− 1

2
,j+ 3

2

and Hzc i+ 1
2
,j+ 3

2
at time n+ 1

2 .

4. Update Hfz on the �ne mesh, from n− 1
2 to n+ 1

2 .

H
n+ 1

2

fz i+ 3
4
,j+ 3

4

← H
n− 1

2

fz i+ 3
4
,j+ 3

4

, by using En
fx i+ 3

4
,j+ 1

2

, En
fx i+ 3

4
,j+1

, En
fy i+ 1

2
,j+ 3

4

, En
fy i+1,j+ 3

4

5. Update Efx and Efy on the �ne mesh, from n to n+ 1.

En+1
fx i+ 3

4
,j+ 1

2

← En
fx i+ 3

4
,j+ 1

2

, by using H
n+ 1

2

fz i+ 3
4
,j+ 3

4

, H
n+ 1

2

fz i+ 3
4
,j+ 1

4

En+1
fy i+ 1

2
,j+ 3

4

← En
fy i+ 1

2
,j+ 3

4

, by using H
n+ 1

2

fz i+ 3
4
,j+ 3

4

, H
n+ 1

2

fz i+ 1
4
,j+ 3

4

6. Replace Hzc magnetic �eld by Hfz in the region where �ne grid overlaps coarse grid:

H
n+ 1

2

zc i+ 1
2
,j+ 1

2

=
1

4
(H

n+ 1
2

fz i+ 1
4
,j+ 1

4

+H
n+ 1

2

fz i+ 3
4
,j+ 1

4

+H
n+ 1

2

fz i+ 1
4
,j+ 3

4

+H
n+ 1

2

fz i+ 3
4
,j+ 3

4

).

7. Update Exc and Eyc on the coarse mesh as in step 2.

Similar to the �rst case, Exc i+ 1
2
,j+1, Exc i+ 1

2
,j , Eyc i+1,j+ 1

2
and Eyc i,j+ 1

2
in the unit cell of

coarse region are updated from time n to n+1, while Hzc i+ 1
2
,j+ 1

2
is updated from time step n−1/2

to n + 1/2. The original unit cell in the �ne region is divided into four equal small cells as shown

in Figure 2.3. However, the location of the ghost boundary values di�er from the previous case.

The �nal step is to recalculate the electric �eld by using the modi�ed magnetic �eld values from

the previous step on the coarse grid. In order to calculate the �ne region boundary electric �eld, we

need to use the coarse magnetic �eld to interpolate the missing �ne region magnetic �eld values.

In step 3, the magnetic �eld ghost value is interpolated from coarse mesh:

Ĥ
n+ 1

2

fz i+ 1
4
,j+ 1

4

=
5

8
H
n+ 1

2

zc i+ 1
2
,j+ 1

2

+
1

8
H
n+ 1

2

zc i+ 1
2
,j− 1

2

+
1

8
H
n+ 1

2

zc i− 1
2
,j+ 1

2

+
1

8
H
n+ 1

2

zc i− 1
2
,j− 1

2

, (2.15)
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Figure 2.3: The spatial subgridding with GHF for TEz mode. Blue triangles denote bound-
ary values of the magnetic ghost values.

Ĥ
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+
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, (2.16)
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=
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+
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. (2.17)

Interpolation in space is done using linear interpolation, as in equations (2.15)-(2.17). The linear

interpolation is used to calculate each ghost boundary value inside a dual cell with Hzc as four

corners. There is di�erent way of the interpolation with di�erent coe�cient of Hzc, e.g.:

Ĥ
n+ 1

2

fz i+ 1
4
,j+ 1

4

=
9

16
H
n+ 1

2

zc i+ 1
2
,j+ 1

2

+
3

16
H
n+ 1

2

zc i+ 1
2
,j− 1

2

+
3

16
H
n+ 1

2

zc i− 1
2
,j+ 1

2

+
1

16
H
n+ 1

2

zc i− 1
2
,j− 1

2

. (2.18)

This algorithm also can be extended to higher ratios. The numerical examinations in Chapter 5

show that this GHF interpolation method has better stability than the previous spatial subgridding
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with GHC method. In the through-the-wall radar simulation, we will use this subgrid algorithm

instead of the one presented in the previous section.

2.4 Temporal Subcycling

In this section, we consider a temporal subcycling technique for the FDTD method. Similar

to the spatial subgridding method, the original Yee FDTD method is used to calculate the �elds in

the coarse grids and in the �ne grids. With di�erent time steps, the coarse region and �ne region

have di�erent temporal steps. Each of them needs to run with a di�erent time-step in order to

satisfy their respective stability conditions. Hence, the challenging issue for the use of subcycling

techniques in FDTD modeling is the handling of temporal interpolation of the boundaries between

the main coarse grid and the �ne subgrid as shown in Figure 2.4.

We use the standard FDTD update equations (2.4)-(2.6) in the coarse and �ne regions. Due

to the boundary truncation, we need to calculate the missing values at the interface between the

coarse region and �ne region. The missing values are the ghost boundary values on the �ne mesh.

The interpolation methods for ghost value calculation are presented in the following subsections.

Due to the ratio of the time steps of the main grid and subgrid is 1:2, meaning that time step

in the main grid is ∆t and in the subgrid is ∆t/2. In other words, two FDTD sub-iterations are

performed during every main grid iteration. We denote n as the index on time in the main grid, so

that n→ n+ 1 is an advance by ∆t and n→ n+ 1/2 is an advance by ∆t/2.

2.4.1 The temporal subcycling algorithm with GH

Referring to the Fig. 2.5, the temporal subcycling algorithm with ghost Hz �elds (GH) in 2D

TEz mode can be summarized by the following steps:
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Figure 2.4: A two-dimensional temporal subcycling mesh with temporal coarse/�ne mesh
ratio 2:1.

1. Update Hzc on the coarse mesh, from n− 1
2 to n+ 1

2 .
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2. Update Exc and Eyc on the coarse mesh, from n to n+ 1.
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3. Interpolate magnetic �eld ghost value Ĥn
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2
zc .
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4. Update Hzf on the �ne mesh, from n− 1
2 to n.
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7. Update Hzf on the �ne mesh, from n to n+ 1
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8. Update Exf and Eyf on the �ne mesh, from n+ 1
4 to n+ 3
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9. Replace Hzc magnetic �eld by Hzf in the region where �ne grid overlaps coarse grid:

H
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zc i+ 1
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,j+ 1
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= H
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2

zf i+ 1
2
,j+ 1

2

.

10. Update Exc and Eyc on the coarse mesh as in step 2.

The above steps are applied recursively at each re�nement level. The ghost cell values of the

magnetic �eld is obtained by interpolation using neighboring values. All electric �eld values in the

�ne mesh region are computed using the standard Yee algorithm. On the coarse grid, Hzc �eld is
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Figure 2.5: The temporal subcycling with GH for TEz mode. Blue triangles denote the
magnetic ghost values on the �ne mesh boundary.

updated from time step n− 1/2 to n+ 1/2, followed by Exc and Eyc �elds update from time step n

to n+ 1. In the meanwhile, the �ne mesh solutions are updated twice: �rst update of Hzf is from

n − 1/2 to n, followed by Exf and Eyf update from n − 1/4 to n + 1/4; then the second update

of Hzf from n to n + 1/2, followed by the update of Exf and Eyf from n + 1/4 to n + 3/4. The

interpolation of the magnetic �eld on the coarse grid by the time averaged magnetic �elds on the

�ne grid at the interface is done in step 9. The step 10 is to recalculate the electric �led by using

the new magnetic �led values obtained from step 9 in the coarse region.

In step 3, the magnetic �eld ghost values are interpolated from coarse mesh:
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). (2.19)
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Similarly, in step 6, the magnetic �eld ghost values are interpolated from coarse mesh:
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zc i+ 1
2
,j+ 1

2

. (2.20)

Although the algorithm is given for a grid re�nement ratio 1:2, it can be extended to higher ratios.

2.4.2 The temporal subcycling algorithm with GE

The electric �eld ghost value interpolation is slightly more complicated than the magnetic

�eld interpolation shown in the previous section, since there are two electric �eld components Êxf

and Êyf for TEz mode. Referring to the Fig. 2.6 and using Yee update equations (2.4)-(2.6), the

algorithm can be summarized by the following steps:
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2
,j+ 1

2

, by using E
n+ 1

2

xc i+ 1
2
,j+1

, E
n+ 1

2

xc i+ 1
2
,j
, E

n+ 1
2

yc i+1,j+ 1
2

, E
n+ 1

2

yc i,j+ 1
2

3. Interpolate electric �eld ghost value Ênxf and Ênyf using coarse mesh E
n− 1

2
xc , E

n+ 1
2

xc , E
n− 1

2
yc and

E
n+ 1

2
yc , respectively.

4. Update Exf and Eyf on the �ne mesh, from n− 1
2 to n.

En
xf i+ 1

2
,j
← E

n− 1
2

xf i+ 1
2
,j
, by using H

n− 1
4

zf i+ 1
2
,j+ 1

2

, H
n− 1

4

zf i+ 1
2
,j− 1

2

En
yf i,j+ 1

2

← E
n− 1

2

yf i,j+ 1
2

, by using H
n− 1

4

zf i+ 1
2
,j+ 1

2

, H
n− 1

4

zf i− 1
2
,j+ 1

2
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5. Update Hzf on the �ne mesh, from n− 1
4 to n+ 1

4 .

H
n+ 1

4

zf i+ 1
2
,j+ 1

2

← H
n− 1

4

zf i+ 1
2
,j+ 1

2

, by using En
xf i+ 1

2
,j+1

, En
xf i+ 1

2
,j
, En

yf i+1,j+ 1
2

, En
yf i,j+ 1

2

6. Interpolate electric �eld ghost value Ê
n+ 1

2
xf and Ê

n+ 1
2

yf using coarse mesh E
n+ 1

2
xc and E

n+ 1
2

yc ,

respectively.

7. Update Exf and Eyf on the �ne mesh, from n to n+ 1
2 .

E
n+ 1

2

xf i+ 1
2
,j
← En

xf i+ 1
2
,j
, by using H

n+ 1
4

zf i+ 1
2
,j+ 1

2

, H
n+ 1

4

zf i+ 1
2
,j− 1

2

E
n+ 1

2

yf i,j+ 1
2

← En
yf i,j+ 1

2

, by using H
n+ 1

4

zf i+ 1
2
,j+ 1

2

, H
n+ 1

4

zf i− 1
2
,j+ 1

2

8. Update Hzf on the �ne mesh, from n+ 1
4 to n+ 3

4 .

H
n+ 3

4

zf i+ 1
2
,j+ 1

2

← H
n+ 1

4

zf i+ 1
2
,j+ 1

2

, by using E
n+ 1

2

xf i+ 1
2
,j+1

, E
n+ 1

2

xf i+ 1
2
,j
, E

n+ 1
2

yf i+1,j+ 1
2

, E
n+ 1

2

yf i,j+ 1
2

9. Replace Exc and Eyc electric �eld by Exf and Eyf in the region where �ne grid overlaps coarse

grid:

E
n+ 1

2

xc i+ 1
2
,j

= E
n+ 1

2

xf i+ 1
2
,j
,

E
n+ 1

2

yc i,j+ 1
2

= E
n+ 1

2

yf i,j+ 1
2

.

10. Update Hzc on the coarse mesh as in step 2.

The above steps are applied recursively at each re�nement level. In this case, the coarse grid

Exc and Eyc �elds are updated once from time n−1/2 to n+1/2, followed by Hzc �eld update from

time n to n + 1. The �ne mesh solutions are updated as follows: �elds Exf and Eyf are update

from n− 1/2 to n, followed by Hzf update from n− 1/4 to n+ 1/4, then Exf and Eyf update from

n to n + 1/2, followed by Hzf update from n + 1/4 to n + 3/4. In step 9, we replace the electric

�eld on the coarse grid by the time averaged electric �elds on the �ne grid at the coarse/�ne mesh
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Figure 2.6: The temporal subcycling with GE for TEz mode. Blue triangles denote the
electric ghost values on the �ne mesh boundary.

interface. The last step is to update magnetic �led by using the new electric �led values from step

9 on the coarse mesh.

In step 3, we interpolate electric �eld ghost value from coarse mesh:

Ên
xf i+ 1

2
,j

=
1

2
(E

n− 1
2

xc i+ 1
2
,j

+ E
n+ 1

2

xc i+ 1
2
,j

), (2.21)

Ên
yf i,j+ 1

2

=
1

2
(E

n− 1
2

yc i,j+ 1
2

+ E
n+ 1

2

yc i,j+ 1
2

). (2.22)

Similary, in step 6, we interpolate electric �eld ghost value from coarse mesh:

Ê
n+ 1

2

xf i+ 1
2
,j

= E
n+ 1

2

xc i+ 1
2
,j
, (2.23)
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Ê
n+ 1

2

yf i,j+ 1
2

= E
n+ 1

2

yc i,j+ 1
2

. (2.24)
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Chapter 3

THE ITERATION BASED TEMPORAL SUBCYCLING FDTD

METHOD

3.1 Iteration Based Temporal Subcycling FDTD Method

In this section, we propose a novel iteration based temporal subcycling FDTD algorithm,

focusing on overcoming the late-time instability problem of the conventional temporal subcycling

FDTD method. The conventional temporal subcycling with coarse/�ne mesh ratio 2:1 consists of

the update of solution on coarse mesh by ∆t time step and two consecutive ∆t/2 updates of the

�ne mesh solutions, as shown in the �owchart in Figure 3.1(a). The basic idea of the iteration

based subcycling technique is illustrated in the �owchat in Figure 3.1(b). After the �rst update on

the �ne mesh, due to the staggered nature of the electric and magnetic �elds in Yee algorithm, the

solutions on the coarse mesh can be recalculated using the �ne mesh solutions before and after the

�rst update.

The iteration based subcycling FDTD algorithm is summarized in the following steps:

1. Update Exc and Eyc on the coarse mesh, from n− 1
2 to n+ 1

2 .

E
n+ 1

2

xc i+ 1
2
,j
← E

n− 1
2

xc i+ 1
2
,j
, by using Hn

zc i+ 1
2
,j+ 1

2

, Hn
zc i+ 1

2
,j− 1

2

E
n+ 1

2

yc i,j+ 1
2

← E
n− 1

2

yc i,j+ 1
2

, by using Hn
zc i+ 1

2
,j+ 1

2

, Hn
zc i− 1

2
,j+ 1

2

2. Update Hzc on the coarse mesh, from n to n+ 1.

Hn+1
zc i+ 1

2
,j+ 1

2

← Hn
zc i+ 1

2
,j+ 1

2

, by using E
n+ 1

2

xc i+ 1
2
,j+1

, E
n+ 1

2

xc i+ 1
2
,j
, E

n+ 1
2

yc i+1,j+ 1
2

, E
n+ 1

2

yc i,j+ 1
2

3. Interpolate electric �eld ghost value Ênxf and Ê
n
yf using the corresponding values on the coarse

mesh E
n− 1

2
xc , E

n+ 1
2

xc , E
n− 1

2
yc and E

n+ 1
2

yc .
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(a) (b)

Figure 3.1: Flowchart of (a) conventional and (b) iteration based temporal subcycling
FDTD method.

4. Update Exf and Eyf on the �ne mesh, from n− 1
2 to n.

En
xf i+ 1

2
,j
← E

n− 1
2

xf i+ 1
2
,j
, by using H

n− 1
4

zf i+ 1
2
,j+ 1

2

, H
n− 1

4

zf i+ 1
2
,j− 1

2

En
yf i,j+ 1

2

← E
n− 1

2

yf i,j+ 1
2

, by using H
n− 1

4

zf i+ 1
2
,j+ 1

2

, H
n− 1

4

zf i− 1
2
,j+ 1

2

5. Update Hzf on the �ne mesh, from n− 1
4 to n+ 1

4 .

H
n+ 1

4

zf i+ 1
2
,j+ 1

2

← H
n− 1

4

zf i+ 1
2
,j+ 1

2

, by using En
xf i+ 1

2
,j+1

, En
xf i+ 1

2
,j
, En

yf i+1,j+ 1
2

, En
yf i,j+ 1

2

6. Recalculate the coarse grid Hzc values on the coarse/�ne mesh interface at time step n using

24



the �ne mesh values Hzf at time levels n− 1
4 and n+ 1

4 .

Hn
zc i+ 1

2
,j+ 1

2

=
1

2
(H

n− 1
4

zf i+ 1
2
,j+ 1

2

+H
n+ 1

4

zf i+ 1
2
,j+ 1

2

).

7. Repeat from step 1 to step 6 for N times for the solutions on the coarse/�ne mesh interface.

8. Interpolate electric �eld ghost values Ê
n+ 1

2
xf and Ê

n+ 1
2

yf using the corresponding coarse mesh

values E
n+ 1

2
xc and E

n+ 1
2

yc .

9. Update Exf and Eyf on the �ne mesh, from n to n+ 1
2 .

E
n+ 1

2

xf i+ 1
2
,j
← En

xf i+ 1
2
,j
, by using H

n+ 1
4

zf i+ 1
2
,j+ 1

2

, H
n+ 1

4

zf i+ 1
2
,j− 1

2

E
n+ 1

2

yf i,j+ 1
2

← En
yf i,j+ 1

2

, by using H
n+ 1

4

zf i+ 1
2
,j+ 1

2

, H
n+ 1

4

zf i− 1
2
,j+ 1

2

10. Update Hzf on the �ne mesh, from n+ 1
4 to n+ 3

4 .

H
n+ 3

4

zf i+ 1
2
,j+ 1

2

← H
n+ 1

4

zf i+ 1
2
,j+ 1

2

, by using E
n+ 1

2

xf i+ 1
2
,j+1

, E
n+ 1

2

xf i+ 1
2
,j
, E

n+ 1
2

yf i+1,j+ 1
2

, E
n+ 1

2

yf i,j+ 1
2

11. Replace the coarse grid electric �elds Exc and Eyc by the corresponding �ne grid values Exf

and Eyf in the region where �ne grid overlaps coarse grid:

E
n+ 1

2

xc i+ 1
2
,j

= E
n+ 1

2

xf i+ 1
2
,j
,

E
n+ 1

2

yc i,j+ 1
2

= E
n+ 1

2

yf i,j+ 1
2

.

12. Redo the update of Hzc on the coarse mesh as in step 2.

A key step of the iteration based time subcycling algorithm is the step 7 where the iteration

is carried out for N times. Through eigenvalue tests, we found that N ≥ 4 guarantees the stability

where the ampli�cation factor (the largest eigenvalue of the update equations) is 1. To compare
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with the GE subcycling method in section 2.4.2, we add the step 6 and step 7 to repetitive update

the coarse magnetic �led values Hzc at time n by using �ne mesh magnetic �eld values Hzf at time

step n − 1/4 and n + 1/4. This is because we compute the �ne mesh Exf and Eyf in the subgrid

from time step n − 1/2 to n and �ne mesh Hzf from time step n − 1/4 to n + 1/4. At this point,

we can average the �ne mesh Hzf at time step n− 1/4 and n+ 1/4 to replace coarse mesh Hzc at

time step n (step 6). The new coarse mesh magnetic �eld values Hzc at time step n will be used to

update the coarse mesh electric �eld values Exc and Eyc from time step n − 1/2 to n + 1/2 again

as in the step 1. Thus, the coarse grid magnetic and electric �elds are updated. Then in the step 3,

electric �eld is interpolated again to get the new ghost cell values. Therefore, the �ne region values

can be updated again from the new ghost values and magnetic �eld values at the interface. The

step 12 is to update magnetic �led by using the new electric �led values from step 11 in the coarse

region.

3.2 Iteration Based Temporal Subcycling and Spatial Subgridding FDTDMethod

In this section, the spatial subgridding and temporal subcycling method are combined to

obtain the best e�ciency and accuracy. The region using the subcycling method is overlapping and

larger than the region using the spatial subgridding method. In this section, we use the proposed

iteration based temporal subcycling algorithm and spatial subgridding algorithm that proposed

in section 2.3.2 (The spatial subgridding with GHF method). We refer our method the Iteration

Based Subgridding (IBS) FDTD algorithm. Let region A be the region with temporal subcycling

and region B be the region with spatial subgridding. The distance between the �ne region A and

B is chosen to be 2 cells. The combined temporal subcycling and spatial subgridding method

(IBS-FDTD) is summarized in the following steps,
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1. Update Exc and Eyc on the coarse mesh, from n− 1
2 to n+ 1

2 .

E
n+ 1

2

xc i+ 1
2
,j
← E

n− 1
2

xc i+ 1
2
,j
, by using Hn

zc i+ 1
2
,j+ 1

2
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2
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2

yc i,j+ 1
2

, by using Hn
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2
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2

, Hn
zc i− 1

2
,j+ 1

2

2. Update Hzc on the coarse mesh, from n to n+ 1.

Hn+1
zc i+ 1

2
,j+ 1

2
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2
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n+ 1

2
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2
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2
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2
,j
, E

n+ 1
2

yc i+1,j+ 1
2

, E
n+ 1

2

yc i,j+ 1
2

3. Interpolate electric �eld ghost value Ênxf and Ênyf using corresponding coarse mesh values

E
n− 1

2
xc , E

n+ 1
2

xc , E
n− 1

2
yc and E

n+ 1
2

yc .

4. Update Exf and Eyf on the temporal �ne mesh, from n− 1
2 to n.

En
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, by using H
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4
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, by using H
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4
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,j+ 1

2
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4

zf i− 1
2
,j+ 1

2

5. Update Hzf on the temporal �ne mesh, from n− 1
4 to n+ 1

4 .

H
n+ 1

4

zf i+ 1
2
,j+ 1

2

← H
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4

zf i+ 1
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2

, by using En
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2
,j+1
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2
,j
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yf i+1,j+ 1
2

, En
yf i,j+ 1

2

6. Recalculate the coarse grid Hzc values on the coarse/temporal �ne mesh interface at time

step n using the �ne mesh values Hzf at time levels n− 1
4 and n+ 1

4 .

Hn
zc i+ 1

2
,j+ 1

2

=
1

2
(H

n− 1
4

zf i+ 1
2
,j+ 1

2

+H
n+ 1

4

zf i+ 1
2
,j+ 1

2

).

7. Repeat from step 1 to step 6 for N times for the solutions on the coarse/temporal �ne mesh

interface.
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8. Interpolate magnetic �eld ghost values Ĥfz i+ 1
4
,j+ 1

4
, Ĥfz i+ 3

4
,j+ 1

4
and Ĥfz i+ 1

4
,j+ 3

4
using cor-

responding temporal �ne mesh values Hzf i− 1
2
,j− 1

2
, Hzf i+ 1

2
,j− 1

2
, Hzf i− 1

2
,j+ 1

2
, Hzf i+ 1

2
,j+ 1

2
,

Hzf i+ 3
2
,j− 1

2
, Hzf i+ 3

2
,j+ 1

2
, Hzf i− 1

2
,j+ 3

2
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2
,j+ 3

2
at time n+ 1

4 .

9. Update Hfz on the spatial �ne mesh, from n− 1
4 to n+ 1

4 .

H
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10. Update Efx and Efy on the spatial �ne mesh, from n to n+ 1
2 .
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4

11. Replace Hzf magnetic �eld by Hfz in the region where spatial �ne grid B overlaps temporal

�ne grid A:

H
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4
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2

=
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12. Interpolate electric �eld ghost value Ê
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2
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2

yf using corresponding coarse mesh values

E
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2
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n+ 1
2

yc .

13. Update Exf and Eyf on the temporal �ne mesh, from n to n+ 1
2 .
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14. Update Hzf on the temporal �ne mesh, from n+ 1
4 to n+ 3
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15. Interpolate magnetic �eld ghost values Ĥfz i+ 1
4
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4
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4
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2
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16. Update Hfz on the spatial �ne mesh, from n+ 1
4 to n+ 3

4 .

H
n+ 3

4

fz i+ 3
4
,j+ 3

4

← H
n+ 1

4

fz i+ 3
4
,j+ 3

4

, by using E
n+ 1

2

fx i+ 3
4
,j+ 1

2

, E
n+ 1

2

fx i+ 3
4
,j+1

, E
n+ 1

2

fy i+ 1
2
,j+ 3

4

, E
n+ 1

2

fy i+1,j+ 3
4

17. Update Efx and Efy on the spatial �ne mesh, from n+ 1
2 to n+ 1.
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4

18. Replace Hzf magnetic �eld by Hfz in the region where spatial �ne grid B overlaps temporal

�ne grid A:

H
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4

zf i+ 1
2
,j+ 1

2

=
1

4
(H
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4

fz i+ 1
4
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4
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+H
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4
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4
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19. Replace Hzc magnetic �eld by Hzf in the region where temporal �ne grid A overlaps coarse

grid:

Hn+1
zc i+ 1

2
,j+ 1

2

= H
n+ 3

4

zf i+ 1
2
,j+ 1

2

.

20. Redo the update of Exc and Eyc on the coarse mesh as in step 1.

In the above algorithm, we assume that electric �eld and magnetic �eld are denoted by Exc,

Eyc and Hzc in the coarse region, Exf , Eyf and Hzf in the temporal �ne region A and Efx, Efy and

Hfz in the spatial �ne region B. Firstly, we update the coarse mesh Exc and Eyc from time step

n−1/2 to n+1/2 and Hzc from time step n to n+1. Then, we need to use the electric �eld value in

coarse mesh to compute the electric �eld ghost boundary value in the temporal �ne region A at n.
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We use the ghost boundary value to update Exf and Eyf from time step n−1/2 to n and Hzf from

time step n− 1/4 to n+ 1/4. After that we do the N times iteration from step 1 to step 6. Then,

we use the magnetic �led value in the temporal �ne region A to compute the magnetic �eld ghost

boundary value in the spatial �ne region B at n+ 1/4. In step 9 and step 10, we update the electric

�eld Efx and Efy from time step n to n + 1/2 and magnetic �eld Hfz from time step n − 1/4 to

n+ 1/4 in the spatial �ne region B. We replace the Hzf by averaging the Hfz in the region where

spatial �ne region B overlaps temporal �ne region A at n+ 1/4. Next we use the electric �eld value

in coarse mesh to compute the electric �eld ghost boundary value in the temporal �ne region A at

n+ 1/2. Then we update Exf and Eyf from time step n to n+ 1/2 and Hzf from time step n+ 1/4

to n + 3/4. At n + 1/4 to calculate the magnetic ghost boundary value in the region B using the

magnetic �led Hzf . Thus, update the electric �eld Efx and Efy from time step n+1/2 to n+1 and

magnetic �eld Hfz from time step n+ 1/4 to n+ 3/4 in the spatial �ne region B. Similar to step

11, we average the Hfz to replace the Hzf at time step n + 3/4. Finally, we replace the magnetic

�eld Hzc with the corresponding Hzf and then update electric �led Exc and Eyc as step 1.
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Chapter 4

THROUGH-THE-WALL RADAR DETECTION ANALYSIS

4.1 Radar Basic Model

A basic principle of the through-the-wall radar is shown in Figure 4.1. Through-the-wall radar

generates and transmits a short pulse through the transmitting antenna TX. The signal propa-

gates in an environment. When it meets target, part of the electromagnetic energy is re�ected from

the object and propagates back to receiving antenna RX, then the receiving antenna records the

re�ected return signal.

Figure 4.1: Basic principle of the through-the-wall radar.

Most imaging radar systems make use of the start − stop approximation [17], in which the

sensor and scattering object are assumed to be stationary during the propagation. Assume that

the region between the sensors and the scattering objects consists of a homogeneous, lossless, non-

dispersive atmosphere, then in this situation, Maxwell's equations [23] can be used to obtain an

homogeneous wave equation for the electromagnetic �eld as:

(∇2 − 1

c2
∂2

∂t2
)u(t, x) = s(t, x). (4.1)
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The fundamental solution [47] of the wave equation (4.1) is

u(t, x) = −
∫
g(t− t′, x− y)s(t′, y)dt′dy, (4.2)

where g(t, x) is the Green's function [39]

g(t, x) =
δ(t− |x|/c)

4π|x|
. (4.3)

For radar imaging, the �eld u includes two terms: u = uin+usc, where the incident �eld uin models

the transmitting wave and the scatter �eld usc models the scattering wave. For stationary objects

consisting of linear materials, we can write our scalar model as

usc(t, x) = −
∫
ν(t− t′, x)u(t′, x)dt′, (4.4)

where ν(t, x) is called the re�ectivity function. Combining equations (4.1) and (4.4), the scatter

�eld can be expressed as [31]

usc(t, x) =

∫ ∫
g(t− τ, x− z)

∫
ν(τ − t′, z)u(t′, z)dt′dτdz. (4.5)

We measure usc at the antenna, and we determine the re�ectivity function ν from these measure-

ments. The nonlinearity in equation (4.5) makes it di�cult to solve for ν. Consequently, almost

all work on radar imaging includes using the Born approximation, which is also known as the

weak− scattering or single− scattering approximation [31, 26]. The Born approximation replaces

u on the right-hand side of equation (4.5) by the incident �eld uin. Assume the re�ectivity function

ν(t, x) is independent of the frequency of the �eld, corresponding to ν(t, x) = δ(t)σ(t), the equation

(4.5) corresponds to the following formula

usc(t, x0) ≈
∫ ∫

g(t− τ, x0 − z)σ(z)uin(τ, z)dτdz, (4.6)
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or

usc(t, x0) =

∫
σ(z)uin(t−X(z;x0)/c)

4πX(z;x0)
dz, (4.7)

where usc(t; r0) is the measured space-time data at the antenna position x0, X(z;x0) is the total

travel distance from the transmitting antenna to the target space point z and onto the receiver, σ(z)

is the re�ection coe�cient at the target space point r. In our radar situations, we use the common

point-target model [20], in which the target scene is treated as a discrete grid, and the target is

treated as point-target. By employing the common point-target model, the received measurement

usc in the equation (4.7) can be simply written as

usc =
L∑
i=1

σiu
in(t− τi). (4.8)

where L is the number of scatters in the target space, τi is the total trip delay from the transmitting

antenna to the scatter i and back to receiving antenna, and σi is the coe�cient related to re�ection

of the scatter, attenuation and spreading losses through propagation. Thus, the received signal is

essentially a delayed and scaled version of the transmitted pulse (Figure 4.2).

In this dissertation, we are considering the two-dimensional problem, assuming that our room

is a rectangle of size Lx by Ly and the walls are of a uniform thickness h, with relative electric

permittivity εw. In order to reduce the e�ect of the wall, the wall signal is also extracted and removed

from the original signal. There are excellent references about all parameter estimation and wall

signal removal [10, 25]. The object The object inside the room is a convex domainO ⊂ [0, Lx]×[0, Ly]

that has uniform relative electric permittivity ε0. To model the actual problem, we will record and

use data that could be gathered from a set of antenna transmitters and receivers. Thus, for any given

simulation, we will assume that the electromagnetic waves are generated from a set of transmitters

(TX) positioned outside of the room and the data is recorded from a set of receivers (RX), also

positioned outside the room.
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Figure 4.2: Signal delay of the through-the-wall radar.

4.2 Radar Imaging Method

In the previous sections, we have been discussing the method to detect where the objects and

sources are, and calculate the total distance traveled by the wave that sent from the transmitter

and meet the target back to the receiver. For this section, we introduce the inverse problem for

through-the-wall radar imaging. We assume that the room is a rectangle of size Lx by Ly, and

an object is inside this room. From the previous step data, we want to locate and reconstruct the

object in the room. We will try two ways to set up the transmitters and receivers outside of the

room. One of the ways is multiple transmitters and receivers on each side of the room, the other

one is one transmitter and a �nite number of receivers on each side of the room.

4.2.1 Target location detection

Due to the object inside the room, we know that the data on the receivers is di�erence from

the data of an empty room. We can use the information from the forward problem to calculate the

wave propagation in the empty room. The di�erence between the data gathered by the receivers
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Figure 4.3: Illustration of the TWR procedure for multiple transmitters and receivers.

from an empty room and the room with object, we can determine the distance of the object from the

transmitter and receiver. We assume that the wave equations have uniform speed of propagation

and the wave front that hits the target and returns to the receiver travels in straight lines as shown

in Figure 4.3. The black arrow lines show the actual path the wave traveled, and the red circle

is the target inside the room. The orange triangles and the green triangles are represented the

transmitters and receivers, respectively.

When the time delay T is obtained, the distance traveled is given by cT , where c = 1√
ε0µ0

is

the speed of light in the room and c = 2.998× 108m/s in vacuum. The ε0 = 8.854× 10−12F/m is

called electric permittivity of vacuum and µ0 = 4π× 10−7H/m is called the magnetic permeability

of vacuum. However, the wave also passes through a wall with a relative electric permittivity εw,

so the wave speed is slower inside the wall and the time in this region needs to be calculated. We

assume that the speed of the wave traveled inside the wall is denoted by c√
εw
. Thus, the total

distance traveled by the wave can be represented as

d = trc+ tw
c
√
εw
. (4.9)
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where tr denotes the time spent inside the room (in vacuum), and tw is the time spent inside the

wall. We can easily obtain that tr + tw = T . Because the wave passes through the wall twice,

sending from the transmitter and returning to the receiver, the tw ≈ 2h/(c/
√
εw) where h is the

thickness of the wall. Since we don't know where the object is, we ignore the fact that the wave is

going to pass through the wall at an angle.

We use the distance d to construct an ellipse with foci at the transmitter and receiver as the

purple curve in Figure 4.3. The object must be externally tangent to the curve [11]. By creating

these ellipses for each pair of transmitter/receiver data, we get an approximate outline as to where

the object is.

4.2.2 Target characterization analysis

As we know the object location from the previous step, then we need to analyze the shape and

size of the object. We use the method proposed in [11] to reconstruct the object starting with an

initial guess of the center of the object.

To construct an ellipse with foci at the transmitter and receiver, we are going to use distance

d and the properties of an ellipse. We assume that transmitter is at F1 = (xt, yt) and receiver is at

F2 = (xr, yr) where F1 and F2 are the foci of the ellipse. Then, we can get the midpoint C = (xc, yc)

of the line segment joining the foci which is the center of the ellipse. For any point P on the ellipse,

we know the sum of the distances |PF1|, |PF2| to two �xed points F1, F2 the foci is usually denoted

by 2a where a is called the semi major axis of the ellipse. Thus we have

|PF1|+ |PF2| = 2a, a > 0. (4.10)

Since the ellipse must be externally tangent to the object, the point of tangency with the boundary

of object is on the ellipse. d is the sum of the distance from the point of tangency to the transmitter

TX and the receiver RX, then we get a = 1
2d. The distance between the center of the ellipse C

and the foci of ellipse F1/F2 is denoted by f . We calculate the semi minor axis of the ellipse b by

using the equation b2 = a2 − f2. Using the center of the object O = (m,n) and the pervious data
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we have, we can �nd the point of tangency of the ellipse with the boundary of object on the ellipse

using the bisection method [8]. Based on the forward information and the above main concept of

the object reconstruction, the algorithm is summarized below:

1. Calculate the semi major axis a and semi minor axis b of the ellipse with foci at the transmitter

TX and receiver RX, then �nd the center C of the ellipse.

2. Make a guess for the center of the object O. The initial guess is usually the center of the

room.

3. Calculate the closest point P on each ellipse to the current center point guess by using

bisection method.

4. Average the x and y coordinates of these closest points to get a new guess for the center point.

5. Repeat this procedure from step 3 until the center points converge to a value within a desired

accuracy.

The most challenging part in this algorithm is step 3 about how to get the closest point on

each ellipse to the center of the object. Assume our target is a convex object in the room, the closest

point on each ellipse is the point of tangency of the ellipse with the boundary of the object. Then,

we average the x and y coordinates of these closest points as the new center point of the object. In

our cases, we de�ne the ellipse in parametric form:

 x = a cos θ,

y = b sin θ.
(4.11)

where x and y are the coordinate of the point on the ellipse, a is the semi major axis and b is the

semi minor axis of the ellipse, and θ is interpretations of parameter. The input for the bisection

method is a continuous function f(θ) de�ned on an interval [θ1, θ2] and the parameter θ ∈ [0, 2π]

is called the eccentric anomaly, where f(θ1) and f(θ2) have opposite signs. Thus, we calculate the

closest point used bisection method. By the intermediate value theorem, the continuous function
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f(θ) must have at least one root in the current interval. The point of tangency is calculated using

the root obtained from the previous step. The bisection method algorithm is given as follows:

Algorithm 1: The Bisection Method Algorithm
Input: Function f , endpoint values θ1 and θ2, tolerance TOL,

/* θ1 < θ2, either f(θ1) < 0 and f(θ2) > 0 or f(θ1) > 0 and f(θ2) < 0 */

Output: Value which di�ers from a root of function f(θ) by less than TOL
Set a is the semi major axis and b is the semi minor axis of the ellipse
while |b− a| > TOL do

c = (a+b)
2 ;

if sign of f(a)=sign of f(c) then
a = c;
else

b = c;
end

root = c;
end

The iterative process de�ned above converges to a point inside the object, where the closest

points on each ellipse are the tangency points. These closest points give a reasonable outline of the

object, allowing us to see what the object looks like from this data. Whether or not we �nd the

actual center of the object and how close we get to the boundary of object depends on the set of

transmitters and receivers. For example, if there is no data from the top side of the object, this

method will not move the center point closer to the top side. This may result in skewed shapes, so

in comparison, the system works better if there is data from all sides.

As shown in the numerical examples, this procedure gives us results fairly close to the actual

center point of the object, as well as a decent outline of the object, providing an approximation to

its shape.
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Chapter 5

NUMERICAL EXAMPLES

In this chapter, we �rst show the numerical results to analyze the accuracy and stability of the

standard spatial subgridding and temporal subcycling method in 2D case. We then implement the

proposed iteration based temporal subcycling method. The numerical examples are presented to

test the new algorithm. Finally, we apply the our method to the through-the-wall radar simulations

and compare it with the standard FDTD result.

5.1 Numerical Examples for Spatial Subgridding Method

In this section, we show numerical results of the spatial subgridding FDTD method in 2D. The

ratio of the coarse and �ne regions is 1:2 (in space). In the �rst example, we study the solution of

a cylindrical wave in free space. The incidence source of a sine wave with wavelength 0.05µm is

placed in the center of the domain.

Hzc(Nx, Ny) = sin((2πcn∆t)/λ),

where (Nx, Ny) = (200, 200) located at the center of the computation domain. The computational

grid size is 400× 400 with PML boundaries in x and y directions. The �ne mesh region is a 80× 80

square zone, with lower corner at grid point (80, 80). Figure 5.1 shows the the numerical results.

All three methods (the FDTD, GHC-FDTD, and GHF-FDTD algorithms) give correct solutions.

The small square shows the boundary of the �ne mesh region.

In the second test we test the stability for long time simulation. A random magnetic �elds

is given as the initial condition in the whole computational domain. We run the simulation for

one million time steps in order to test the stability. Figure 5.2 shows the time history of the

magnetic �led Hzc at a selected location in the computation domain by using two interpolation

based subgridding methods. The computation for this model was performed using the coarse region
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Figure 5.1: The magnetic �eld (Hzc) distribution using (a) the standard FDTDmethod; (b)
the subgridding FDTD with ghost magnetic �elds in the coarse region (GHC);
and (c) the subgridding FDTD with ghost magnetic �elds in the �ne region
(GHF). The square boxes indicates the boundary of the �ne mesh region.
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grid 200 × 200 cells and �ne region grid 40 × 40 (a square zone with lower corner at grid point

(40, 40) to (80, 80)).
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Figure 5.2: Time history of the magnetic �eld (Hzc) using the (a) GHC, and (b) GHF
methods for 1 million time steps.

As shown in Figure 5.2, the GHC method is unstable as the solution grows exponentially after

about a few tens of thousand steps, while the GHF method is stable after one million steps.

In the next example, we apply the matrix stability analysis to a fully discrete problem on a

�nite domain with a single re�nement patch. The stability of FDTD subgridding schemes can be

studied by calculating the dominant eigenvalues of the ampli�cation matrices [41, 54]. It states that

the method is stable if all the eigenvalues of the update matrix lie inside or on the unit circle. In

this test, the coarse region grid is 20 × 20 cells and the �ne region contains 6 × 6 cells around the

center of the domain. The maximum eigenvalues of the update matrix for di�erent coarse region

cells and di�erent methods are shown in Table 5.1. Figure 5.3 and 5.4 show the distributions of the

eigenvalues in complex plane for the GHC and GHF methods, respectively. For the GHC method,

some eigenvalues locate outside of the unit circle and the largest eigenvalue shown in Table 5.1 is

larger than 1, which indicating the late-time instability. The GHF method is stable as all eigenvalues

lie on or inside the unit circle and the largest eigenvalue is 1 for all tested cases.
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Figure 5.3: (a) Distribution of the eigenvalues on the complex plane for the GHC method.
(b) Zoom-in view of a region where some eigenvalues fall outside of the unit
circle, |λ| > 1.

5.2 Numerical Examples for Temporal Subcycling Method

In this section, we assess the stability of the temporal subcycling FDTD algorithm by perform-

ing long time simulation and by eigenvalue test. The coarse and �ne mesh ratio is 1:2, i.e., the time

increment is ∆t in the coarse grid region and ∆t/2 in the �ne mesh region. The incident source

of a sine wave with wavelength 0.05µm is placed in the center of the domain. The computational

grid size is 400× 400. The �ne mesh region is a 80× 80 square zone, starting at grid point (80, 80)

to (160, 160). The numerical results of the vacuum test is shown in Figure 5.5. The small square

shows the boundary of the �ne mesh region.

As shown in Figure 5.5, the numerical results of the vacuum test show that there are no

signi�cant re�ection/scattering after the incident wave crosses the grid boundaries of coarse and

�ne meshes .

The convergent test is carried out for the proposed iteration based temporal subcycling method

and the results are shown in Table 5.2. Solutions on very �ne mesh is used as exact solution. As

seen from the table, the rate of convergence of iteration based subcycling algorithm is second order.

Next, we assess the stability of the subcycling FDTD algorithm by eigenvalue test.
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Figure 5.4: Distribution of the eigenvalues on the complex plane for the GHF method. All
eigenvalues lie on or inside the unit circle.

Eigenvalues test results are shown in Figures 5.6, 5.7, Figure 5.8, and in Table 5.3. The result

from Figures 5.7 shows that some eigenvalues locate outside of the unit circle with |λ| > 1, and Table

5.3 shows that the maximum eigenvalue for GE method is larger than 1. The GH and iteration

based temporal subcycling methods have no eigenvalues outside the unit circle, and their largest

eigenvalues are 1 for various grid sizes.

5.3 Numerical Examples for Iteration Based Subgrrding Algorithm

We combine the iteration based temporal subcycling and the spatial subgridding algorithm

to obtain a subgridding method with both temporal and spatial re�nement. We refer this method

the iteration based subgridding (IBS) FDTD method. We performed several numerical tests in this

section. The distance between the temporal �ne region A and the spatial �ne region B is 2 grid

cells. The �ne region B is inside the �ne region A. The �rst numerical test is a vacuum test, and

it is the same as the previous vacuum test with incident source at the center of the computational

domain. The coarse mesh contains 400× 400 cells, �ne region A contains 84× 84 cells, and the �ne

region B contains 80× 80 cells. On the coarse grid and region A, ∆x = ∆y = 0.002µm. In the �ne
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Figure 5.5: The �gures show the magnetic �eld (Hzc) distribution using (a) the H ghost
value (GH); (b) the E ghost value (GE); and (c) the iteration based temporal
subcycling methods. The square box shows the boundary of the �ne mesh
region.
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Spatial Subgridding
algorithm

Mesh size Maximum eigenvalue
(round o� error ∼
10−14)

GHC

10× 10 1 + 1.97× 10−3

20× 20 1 + 1.81× 10−3

30× 30 1 + 1.15× 10−3

40× 40 1 + 7.89× 10−4

GHF

10× 10 1 + 0.4× 10−14

20× 20 1 + 0.6× 10−14

30× 30 1 + 1.4× 10−14

40× 40 1 + 1.8× 10−14

Table 5.1: List of the maximum eigenvalue for di�erent coarse grid sizes and di�erent
subgridding methods.

Mesh size L2-norm order of convergence
10× 10 2.84× 10−2 -
20× 20 6.77× 10−3 2.07
40× 40 1.68× 10−3 2.01
80× 80 4.01× 10−4 2.07
160× 160 8.68× 10−5 2.21

Table 5.2: Convergence test of the iteration based temporal subcycling FDTD algorithm.

region B the grid size is ∆x = ∆y = 0.001µm.

As shown in Figure 5.9, the numerical results of the vacuum test show good agreement between

the IBS-FDTD method and the standard FDTD method.

Similar to the previous section, we test stability with random initial magnetic �eld for 1 million

time steps. The computation for this model was performed using the coarse region grid 200× 200

cells and 40 × 40 cells for �ne region grid B. As shown in Figure 5.10, stable solution is obtained

for the IBS-FDTD method after 1 million steps.

Figure 5.11 and Table 5.4 show the result of the eigenvalue test. Similar to the previous tests,

the coarse region grid contains 20× 20 cells and the �ne region B grid contains 6× 6 cells. Figure

5.11 shows that all the eigenvalues locate inside or on the unit circle with |λ| ≤ 1. Table 5.4 con�rms

that the largest eigenvalue is 1 for all grid sizes, indicating the stability of the method.

45



Re(λ)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Im
(λ

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.6: Distribution of the eigenvalues on the complex plane for the GH subgridding
method. All eigenvalues lie on or inside the unit circle.

5.4 Numerical Simulations of Through-the-Wall Radar Imaging

In this section, we investigate through-the-wall radar imaging by using IBS FDTD method as

forward problem solver and the imaging method in chapter 4. We set the room size to be 4m× 4m,

and the object in the room be of varied sizes and shapes, with the material permittivity of the

object to be εobj = 80. In our test, we ignore the in�uence of wave propagation when cross the walls

by setting the permittivity of the wall to be εw = 1. The source is a Gaussian pulse with frequency

f = 600 MHz.

Figure 5.12 shows the ellipses constructed from a set of twelve transmitters and receivers around

the room. There is a circular object in the room, the walls of the room is the square outlined in black,

and the circular object is shown with a green outline. Ellipses from the reconstruction method are

shown in red curves and the object is outlined in green. From Figure 5.12, we know that the ellipses

surrounding the object, giving us information on where the object is. We separate Figure 5.12 into

four �gures (shown in Figure 5.13) that the ellipses constructed from a set of three transmitters and
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Figure 5.7: (a) Distribution of the eigenvalues on the complex plane for the GE subgridding
method. (b) Enlarged small region with some eigenvalues outside of the unit
circle.

receivers on each side of the room. From Figure 5.13 we see that the object are externally tangent

to these ellipses.

We compare the IBS-FDTD method with the standard FDTD method. Figure 5.14 shows the

points on the boundary of the circular object from each method and the circular object. Figure 5.15

shows the points on the boundary of the square object from each method and the square object.

The Table 5.5 shows the computational error of the results using the two methods with the actual

object and computation times.

From the Table 5.5, we can �nd that the IBS method is more accuracy and e�ciency than the

standard FDTD method. We also try the reconstruction procedure of circular and squared objects

with the location of the objects not in the center of the room. Also, we try two types of transmitters

in each side of the room: one transmitter and multiple transmitters. We also try triangular objects.

We only show the set of points on the boundary of the object found at the end of the iteration

procedure and how closely they line up with the actual object being imaged.

As we can be seen from Figure 5.16 to Figure 5.21, the results with multiple (three) transmitters
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Figure 5.8: Distribution of the eigenvalues on the complex plane for the iteration based
temporal subcycling method. All eigenvalues lie on or inside the unit circle.

on each side of the room are better than one transmitter. The circles, squares and rhombus are

reconstructed fairly accurately. The triangular objects are the most challenging ones. This can be

attributed to the sharp corners of the triangle. Figure 5.19 shows the �nal set of the points that

are the tangency points of ellipses and the triangular object. We see that there has some �closet

points" at the bottom of the triangle not on the boundary of the triangular object.
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Temporal Subcycling
Method

Mesh size Maximum eigenvalue
(round o� error ∼
10−14)

GH

10× 10 1 + 1.3× 10−14

20× 20 1 + 1.6× 10−14

30× 30 1 + 1.7× 10−14

40× 40 1 + 3.2× 10−14

GE

10× 10 1 + 1.37× 10−8

20× 20 1 + 1.29× 10−8

30× 30 1 + 1.43× 10−8

40× 40 1 + 1.28× 10−8

ITS

10× 10 1 + 0.9× 10−14

20× 20 1 + 1.5× 10−14

30× 30 1 + 1.9× 10−14

40× 40 1 + 3.8× 10−14

Table 5.3: The max-eigenvalue for di�erent coarse grid sizes and di�erent temporal subcy-
cling methods.

Mesh size Maximum eigenvalue (round o� error ∼ 10−14)
10× 10 1 + 0.4× 10−14

20× 20 1 + 0.8× 10−14

30× 30 1 + 2.0× 10−14

40× 40 1 + 2.3× 10−14

Table 5.4: List of the maximum eigenvalue for di�erent grid sizes by using IBS FDTD
method.

Actual object Forward method Mesh size Computational
error

CPU time

Circle
diameter=
0.5m

Standard FDTD 100× 100 6.54% 13 seconds
Standard FDTD 200× 200 2.77% 326 seconds
IBS-FDTD 100× 100 2.79% 126 seconds

Square
side=
0.5m

Standard FDTD 100× 100 10.89% 15 seconds
Standard FDTD 200× 200 5.94% 329 seconds
IBS-FDTD 100× 100 5.88% 124 seconds

Table 5.5: The computational error of the results using standard and IBS FDTD methods.
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Figure 5.9: The magnetic �eld (Hzc) distribution using the (a) standard and (b) IBS FDTD
methods. The square box is the boundary of �ne region B.
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Figure 5.10: Time history of the magnetic �eld (Hzc) using the iteration based subgridding
FDTD method for 1 million time steps.
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Figure 5.11: Distribution of the eigenvalues on the complex plane for the iteration based
subgridding FDTD method.
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Figure 5.12: TWR object reconstruction. All of the ellipses constructed from the trans-
mitters and receivers are shown in this �gure. The set of ellipses encircles the
object.
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Figure 5.13: Ellipses reconstructed from all of the transmitters and receivers on the (a)
left, (b) right, (c) top, and (d) bottom sides. The square outlined in black is
the walls of the room and the circle outlined in green is the circular object.
The blue points in each images are the transmitters and receivers.
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Figure 5.14: Reconstructed circular objects using (a) the standard FDTD (black circle)
and (b) the IBS-FDTD method (red circles). The square outlined in black
color is the walls of the room and the circle outlined in green is the actual
object. (b) enlarged image.
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Figure 5.15: Reconstructed squared objects using (a) the standard FDTD (black circle)
and (b) the IBS-FDTD method (red circles). The square outlined in black
color is the walls of the room and the object outlined in green is the actual
object. (b) enlarged image.

53



X-axis
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
-a

xi
s

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

computed points on the boundary of the object

(a)

X-axis
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
-a

xi
s

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

computed points on the boundary of the object

(b)

Figure 5.16: Reconstruction of circular object (not centered at the room) using (a) one
transmitter and (b) multiple transmitters. The square outlined in black is
the walls of the room and the circle outlined in green is the actual circular
object.

X-axis
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
-a

xi
s

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

computed points on the boundary of the object

(a)

X-axis
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
-a

xi
s

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

computed points on the boundary of the object

(b)

Figure 5.17: Reconstruction of squared object (not centered at the room) using (a) one
transmitter and (b) multiple transmitters. The square outlined in black is
the walls of the room and the circle outlined in green is the actual squared
object.
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Figure 5.18: Reconstruction of triangular object using (a) one transmitter and (b) multiple
transmitters. The square outlined in black is the walls of the room and the
triangular outlined in green is the actual triangular object.
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Figure 5.19: Reconstruction of a larger triangular object using (a) one transmitter and (b)
multiple transmitters. The square outlined in black is the walls of the room
and the triangular outlined in green is the actual triangular object.
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Figure 5.20: Reconstruction of oblique triangular object (not centered at the room) using
(a) one transmitter and (b) multiple transmitters. The square outlined in
black is the walls of the room and the oblique triangular outlined in green is
the actual oblique triangular object.
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Figure 5.21: Reconstruction of rhombus object (not centered at the room) using (a) one
transmitter and (b) multiple transmitters. The square outlined in black is the
walls of the room and the rhombus outlined in green is the actual rhombus
object.
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Chapter 6

CONCLUSIONS

In this dissertation we implement local temporal grid re�nement (temporal subcycling) and

spatial grid re�nement (spatial subgridding) to the FDTD method for solving Maxwell's equations

in two-dimensions. The re�nement ratio is 2:1 in temporal and spatial domains, and the ghost

value interpolation technique is applied to treat the coarse/�ne mesh boundaries. We study the

stability of the algorithm by eigenvalue tests and by performing simulations of large number of time

steps. Di�ers from other subcycling/subgridding methods, our new method iterates the update

equations near the temporal interface to obtain stable solutions. We use our method to solve

the forward problem of electromagnetic scattering in the through-the-wall radar simulations, and

then, we construct the inverse problem solution using the collected simulation data. Our results are

consistent with the objects being analyzed. Also, the results show that our method is more accurate

and e�cient than the standard FDTD method.

For the further work, we will extend our method to three dimensions. We will also consider to

study the object reconstruction algorithm for multiple objects for TWR system.
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