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ABSTRACT 

In this work, we conduct a review of electromagnetics and the traditional FDTD 

method for isotropic media. We analyze the pitfalls and shortcomings of this method 

when it comes to the approximation of electromagnetic wave propagation through 

more exotic media , such as anisotropic media and magnetoelectric media with time 

and space varying permittivity, permeability and coupling coefficients. For the latter 

medium we present an extension to FDTD that utilizes a dual grid structure to 

overcome the late-time instability associated with conventional extrapolation based 

extensions to FDTD. We apply both of these methods to the simulation of the space­

time cloak and analyze the stability of both. 
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Chapter 1 

INTRODUCTION 

In recent years, Transformation Optics (TO) has become one of more interest­

ing topics in science. Utilizing transformation optics and meta-materials, spatial 

invisibility cloaks [5, 9] have been developed. Designs such as these have been phys­

ically realized at microwave frequencies [11] and optical frequencies [15]. A spatial 

cloak functions by manipulating the spatial path of electromagnetic waves within the 

cloaked region in such a way that waves are bent around the object being cloaked. 

Transformation optics allows for a description of the medium (ie: material parame­

ters) needed for the construction of such devices. For this particular type of cloak, the 

implementation requires the use of inhomogeneous media where the inhomogeneity is 

due to the use of spatially dependent anisotropic permeability and permittivity. 

Within the past several years, a new type of cloak has been developed [4, 8], 

the space-time cloak. Contrary to the spatial cloak, a space-time cloak functions by 

altering the speed of the electromagnetic wave as it propagates through the cloaked 

region. Initially, the speed of the front of the wave is increased while the speed of 

the back of the wave is decreased. This allows for a gap to occur in which an event,

or subset of the space-time plane, can be carried out undetected. To close the gap,

the back of the wave is sped up and the front is slowed down allowing the wave to

continue on at its original speed. This effect has been experimental demonstrated in

the work in [3]. 

1 



2 

The design of such a cloak can be achieved by transformation optics, and it results

in a magneto-electric medium with time and space varying permittivity, permeability,

and coupling coefficient [8]. 

Due to the interesting nature of these devices, simulation is desirable. In this

work, we are interested in simulating space and time dependent magneto-electric

materials and their direct application to the space-time cloak. In [4], the FDTD

method has been applied to simulate the space-time cloak but the authors point out

that there are some difficulties near the closing process of the space-time cloak. Our 

numerical simulations demonstrate that there are instabilities for conventional FDTD 

simulation due to the temporal extrapolation of the time dependent magneto-electric 

constitutive equations. 

We begin the body of this work by discussing some of the foundations of Electro­

magnetics, the FDTD method (Chapter 2) and 'Iransformation Optics (Chapter 3). 

Also in Chapter 3, we look at an extrapolation based method and present a mod­

ified FDTD method based on time overlapped grids for handling magneto-electric 

media. Our method utilizes two Yee grids that are offset in time by a halfstep so that 

collocated fields are provided to the time-dependent magneto-electric constitutive

equations. This method avoids time extrapolation and the it's associated instabili­

ties. In Chapter 4, we provide a simulation of the space-time cloak as a numerical

example. Lastly, in Chapter 5, we give some concluding remarks and discuss some

possible future work. 



Chapter 2 

ELECTROMAGNETICSANDFDTD 

2.1 Maxwell's Equations 

Electromagnetic waves propagate through the generation and oscillation of elec­

tric and magnetic fields. When considering the propagation of electromagnetic waves

in a linear medium, the governing equations are a set of partial differential equations

known as Maxwell's Equations. The first two laws describe the interaction between

time-changing electric and magnetic fields

aB -=-\7xE
at 

aD - = \7 X H-J,
at 

(2.1) 

(2.2) 

while the last two laws describe the impact of electrical and magnetic charges on 

electrical and magnetic fields. 

\7. D = p, (2.3) 

\7 · B = 0. (2.4) 

In the above E and H are the electric and magnetic fields while D and B are the 

electric and magnetic flux densities associated with material's electrical and mag-

netl·c J nd p are the current and charge densities respectively. These response. a 

. d Faraday 's Law of Induction, Ampere-Maxwell's Law, Gauss's equat10ns are name 

f El • p· ld nd Gauss's Law of Magnetism respectively. Faraday's Law,Law o ectnc ie s a 

3 
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equation (2.1), states that an electrical field is generated by a changing magnetic
field. Ampere's Maxwell's Law, equation (2.2), states that a magnetic field can be
generated from either a changing electric field or a current source. Gauss's Law of
Electrical Fields, equation (2.3), states that Electric field lines extend outward from
positive charges while Gauss's Law of Magnetism, equation (2.4), states there are no

magnetic charges ( ie: there are no magnetic monopoles)

2 .1.1 Material Response 

When an electromagnetic wave propagates through a medium (whether it be

a vacuum or dielectric) an electromagnetic response is exhibited based on that ma­

terial's electrical and magnetic properties. For linear isotropic materials, materi­

als whose response is independent of electromagnetic wave's angle of incidence, this 

response is dictated by the material's electrical permittivity ( E) and magnetic per­

meability (µ). In essence, these parameters describe how easily a electric field or 

magnetic field is setup inside of a given materials. In a vacuum these parameters are 

Eo = 8.854187 x 10-12 F • m-
1 and µ0 = 1.256637 x 10-6 H · m-1

. In most cases, the 

parameters for other materials are given relative to these values using the relation 

E = Er . Eo and µ = µ
r 

. µ0• Some typical permittivities and permeabilities are given 

in Table 2.1 [6]. 

Material 
Vacuum 
Air 
Silicon Rubber 
Water at 20C 
Iron 

Permitivity 
1 
1.00053 
3.12 
80.100 

Permeability 
1 
1.000006 
1 
1 
25000 

Table 2.1: Permittivity and Permeability for some materials
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These physical paramet b • b ers rmg a out the relationship between the field quan-

tities D and E as well as B and H. Th" 1s relationship is given by the so called

constitutive relations. For linear isotropic materials we have 

D=EE , 
(2.5) 

B=µH. (2.6) 

For materials, called anisotropic, whose response is dependent upon the orientation 

of the electric field, the material properties take on the tensor form 

Exx Exy Exz 
Exx Exy Exz 

f= fyx fyy fyz µ= fyx Eyy Eyz
(2.7) 

fzx Ezy Czz 
Ezx Ezy Ezz 

In materials of this type waves interact with the medium differently depending on

their angle of incidence.

Lastly, in more exotic media, magneto-electric materials, these constitutive rela-

tions may become coupled and yield the matrix ( or block matrix) equation

(:)-(; :) (:), 
(2.8) 

where E, µ and � are scalar or tensor depending on whether the material is isotropic

or anisotropic. For all of these classifications the material may also be homogeneous

· h Inhomogeneous materials are materials which have permittivities,

or m omogeneous.
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permeabilities, or coupling coefficients that vary spatially throughout the material.

Homogeneous materials, have parameters which remain constant with respect to the

spatial variables. 

When considering numerical schemes it is useful to have Maxwell's Equations in

component form. We consider the 2-D and 1-D cases as they are most relevant to

this work. 

2.1.2 Maxwell's Equation in 2D 

Considering the case where there is no variation in the z-direction and expanding 

the curl equations (Ampere-Maxwell's and Faraday's law), we obtain 

aDx 

aDy 
at 

aDz 
at 

and 
aBx 

aBy -
at 

aBz 

aHz 
8y 

aHz 
- ax

aHy _ aHx 
ax ay 

aEz -
ay 

aEz 
ax 

aEx 
aEy 

ay - ax

This yields two distinct systems of partial differential equation.

the Transverse Electric (T Ez) Mode

aDx. 
at 

aDy 
-

at 

aBz. 
at 

aHz 
ay 

_aH., 

ax 

aEx - aEy 
ay ax 

(2.9) 

(2.10) 

The first is known as 

(2.11) 



while the second is known as the Transverse Magnetic (T Mz) Mode 

2.1.3 Maxwell's Equation in 1D 

aEz 
-

ay 

aEz
ax 

aH
y -

aHx 

ax ay 

7 

(2.12) 

Lastly, if we consider Maxwell's equations in 1-D, both field quantities are trans­

verse to the direction of propagation. In this case we are left with two sets of two 

equations, depending on how we wish to orient the electric field. For the z-polarized 

equations ( electric field pointing in the z-direction) we have 

(�) (�) aB
y aEz 

at ax 

and for the y-polarization we have 

2.2 FDTD 

(2.13) 

(2.14) 

The FDTD method [12, 13, 19] is a very successful method for simulating elec-

. t' It has been applied to the study of various types of
tromagnet1c wave propaga 10n.

. 1 d. d
. 1 ctrics linear dispersive materials, nonlinear Raman

materials [13, 14], me u mg ie e ' 

. 1· d
. persive materials [7], bi-isotropic media [1, 10], etc.

and Kerr materials, non mear is 
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FDTD is a numerical scheme that utilizes a staggered grid and central differ­
ences to approximate the time and spatial derivative operators present in Maxwell's
equations. This numerical scheme achieves second order accuracy in space and time.

2.2.1 FDTD Algorithm 

We consider the algorithm in 2-D applied to the T Ez mode equations, equation

2.11, as presented in [13] with the only exception being that isotropic constitutive

relations are not substituted into the formulation. First, we truncate the propagation

region to a finite region of interest which is known as the computational domain. 

In the 2-D case this region is a rectangular subset of the cartesian plane. Next 

this domain is discretized both in the x and y directions into cells of size Llx and 

Lly respectively. Similarly, the time variable is also discretized into Llt units. As a 

matter of notation we utilize i,j and n as indexing variables for x,y and t. For a 

computational domain with left corner at the origin, we have for any field component 

variable , Qx , 

Qn __ . = Qx (iLlx,jLly, nllt). 
x,i,J 

For computational domains not placed at the origin, similar notation is obtained by

applying the appropriate shift. We now choose the location of the field components

spatially according to Yee's Algorithm [19]. This yields field components which are

staggered spatially as shown in F ig. 2.1.

Additionally, these field components are staggered in time. That is E and D are

. • d + l while B and Hare computed at time index n. This
computed at time m ex n 

2 

. • Id t · ificant advantages. First, for each of the curl equations
staggered lattice yie s wo sign 

· t d at the same point in space and time. Additionally,
the derivatives are approxima e 
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(i-1,i+l) (i,j+l) Dx;i+ 1/2,i+ 1 (i+l, j+l) 

• 

Hz;i-1/2,j+l/2 Dy;i,j+l/2 H z;i+ 1/2,i+ 112 4 
Dy;i+ 1,i+ 112 

(i-1,j) 
(i,i) f?x;i+ 1/2,j 

(i+l,j) 

• 

H z;i+ 112,j-1/2 

(i-1,J-1) (i,j-1) (i+l,j-1) 

Figure 2.1: Cell location at index (i,j) 

the use of such a grid is divergence free, meaning the scheme automatically satisfies 

Gauss' Laws of Electric (for charge free media where p = 0) and Magnetic Fields. 

Using central difference approximations based on this staggered grid we have 

+ 1 n-l

D
n 2

1 
-D . 2

1 
. 

x;i+ 2 ,j x;i+ 2 ,J

n+l n-½
D .

2 
1 -D . ·  · l 

y; t ,J+2 y, t ,J+2 
H
n

. 1 . 1 - H
n

. l •+ 1 
z;t+2,J+2 z;t -2,J 2 

�x 

(2.15) 

(2.16) 



and 

Bn_+ 11 . 1 - Bn 

z,i+2,J+2 z;i+½,i+½ 

!:lt 

En+-
2
1 n+ l 

-E 2 
x;i+½,i+I x;i+½,i 

!:ly 

En+½ - E
n+½ 

y;i+I,i+½ y;i,i+½ 

!:lx 

10 

(2.17) 

• an . yields the update equations for the Rearranging equations (2.15), (2 16) d (2 17)

flux density fields D and B 

(2.18) 

(2.19) 

and 

(2.20) 

If we consider an isotropic medium and apply the inverse constitutive relations (ie:

E = aD and H = 'YB) 

n+l n+l 

E _ 2 D 2 .· ·+l - a . ·  . 1 .· . 1, 
y,i,J 2 y,i,J+2 y,i,J+2 

(2.21) 

(2.22) 

(2.23) 

These update equations form the foundation of the FDTD method. The overall

algorithm is as follows 



Alg��it�m I 2D FDTD Algorithm for Isotropic materials
Imt1ahze D,E,B and H fields
for each time step do

for each spatial step in the x direction do
for each spatial step in the y direction do

Update D fields using equations (2.18) and (2.19)
Update E fields using equations (2.21) and (2.22)

end for
end for
Increment time step by 1/2
for each spatial step in the x direction do

for each spatial step in the y direction do
Update B field using equation (2.20)
Update H field using equation (2.23)

end for
end for

end for

11 

We note that while the algorithm is presented using "for loops", the spatial loops
are both parallaelizable and vectorizable.

2.2.2 FDTD for Anistropic media

While the FDTD algorithm was originally designed for the numerical simulation

of electromagnetic waves in isotropic medium, the FDTD algorithm has since been

extended to stably simulate anisotropic media [16, 17].

If we consider the relevant constitutive relations for 2-D anisotropic in component

form, we have
(2.24)

(2.25)
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and 

(2.26) 

Creating update equations from these we obtain 

En +½ n+ l. n+l. n+ l. n+l. x·,i+-2
1,·1· = f;,xx}+1 J Dx · +2 1. +f;, ..2 1 .D .· 2 1 ., ,. 2' ;i 2,J xy,i+2,J y,i+2,J (2.27) 

E
n + -21 . n+ l. n+l. n+ I n+ 1 Y,·i·,1· + -

2
1 =f;, _2 1. D .·2 l +f;, }. iD .·2 i•xx,i,J+ 

2 
x,i,J+ 

2 
xy,i,J+2 y,i,J+2 (2.28) 

However, smce the x and y components of the field are not collocated on the Yee 

grid, they must be approximated. The method presented in [16] utilizes a symmetric 

average scheme which results 111 stable simulation of anisotropic materials. This

scheme is depicted in Fig. 2.2. 

Dy;i,i•1/2 � Dy;i+l,j+l/2 

Dy;i,i-1/2 

�,yDv;,,1/2;1 

-----+ 

• Dy;i+l,j-1/2 

D l' D · 1 D •. ,·,•1/2,1·•.1 x;i-1/2,j+l '""fX x:,;Jt • 

I 

I 

'

' ;,. o.,,;j• v2 

D,;i-1/2,i �
yx

Dx;i:i Dx;i•l/2,j 

Stable averaging scheme for anisotropic media
Figure 2.2: 
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First, the known D values from two adjacent cells are averaged towards corners

of the cell intersection as shown in blue. Next �D is computed at these points and 

averaged to arrive at the desired grid location. This method provides some insight 

into the extendability of the Yee algorithm as well as provides a starting point for

extensions to 2-D anisotropic magneto-electric materials as will be discussed as a

possible future work in Chapter 5. 



Chapter 3 

TRANSFORMATION OPTICS AND
MAGNETO-ELECTRIC MEDIA

With recent research in th f · e area o meta-materials, man-made materials con-
structed from sub-wavelength building block d · · s, new an exc1tmg ways to alter: elec-
tromagnetic waves have been uncovered. Transformation Optics is a technique for
designing complicated optical devices that can make use of the versatility of meta­

materials [15]. Using this technique, cylindrical spatial cloaks [9], optical waveguides

[18] and space-time cloaks (8] have been designed.

The design paradigm behind Transformation Optics is as follows. First, the

behavior of an electromagnetic device is considered. This behavior is viewed as a 

transformation of free-space with regard to how it alters electromagnetic field lines or 

wave trajectories. This transformation is determined mathematically usually through 

geometric means and then applied to Maxwell's equations. From this application and 

the form invariance of Maxwell's equations, the material parameters necessary to

construct a device with the behavior modeled by the transformation are revealed.

We briefly review the theory behind 'Transformation optics.

3.1 Transformations of Maxwell's Equations

. • h fF t of applying a transformation to Maxwell's
We start by cons1dermg t e e ec 

. ·t Maxwell's equations in the covariant form. To
Equations. For convemence we wn e 

t
. e derivative operator

facilitate this we define the space- im 

14 
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X Y OZ 
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(3.1) 
as well as the following Maxwell b. I-vectors or electromagnetic tensors

0 Dx Dy Dz 

Af = 
-Dx 0 Hz -H y 
-D -Hz 0 Hx 

(3.2) 
y 

-Dz Hy -Hx 0 

and 

0 Bx By Bz 

-Bx 0 -Ez Ey 
N= (3.3) 

-B Ez 0 -Exy 

-Bz -Ey Ex 0

Using these matrices and the space-time derivative operator we can express 

Maxwell's equation in the covariant form. Utilizing 'v' and M yields the covariant

formulation of Gauss's Law of Electric fields and Ampere-Maxwell's Law,

VM=O, (3.4) 

h·1 · n d N · Id the c0rmulation for Gauss's Law of Magnetic fields and
w 1 e usmg v an y1e s . 1, 

Faraday's Law, 

'v'N=O. (3.5) 
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The fundamental idea of Transformation optics is grounded in the fact that
these equations are invariant under transformations. That is when a transformation
T: (t,x,y, z) ➔ (r,f,,77,() given by

T = r(t, x, y, z), (3.6) 

f, = f,(t, x,y,z), (3.7) 

7J = 77(t, x, y, z ), (3.8) 

( = ((t, x, y, z) (3.9) 

with Jacobian A, 

tT t1; t
1/ 

t( 

XT Xt; X
71 

X( 
(3.10) A= 

YT Yt; Y11 Y<: 

ZT Zt; Z
71 

Z( 

. t has the same form. Hence in is applied to Maxwell's Equations, the resultmg sys em 

M well's equation is given bythe new coordinate system, ax 

V'M' = o, 

v'fe' = o 

where 

(3.11) 

(3.12) 

(3.13) 



A1' =

and 

0 

0 

H
<;

0 

0 

-H

-B<; -E
11 EE. o 

with the relationship between the coordinate systems being given by 

3.1.1 Transformed material parameters for spatial transformations

If we consider a purely spatial transformation with Jacobian

17 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

then from [15], then a relationship between the material parameters and field quan­

tities in both coordinate systems can be established by

(3.19) 
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µ' = IAIA-l µA-T, 
(3.20) 

(3.21) 

and 

(3.22) 

Equations (3.19) and (3.20) form the basis of Transformation Optics. When a elec­

tromagnetic device's behavior is viewed as a transformation, these equations allow us 

to determine the exact material parameters needed to replicate that behavior. 

3.1.2 Material parameters for a 1D space-time transformation (1+1D)

If we consider the 1-D case, further work, [8], shows that for a l+lD transfor­

mation (t,x,y,z)--+ (,,f,,ry,() 

with Jacobian 

T = ,(t,x), 

f,=f,(t,x), 

TJ = y, 

( - ?' -
~ 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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the medium corresponding to th e transformation is magneto-electric. The fundamen-
tal relationship between the transfor . 

. mat1on and material parameters is given by the
matrix equations 

(3.28) 

where aij are the coefficients of matrix A which is determined by the Jacobian A of' ' 

the transformation T. In particular, we have

A= A- 1 ( O E) A
. 

l/µ 0
(3.29) 

This particular medium is of interest as it directly applies to the space-time 

cloak. Unfortunately, implementing this medium using FDTD is not straightforward. 

3.2 The conventional FDTD method for time dependent magneto-electric 

medium 

Consider the following l+l D Maxwell's equations for TEz mode

8Dz aHy (3.30) -- -

ax 
' 

at 

aBy
8Ez (3.31) 

-

ax 
' 

at 



where the constitutive equations are given by 

where a, f:), and 'Y are space and time dependent. 
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(3.32) 

(3.33) 

We note that the primary issue with simulating magneto-electric media arises 

from the more complicated constitutive relations given in equations (3.32) and (3.33). 

Using the conventional FDTD method, the discretized Maxwell's equations (the D 

first scheme) are 

Dn+½ _ Dn-½ fl.t (Hn Hn ) 
i - i + fl.x i+½ - i-½ , (3.34) 

(3.35) 

and the constitutive relations ( assuming that the coupled constitutive relations re­

spond locally in space and time) become 

(3.36) 

(3.37) 

Parameters a, f:), and 'Y are computed analytically from equation (3.28) and are thus 

available at any point ( t, x) in the computational domain. However, the quantities 

B�+½ in equation (3.36) and D�:f in equation (3.37) are not computed in the dis-

cretized Maxwell's equations, equation (3.34) and (3.35). 
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ee approach cannot b d. 
ulation of magneto-ele t . . 

e irectly used in the sim-
. .c nc media 0 . ne method for resol . h . 

time extrapolation and 8 • . 

vmg t ese issues is to use 
pace mterpolation r-r, 

n+l

. 

• 1.0 compute B. 2 • • 

have with time extrapolation 
i m equation (3.36), we 

Bn+l 3B1! _ Bn-1 
i 

2 :::::; i i 

2 
(3.38) 

Applying spatial interpolation yields 

�(B;+.!. + B": 1) - l(Bn-1 + Bn-1)
2 i- - 2 ·+ 1 . 1 

2 l 2 i 2 

2 
(3.39) 

3Bn 1 + 3Bn 1 - Bn-1 - Bn-1 
1+-

2 i-- ·+.!. . 1 
2 • 2 i 2 

4 
(3.40) 

which is valid after the first timestep. For the initial timestep, we use B1! as an
1 

i 

approximation for s;+ 2
. Similarly, we compute D�:1 in equation (3.37) as follows

2 

(3.41) 

Numerical simulation of the space-time cloak shows that the conventional FDTD

method presented in this section is unstable. This is primarily due to the use of time

extrapolation. To avoid such extrapolation, we propose an overlapping Yee algorithm

for time dependent magneto-electric media as described in the next section.
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3.3 The overlapping Yee Algorithm for time dependent magneto-electricmedia 

Rather than a single D first scheme or B first scheme we use a combination of
both. While computationally more expensive, this produces D and B values at every
half time step and spatial step within our computational domain. As a result, we are
able to perform the required magneto-electric Maxwell constitutive relation updates
without extrapolation. 

tu I 
Ez = aDz + /JBy 

tn + 2 i---------'0-,-----
D2 By 

,"11r.-. 

By By 
o-x' o---

tix 
tn I tix x1 + 2 X[-2 

(a) 

t 

tic / Ez = aD?l+p s <2)

Cn + - 1· _____ __; y 

2 
O>----�

D(lJ 8(2) 
z y 

B(l) D(Z) 8(1) D(Z) 
y z y z 

tn I 
o----------'O� xtix uX 

X[-2 
X[+2 

(b) 

Figure 3.1: Computation of E2 using (a) the time extrapolation under a conven­

tional FDTD method and (b) the overlapping Yee algorithm without

extrapolation. 

Figure 3.1 illustrates the fundamental differences between utilizing a conventional

FDTD approach and the overlapping grid approach. Figure 3.l(a) depicts that, due

to the coupled constitutive relations, at any given step, Ez has a dependence on

the quantity By· The dotted arrows leading to this value indicate that By must be

extrapolated in time and interpolated in space from values known on the conventional

FDTD grid. 
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On the other hand, Fig. 3.1 (b) illustrates that by utilizing a dual overlapping
grid approach, the dependence on time extrapolation and spatial interpolation can be
eliminated. A new superscript notation is used to indicate the usage of two overlap­
ping grids and to specify which grid each value of By and Ez comes from. All values
needed to compute Ez at a particular instance in time exists on one of the two grids.

In presenting an algorithm for the adjusted scheme we utilize the convention
that n represents the time coordinate of the grid point and i represents the spatial
coordinate. Indices of n ± ½ and i ± ½ are use to represent locations that are a half
time step or spatial step from the gridpoint. With this established, we present an

algorithm for an overlapping Yee FDTD method.

The algorithm in 1 D case can be summarized by the following steps:

n+ 1 

d v .d l. Update D�+½ on the first Yee grid and B
i 

2 on the secon I ee gri : 

n+l n-l l:::..t 
[ ] D- 2 = D- 2 + -- H"!+ 1 - sn 

I , 
l l l:::..X l 2 t- 2 

n+ l n-l l:::..t 
[ 

n 
] B

i 
z = B

i 
z + l:::..x Ei+½ - E�-½ .

n+l n+l
2. Update E

i

2 and Hi

2
: 

I 1 1 1 1 

E
n+2 - n+

2 nn+2 {3n+ 2sn+2

i - ai i + i i , 

H7:+½
l 

n+ 
1 + 1 I I 

= /3-
2 n": 2 + 1:+2 s1:+2

1 l "'f z l • 



3 Update B":+/ on the first Yee grid and D":+/ on the second Yee grid:. 1+2 1+2 

sn+/ = B": 
I 

+ .6,.t [E":+½ - E":+½]1+2 1+2 .6,.x i+l 1 , 

nn+I = nn + .6,.t [s":+½ - Hn+½]1+ l 1+ l A 1+1 1 · 2 2 i..l.X 

4. Update En+ l and sn+I:
1+½ i+½ 

En+1 = o:n+I nn+I + 13n+1 Bn+l 
i+ l i+ l i+ l i+ l i+l,

2 2 2 2 2 

Hn+1 = 13n+] nn+] + --vn+l Bn+1 _ 
·+ I ·+ I ·+ I I·+ I ·+ I 1 2 1 2 1

2 
1

2
1

2 
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We note that the extension to 2-D and 3-D should be feasible by utilizing a time

collocated grid (where B and E are computed at the same instance in time, but not

necessarily in space). Doing so eliminates time extrapolation in 2-D and 3-D but still

uses interpolation in space. 



Chapter 4 

SIMULATION OF THE SPACETIME CLOAK

The simulation of magneto-electric media has direct applications to the spacetime
cloak presented in [8] • In this chapter we create a similar diamond shaped space-time
cloak using the transformation depicted in Fig. 4.1 and simulate using both the time
extrapolation method and overlapping grid method.

4.1 Transformation Optics and space-time cloak 

We consider a spacetime cloak design similar to the spacetime cloaks proposed 

in [4, 8]. Figure 4.1 shows a diamond shaped spacetime cloak in the (t,x) domain 

and the transformed ( T, �) free space. The original and the transformed regions are 

the same parallelograms centered at (to, xo) so we have �o = Xo, To = to, Tp = tp, and 

Tq = tq. In the parallelogram we apply the following coordinate transformation to

create such a spacetime cloak: 

T = t,

� -
o-(x - xs) + xs,

o- - 8(t - ts)/(to - ts)

d on the region where (t, x) lies in:
where the values of xs and ts depen 

if ( t' x) lies in region I or II,

if ( t, x) lies in region III or IV'

25 

( 4.1) 

(4.2) 

(4.3) 
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t 
T 

tq 
Tq 

Xo
fo 

( a) (b) 

Figure 4.1: (a) A spacetime cloak in the (t x) d . 
(b) 

f . 
,, omam. Free f h 

trans ormatwn to the (T �) d . 
space a ter t e 

and 

Xs = {

, ..,, on1a1n. 

Xo + (t - to)c + CJ, if (t, x) lies in region I or IV, 

Xo + (t - to)c - CJ, if (t, x) lies in region II or III. 
( 4.4) 

4.2 Simulation of the space-time cloak 

In simulating the above cloak, we utilize a 10 µm by 15 f s long computational

domain with a plane wave ( with ,,\ = 600 nm) traveling in the positive x direction.

Our spacetime cloak is 1200 nm wide and lasts 6 f s. With regards to Fig. 4.1 (a) we

have x0 = 1.5 µm, to = 9 fs, tq = 6 fs, tp = 12 f s, CJ = 600 nm and b = 180 nm.

The computational domain is terminated by perfectly matched layer (PML) absorbing

boundary conditions [13]. Due to the fast and slow phase velocities in the spacetime

cloak [8], t,.t is chosen by t,.t < t,.x/vmax where Vmax is the largest wave speed
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computed in the cloaking region. W c h e per1orm t e simulation 3 times with the numberof spatial cells, N equal to 1600 2000 d 2400 d h 

' , , an an t e same number of time steps.The numerical simulation results are shown in Fig. 4.2. The figures shown arecontour plots of the intensity of the electric field generated by the interaction betweenthe incident source and the spacetime cloak. We compare the conventional FDTD
method with time extrapolation and the proposed overlapping Yee FDTD method
for various spatial resolutions. The result shows the bending of the electric field
( and consequently the electromagnetic wave) in space and time around the cloaked
event. The shown simulation results verify that an extrapolation approach is unstable
( near the closing process of the cloaked event) and the proposed overlapping FDTD
approach provides stable results. 

We now examine the behavior of the electric field as the wave propagates through

the diamond shaped space-time region under the same simulation parameters. As the

wave enters the cloak it begins to split as the front portion of the wave speeds up

and the back portion of the wave slows down. This effect is made possible due to the 

h h 1 k' egion As this separation space-time dependence of the media wit in t e c oa mg r . 

. . . . h I t 
. field producing a gap in the electric field. Theoccurs 1t 1s mirrored m t e e ec nc ' 

. . p· 4 3(a) near x = 1000 nm. As theearly development of this gap is shown m ig. · 
. . h 1 ak widens in the x direction allowmg forwave progresses through the media, t e c O 

The gap in the electric field, as . as time progresses. the size of this gap to mcrease 
. • As the. at the center of the cloakmg region.

h . 
p· 4 3(b) is at a maximums own m 1g. · , 

( h • k · the x direction).. int the cloak begins to close s rm m 
wave propagates past this po ' 

b • s to slow down while . 1 k the front of the wave egm 
Due to the closmg of the c oa ' 

t remerge just as it exits 
11 for the wave o 

This action a owsthe back speeds up. 
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Figure 4.2: Contour plots of the electric field intensity for spacetime cloak simu­
lations. Left column: results using a conventional time extrapolation 
based FDTD method with grid sizes a) N = 1600, (c) N = 2000, and 
(e) N = 2400, respectively. Right column: the corresponding results
using the overlapping Yee FDTD method.
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Figure 4.3: Evolution of the Electric field as the wave propagates through the space­
time cloak. 

the cloak. The field behavior moments before the wave exits the cloak is shown in 

Fig. 4.3(c). At this point a small gap near x = 2200 nm still exists. Once the wave 

has propagated through the cloak region, it is fully rejoined and the propagation 

behavior and resulting field behavior returns to that of propagation in an isotropic 

media, as shown in Fig. 4.3(d). 

4.3 Stability Analysis 

To conduct a stability analysis, we compare the distribution of eigenvalues of the 

conventional FDTD method to that of our overlapping grid approach with respect 
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Figure 4.4: Dist�·ibution of the eigenvalues in the complex plane for (a) the over­lappmg Yee FDTD method and (b) the conventional FDTD method.

to the unit circle. For b th t t ·1· o es s we ut1 1ze similar simulation parameters as in

the previous section, but with a smaller mesh size of N = 200. We compute the

eigenvalues of the numerical update equations at a time instant when t E (t
q
, t
p
) and

plot them in the complex plane. The results when t = 8.34 f s are shown in Fig. 4.4. 

As indicated in the Fig. 4.4( a) all the eigenvalues of the overlapping approach lie 

within or on the unit circle with the ones lying on unit circle being simple eigenvalues. 

On the other hand, Fig. 4.4(b) shows that some of eigenvalues (near the upper and 

lower right corners) of the conventional FDTD approach lie outside the unit circle. In

particular the modulus of the largest eigenvalue is 1 for the overlapping method and

1.046 for the conventional FDTD method. This indicates that the overlapping Yee

FDTD method is stable while the conventional FDTD approach (with extrapolation)

would experience instability. 
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In summary, we have proposed a stable FDTD method for the simulation of

space and time dependent magneto-electric medium based on the use of two sets of 

overlapping Yee grids that are offset in time by a half time step. Additionally, we have 

shown the direct application of this method to the simulation of the spacetime cloak.

The proposed method is useful in exploration of other new physical possibilities offered

by metamaterials and transformation optics. These results have been published in

(2]. 



Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this work, we presented an overview of Electromagnetics, FDTD and trans­

formation optics. New work was done in area of magnetoelectric materials. In par­

ticular, we presented a stable FDTD based algorithm for the simulation of these 

1-D Magneto-electric materials. As a numerical example, the 1-D space-time cloak

was derived using Transformation Optics and simulated using the proposed FDTD 

algorithm. 

5.2 Future Work 

In the future we consider possible extensions to this algorithm. The most im­

mediate is the extension to 2-D + 1. In this case we introduce the possibility of the

material not only being magnetoelectric, but also anisotropic. This is a medium that

has constitutive relations given by 

D = (
Exx Exy

) E + f]H

Eyx Eyy

(5.1) 

and 
B = µH +f3E. 

(5.2) 
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As described in Chapter 2 and Chapter 3, the anisotropic and magnetoelectric

properties of this material introduces the issue of requiring field values not included 

on the FDTD grid. One approach we wish to try is by combining the overlapping 

grid method with the method for anistropic materials proposed in [16]. 
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