To: Dr. Saundra F. DeLauder, Dean, School of Graduate Studies and Research

The members of the Committee approved the Thesis of Kenneth G. Shim

Candidate’s Name

as presented on 11/12/15

Date

We recommend that it be accepted in partial fulfillment of the requirements for the degree

Master of Science in  Computer Science

Degree Name Major/Program Name

%,/ / Department C/S Date “i/ i%/{“OLS”

Adyfsor

}7 Department C/ ~§~ Date ”//9?/5?@/{ —

‘Z (: (/1 LM L) ;‘7 l/'\,k'lf 'Departme‘nt (' /‘J' Date ////2/')(/‘/' j\

Member

Léé?x Affiliation ﬁfé/f\l/ﬁ Date ////QI/Q o5

External Member

Approved

Department LS Date / 7/ 2 / (>

Dcpanment Chairperson or Designee

% Y College oS T Date ]J\\) A4S

/cddemxc ean or Designee

, /) / / ,,
{Z\/)“[ 7 ,t,x;./}"""f/\/i///’ A ’% / &( < %/C/(J’L//"Ci/l Date / Z///’ /'/ // E)
/ — i 4 4 - 1 [

>

/
/ Dean, School of Graduate Studies and Research




APPROACHING THE SEQUENCE ASSEMBLY PROBLEM WITH
HYBRIDIZATION OF ANT COLONY OPTIMIZATION AND MULTI-

OBJECTIVE EVOLUTIONARY ALGORITHMS

By

KENNETH SHIM

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in the
Computer Science Graduate Program

of Delaware State University

DOVER, DELAWARE
December 2015



© 2015
KENNETH SHIM
ALL RIGHTS RESERVED



ACKNOWLEDGEMENTS

I would like to express my gratitude to all professors in the Department of
Computer and Information Sciences at Delaware State University. It has been a great
privilege to learn and grow under the supervision of highly respected computer scientists.
In addition to all the knowledge and skills that I have accumulated, they have also
provided an environment to help me become a better thinker to make better decisions in
my life. I would especially like to thank my advisor, Dr. Tomasz Smolinski, for
providing me the opportunities to work in the computational neuroscience and
bioinformatics research field. Throughout my undergraduate and graduate studies, he has
shown an exceptional willingness and patience to support my academic progress and also

kindness to address my personal concerns.



ABSTRACT

Sequence assembly is an essential procedure taken in deciphering the underlying
genetic information of a biological sample. A long strand of nucleotides embedded in a
typical genetic sample necessitates random fragmentation of the original genetic
information for sequencing. Hence, the challenge of finding the true genetic sequence
from a set of randomly scattered sequence fragments still prevails despite the
advancement of the modern high-throughput, paired-end Next Generation Sequencing
(NGS) technologies. The De Bruijn Graph (DBG) sequence assembly has been the
method of choice for assembly of NGS short sequences, mainly for its computational
advantage over the Overlap Layout Consensus (OLC) sequence assembly. Unlike the
DBG-based sequence assembly, the OLC sequence assembly method allows sequence
assembly with flexible sequence alignments without involving any breaking of sequenced
fragments of a genetic information further into smaller sequence fragments; thus, a higher
genetic information integrity is retained during its sequence assembly. In addition, the
OLC-based sequence assembly has demonstrated outperformance in assembly of long
sequence fragments and has also shown higher tolerance to sequence error and low

sequencing depth. Thus, OLC assembly is expected to be more practical with the

advancement of sequencing technology.



Considering the benefits of OLC assembly, a new sequence assembly method was
designed using a hybridization of Ant Colony Optimization (ACO) and Multi-Objective
Evolutionary Algorithm (MOEA). The design of the proposed method mainly focused
on carrying out its heuristic sequence assembly while ensuring high quality and accuracy
of the contigs being assembled. The ACO component provides local improvement to a
sequence assembly with construction of contigs based on quasi-optimal overlapping
alignments between reads. Meanwhile, the MOEA component takes the role of further
assembling the ACO-generated contigs based on multiobjective criteria to yield final
quasi-optimal Pareto-front sets of assembled sequences; the incorporated multiobjective

criteria are maximization of contig length and contig overlap, and minimization of contig
gaps.

Based on various experiments, the most contributing and novel property of the
proposed method was found to be having the advantage of producing diverse multiple
sets of assembled sequences. Especially, a high leverage in the quality of the sequence
assembly could be accomplished through the construction of an elite set of assembled
sequence built by selection of high quality contiguous sequences found in each set of
assembled sequences. The quality, accuracy, and usefulness of the elite set of assembled
sequences were found to be competitive to the most widely used DBG-based assemblers,
Velvet and Trinity; furthermore, a statistical analysis also suggests a significant
improvement relative to a modern OLC-based assembler. A substantial enhancement in

the current version of the proposed method could be attained through overcoming the



main processing bottleneck found in the construction of the adjacency matrix of maximal

sequence-to-sequence alignments.



TABLE OF CONTENTS

THtle oo e i
AcCKnOwledgemEents ...............ccoeiiiiiiiiiiiiiii e ii
ADSEIACE ...ttt et e e e et e e eer e e e e e e e aaes iii
Table of COMEENLS ..........cooiniiiiiiiiiiiiiii i et ea e ae e vi
LiSt Of TADIES ......ooneeiiiii ettt sttt e eerea s e e a e e aans ix
List Of FAGUIES .......oooiiniiiiiit i Xi
List Of PSEUAOCOMES .......oovvinniiinieiiiiteeeiiitititiiiitetateeaeaneneeneaneeeeessaees Xviii
Chapter 1: General Introduction ............ooeeiiiiiiiiiiiiiein 1
1.1 A Brief Overview of Bioinformatics .........ccvvviiiiineiiiiiiiine. 1

1.2 The Central Dogma of Molecular Biology ..........c.coiuiiiiiiiiiii 2

1.3 Sequencing TeChNOIOZY ........cuuveveunniiiiiiiiiiiiiiii 8
1.3.1 Sanger SEqUENCING ........ovuurrruuerereriuniiiiiierirti e, 10

1.3.2  Shotgun SEqUENCING ......evunvererriiriiiiiiirii i 11

1.3.3 Next Generation SEQUENCING ........ceeurrumieenenreiiiiiiiiimniieeeeann 12

vi



Chapter 2: Sequence Assembly Problem ..........ccuevieiiiiiineineeee e, 15

2.1 Overlap Layout Consensus ASSEmbIY ....................ceoveurireeeeueeerneneennn 16
2.2 De Bruijn Graph ASSembly ................ccccoeviiiiuieeieiiieeesiineeeenneeeeeeeeeens 23
Chapter 3: An Overview of Multi-Objective Optimization ................ceuvveeeereennn.. 31
3.1 Ant Colony Optimization ................eeuuuiiiuneieneeneeneeneeeeaeneeeeeneeenenns 31
3.2 Evolutionary AIZOTIthim .......ccccueuiuniniiiiiiiniiniieiie e e e e e e, 37
321 NSGA-L ..t e e e e e e 44
Chapter 4: Proposed Methodology .......cceiuiuiiiiiiiiiniieiieiiiirineeireeeeenrnreeaaeanes 46
4.1 ACO — Contigs GENEIator ......o.ueiueeriireteaeanrieeeneanerneenenriierneeeseneeeneanses 47

4.2 Permutations Of CONtigs .......c.eveueinieniniiiiiiiiieiieiiieiiiiinenieiiinans 52
4.3 MOEA — Contigs ASSEmDbIEr .........ccceoiiiniiiiiiiiiiiiiiiiiiiicicieeeaee, 53
Chapter 5: EXPEriments .........ocvviiiuinininiiiiiiiiiiieitiieeeeeeeeeeee i 59
5.1 Experiment Setups and Settings ............coeuviiiiiiiieiiiiiiiii, 59

5.2 Evaluation of System Reliability ..........cocoeiiiiiiiiiiii, 61

5.3 Evaluation of System RObUSINESS ..........cviiiiiiiiiiiiiiiiiiiiiie 66

5.4 Assessing the Performance of ACOand MOEA ................coeiiiiinnn. 68

5.5 Evaluation of Pareto Front Individual Solutions ...............ccocoiiiiieeen. 72
5.6 Evaluation of output behaviors under varying input settings ....................... 76
5.6.1 Impact of varying the genome SIZ vnveeneeeneeteneireneianenaeaaaaaenaeaeane 77

vii



5.6.2 Impact of varying sequencing coverage level ................ccuvvevnn...... 79

5.6.3 Impact of varying sequence read length ...................coceeeeennn...., 83
5.6.4 Impact of varying read €rror ..............ccvvvvvuuneeieeeeiireeeiieenennnn.. 86
5.7 Evaluating the quality of the assembled contigs .............ccceeeeeeerrivunnnnnnnnn. 89

5.8 Comparing the quality performance to DBG sequence assembly methods ........ 91

5.9 Assessing the accuracy of assembled contigs with NCBI-BLAST ................. 98

Chapter 6: DiSCUSSION .....uviiiieiieiieit ettt it eenetneeneeeenteeeeneaneanenn 103
Chapter 7: Conclusion and Future Works ..........ccocoeiiiiiiiiiiiiiiiiiiniiniiiiinnn. 107
REEIEICE LIST ... ettt e eeetetttaareeeeeeeesssssseseessssssssssssssssssssssssssssnssssanes 109
(011 10w (51110711 T 1 ©: NN 117

viii



Chapter S.

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Table 5-5.

Table 5-6.

Table 5-7.

Table 5-8.

Table 5-9.

LIST OF TABLES

The default setting for single-read sequencing simulation (HiSeq 2500)

....................................................................................... 60
The default control parameter setting for the ACO component ........... 60
The default control parameter setting for the MOEA component ......... 61
The count of initial input reads and contigs from the ACO and MOEA

PIOCESSINE . evueeneeneniininininiinitnittit e e tae et e etaetetieeaensaeteant 69

The summary of the distribution of ACO-generated contig lengths ...... 70
The summary of the distribution of MOEA-generated contig lengths ... 71

The count of unassembled input sequence reads after ACO and MOEA

PTOCESSITE .. eevvuennrnnrnrraasesuerereseetinsaneettnatiissettaeteestanans 72

The summary of the distribution of avg. contig length of each Pareto-front

individual SOIILON ... vvvvnnenenineiee et 73

The summary of the distribution of contig gaps of each Pareto-front

individual SOIULION ... vueureneneeniiiniiniit et eeeneees 74



Table 5-10.

Table 5-11.

Table 5-12.

Table 5-13.

Table 5-14.

Table 5-15.

Table 5-16.

Table 5-17.

The summary of the distribution of avg. overlap score of each Pareto-front

individual solution

The reassessment of the output of the sequence assembly with read

coverage level of 15X .........iiiiiiiiiiiie e, 82

The summary of NG50 measurements from each Pareto-front individual

solution

The quality measurements for each set of Velvet-assembled contigs
resulting from the assembly of the five sets of the common bean input

SEQUENCE TEAAS ...euvuiiinninininiiriien e e et ee e eneaertenie e eanenenes 92

The quality measurements for each set of Trinity-assembled contigs
resulting from the assembly of the five sets of the common bean input

SEQUENCE TEAAS ...euvenrentrnneneneiineteneneaneasaneeseneaneneseneesensensnnens 93

The quality measurements for each set of contigs assembled by the

proposed method using the five sets of the common bean input sequence

The quality measurements of a set of contigs selected from the set of

Pareto-front contig set based on minimum contig length of 200 nt ....... 94

The t-test for measuring the statistical significance of the ratio of

NGSOVelvet/ NG5 Oproposed ........................................................ 96



Table 5-18.

Table 5-19.

Table 5-20.

Table 5-21.

Table 5-22.

Table 5-23.

Table 5-24.

The t-test for measuring the statistical significance of the ratio of

NGSOTl‘inity/ NGS Oproposed ........................................................ 96

The t-test for measuring the statistical significance of the ratio of

NGSOVeret/ improved-NGSOproposed ........................................... 96
The t-test for measuring the statistical significance of the ratio of
NGSOTl’inity/ improved‘NGSOProposed ........................................... 96
The two-sample t-test for testing the significance of improved-NG50
relative to the averaged NG50 ...........cocenviniinniiniiiniiieeeeneaan, 97

The estimated measurements of the accuracy and usefulness of the contig
sets assembled by Velvet, Trinity, and proposed method using sets of
input sequence reads from sampled sequence of Influenza Virus Type A

2022 1 0 14 T 99

The estimated measurements of the accuracy and usefulness of the contig
sets assembled by Velvet, Trinity, and proposed method using sets of

input sequence reads from sampled sequence of Escherichia Coli genome

The estimated measurements of the accuracy and usefulness of the contig
sets assembled by Velvet, Trinity, and proposed method using sets of
input sequence reads from sampled sequence of Phaseolus Vulgaris

oL 110) 111 P PP 100

xi



Chapter 1.

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Chapter 2.
Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.

Figure 2-9.

LIST OF FIGURES

The central dogma of molecular biology ...............uvvevuverneenniennnnn. 3
The directionality of a nucleic acid ...........ccocvvviviiiiiiinininieeeennne, 4
The codonchart ..........coovuiiiiiiiiiiii 6
The pair-end sequencing 0Of NGS .........ccccoiiiiiiiiiiiiiiiiiiiiieenn, 14
The computation of overlap score between two reads ...................... 16

The formation of a consensus sequence (contig) from a set of aligned
reads with maximum overlap SCOre ........cccoveiieiieiiiininiiiiennennenn.. 17

An example of alternative read alignments cause by a repeating base

The composition of a scaffold .............cccoveviiiiiiiiiiiiinni. 22
A construction of a superstring for binary 3-mers ............co.eeieieenin. 24
Decomposition of a k-mer into (k-1)-mers ............c.ooeiiiniiniiinn. 25

An example of constructing a De Bruijn graph with decomposed k-mers

.
.....................................................................................
.



Figure 2-10.

Figure 2-11.

Figure 2-22.

Figure 2-23.

Chapter 3.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 3-7.

Chapter 4.

Figure 4-1.

Figure 4-2.

An example of constructed De Bruijn graph for binary 3-mers ........... 26

An example of constructing a De Bruijn graph with 3-mer sequence reads

....................................................................................... 27
An example of constructed De Bruijn graph of 3-mer sequence reads

....................................................................................... 28
An example of read breaking .........c.ccooeuviiiiiiiiiiiniiiiie 29

The flowchart of the Evolutionary Algorithm (EA) ........cccceeenneeeen. 38
Examples of permutation encoding for TSP involving ten cities .......... 39
An example of order-1-crossover for chromosome with permutation
L (LT 1117 U e 40
An example of edge recombination crossover for chromosome with
permutation encoding ...........ccceveiniiiiiiiiiiiiiii 41

An illustration of swap Mutation ............cccveeiniiiiniiiiiiiiinineiinn.. 42

A schematic diagram of the hybridization of ACO and MOEA for solving

the sequence assembly problem ...........ccooeeiiiiiiiiiiiiiiiin. 46

An example of constructing an adjacency matrix with read overlap scores

xiii



Figure 4-3.

Figure 4-4.

Figure 4-5.

Chapter S.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 5-5.

Figure 5-6.

Figure 5-7.

Figure 5-8.

Reassigning IDs to new contigs and generating an initial population for

An illustration of edge recombination crossover operator for the proposed
assembly Method...........ovieiniiiiiiiiii e e e e 57
An illustration of exchange of genetic elements in two loci during a swap

mutation in the proposed assembly method ............cccooiiiiiiniiniiin 58

The scatter plot of the best avg. contig overlap scores throughout iterations
during ACO ProCesSINg .........cvruiirniuierererirrneiieirenereineeenens 62

The scatter plot of the top avg. contig overlap scores throughout iterations

The scatter plot of averaged individual avg. contig overlap score fitness
measurements throughout generations .............coceeveiiiiiiiiiiiinann 64
The scatter plot of averaged individual contig gap fitness measurements
throughout generations .............ceeverieeeieiiiiiiiiiiiin e 65

The scatter plot of averaged individual avg. contig length fitness
measurements throughout generations ............ocoeeeiruiimniieiiieeen. 65

The boxplots of avg. contig overlap score fitness measurements of all
individuals from five trials ........coooviuiiiiiiiiiii 67
The boxplots of contig gap fitness measurements of all individuals from

FIVE TTHALS +vvnevnrernrnaeneeeenerneeteernaereea e et s aa e s ees e st 67

The boxplots of avg. contig length fitness measurements of all individuals

FrOM FIVE LHIALS «.eveneeneernnerrrierr e ettt 68

Xiv



Figure 5-9.
Figure 5-10.

Figure 5-11.

Figure 5-12.

Figure 5-13.

Figure 5-14.

Figure 5-15.

Figure 5-16.

Figure 5-17.

Figure 5-18.

Figure 5-19.

Figure 5-20.

The histogram of ACO-generated contig lengths
The histogram of MOEA-generated contig lengths
The scatter plot and box plot of avg. contig length fitness measurements of
all Pareto-front individual SOIUtioNS ...........cceveeveeeerieeeeeeeeeeennnnnn, 73
The scatter plot and box plot of contig gap fitness measurements of all
Pareto-front individual solutions
The scatter plot and box plot of avg. overlap score fitness measurements
of all Pareto-front individual solutions ............cccecviiiieiininenininn, 75
The bar chart illustrating the impact of genome size variation on the avg.
contig length fitness measurement .............c.ccoeviiiiiiiiiiiiiiinneneen. 77
The bar chart illustrating the impact of genome size variation on the avg.
contig gap fitness measurement .............cocvevuininininiiiiiininiiien 78
The bar chart illustrating the impact of genome size variation on the avg.
contig overlap score fitness measurement .............c.ooeiiiineniiinn. 78
The bar chart illustrating the impact of sequencing coverage variation on
the avg. contig length fitness measurement ...............cooviiineinnnnnn. 80
The bar chart illustrating the impact of sequencing coverage variation on
the avg. contig gap fitness measurement ..............coooeviiiimnnnennens 81
The bar chart illustrating the impact of sequence coverage variation on the
avg. contig overlap score fitness measurement .................occuneeeen 81
The bar chart illustrating the impact of sequence read length variation on

the avg. contig length fitness MeASUrEMENt ..........cooovernierinnnnnen 84

XV



Figure 5-21.

Figure 5-22.

Figure 5-23.

Figure 5-24.

Figure 5-25.

Figure 5-26.

Figure 5-27.

Figure 5-28.

Figure 5-29.

The bar chart illustrating the impact of sequence read length variation on
the avg. contig gap fitness measurement ..............ccveeeeveeeeemnnn.. 84
The bar chart illustrating the impact of sequence read length variation on
the avg. contig overlap score fitness measurement ........................... 85
The bar chart illustrating the impact of read error amount variation on the
average contig length fitness measurement
The bar chart illustrating the impact of read error amount variation on the
average contig gap fitness measurement .............cccoceieieniieiennnnne 87
The bar chart illustrating the impact of read error amount variation on the
average contig overlap score fitness measurement ....................o.eel 88
The NG50 measurements of ACO-generated contigs and MOEA-
generated CONtIZS ......ooevuinininiuiiiiniiiiiieiieieeeree e 90
The NG50 measurement of a selectively created ‘elite’ individual solution;
(min. contig length: 200 nt) ......coooviniiiiiiiiii 91
The species distribution chart generated by BLAST2GO using a set of
contigs assembled by the proposed method based on P. Vulgaris input
SEQUENCE TEAAS ... oevneireiiiiieneeeee ittt 101
The species distribution chart generated by BLAST2GO using a set of

contigs assembled by the proposed method based on E.coli input sequence



Figure 5-30.  The species distribution chart generated by BLAST2GO using a set of

contigs assembled by the proposed method based on Influenza virus type-

A INPUt SEQUENCE TEAAS .....novveeeeeeee e, 102



Chapter 4.

Pseudocode 1.

Pseudocode 2.

Pseudocode 3.

Pseudocode 4.
Pseudocode 5.

Pseudocode 6.

LIST OF PSEUDOCODES

The algorithm used for finding the maximum overlap score
between tWo SEqUENCE T€adS ...........evvevvnreniennniirieeneennennn. 49
The algorithm used for the main loop of the modified ACO ...... 50
The algorithm for constructing contigs per each complete tour
around all sequence reads ..........ceveieiiiiiiiiiiiiiieeneeneenen. 51
The algorithm used for the main loop of the NSGA-II MOEA ... 54
The algorithm for the fast nondominated sorting method ........ 55

The algorithm for computing and assigning the crowding distance

Xviii



CHAPTER 1
GENERAL INTRODUCTION

1.1 A Brief Overview of Bioinformatics

Bioinformatics is an interdisciplinary field that has emerged from the
amalgamation of biology and computer science. A more informative description of
bioinformatics can be given by looking at its main tasks [2]. First, providing publicly
available web portals linked to databases of biological data that are organized according
to their types and functions are at the core of bioinformatics. This allows researchers to
conveniently access those databases to acquire the data relevant to their studies, but also
to contribute their new findings. Especially, cross-database search system such as Entrez
[3], InterPro [4], and UniProt [5], have been invaluable tools for cross-reference studies,
providing their users with a pool of related data from a single user query input through
bridging information existing across multiple databases. Second, bioinformatics is about
developing and applying tools to analyze the collected biological data in order to address
the scientific questions posed by the researchers. Such bioinformatics tools are
developed by incorporating techniques from diverse computing disciplines such as data
mining, database design, machine learning, software engineering, statistics, and so on, in

order to aid in the exploration of a given biological dataset and acquiring of biological



knowledge discovery. Some of the widely used bioinformatics tools include FastQC [6],

BLAST [7], Velvet [8], Trinity [9], and BLAST2GO [10].

The surge of biological data is the main reason to why computer science has
become the main engine in today’s biological research studies. The rapid growth of
sequencing technology has greatly reduced the time required for deciphering the strands
of the nucleotide sequences of a biological sample. In turn, advancement of computing
technology, data management, and algorithmic techniques has allowed for improved
research workflow efficiency to handle the dramatic increase in biological data with the
aid of efficient computing tools. However, the rate of sequencing throughput has been
increasing at such a high pace that the expected boost of computer performance by the
Moore’s law could not catch up to the amount of biological data being produced for
timely analysis. Hence, demand for application of parallel cloud computing has been

rising in bioinformatics community [1].

1.2 The Central Dogma of Molecular Biology

Research studies in bioinformatics revolve around the central dogma of molecular
biology, which describes the central “mechanics” that govern all cellular function.
Consequently, it is the core knowledge that computer scientists need to be accustomed to
in order to successfully cooperate with biologists and develop tools capable of
performing biologically meaningful analysis. Since the discovery of DNA structure by

James Watson and Francis Crick [11], studies of the central dogma have evolved with



respect to specificity and generality with the aid of computing sciences. However, the
simplified statement of ‘ DNA makes RNA makes protein’ can be used to summarize the

foundation of the central dogma of molecular biology as shown in Figure 1-1.

Replication Replication

Figure 1-1: The Central Dogma of Molecular Biology

Deoxyribonucleic acid, or simply DNA, is composed of four distinct nucleobases:
adenine (4), cytosine (C), guanine (G), and thymine (7). On the other hand, ribonucleic
acid or RNA is composed of the same nucleobases as DNA, except it contains uracil (U)
instead of thymine (7). Similarly to the binary digits of the machine language,
subsequences of a DNA string, varying in length and nucleobase permutations, are used
as the genetic instructions for making different types of proteins that account for all
cellular functioning. The structure of the DNA is largely characterized by twisted chains
of nucleotide molecules constituted by coupling of a nucleobase molecule, a phosphate
molecule, and a sugar molecule. DNA keeps a copy of itself by having two strands of
nucleotides interconnected by the hydrogen bonds between two complementary
nucleotide bases. Adenine (4) always binds to thymine (7) and cytosine (C) always

binds to guanine (G). The primary purpose of the double-stranded nature of DNA is to



keep the integrity of the genetic information by being able to recognize the error

introduced by a mutation with the proofreading of the other strand [7].

A nucleotide molecule has directionality based on the carbon positions of its
sugar-ring molecule. As shown in Figure 1-2, the fifth carbon with a phosphate group is

known as 5” prime end or upstream while the third carbon with a hydroxyl group is

known as 3’ prime end or downstream.

Figure 1-2: The directionality of a nucleic acid (a) 5’ and 3’ prime ends of a sugar-ring molecule (b) 5°->3’
replication

During DNA replication, a new chain of DNA string is always synthesized in the
direction of 5’ to 3, starting on the 3’ end of a template DNA copying towards the 5°
end. A chain of nucleotides extends as the 5 end of a new nucleotide binds to its 3” end.

Thus, 5’ end of a strand complements the 3’ end of the other strand and vice versa.

A gene sequence undergoes three major molecular transformations before turning
into a protein. First, gene expression regulating protein called transcription factor binds
to a DNA promoting region followed by binding of RNA polymerase to initiate the

transcription of a target gene. The RNA polymerase enzyme plays the role of unwinding



the DNA and copying the strand of bases from 5° end towards 3’ end. The synthesized
string of transcribed gene sequence is known as pre-mRNA. Pre-mRNA is composed of
non-coding regions called introns and the coding regions called exons. Thus, introns are
removed and the exons are ligated together, in the process called splicing, before the
forming a protein can take place. This task is accomplished by complex macromolecule
machinery known as spliceosome. Here, a particular transcribed pre-mRNA sequence
can undergo alternative splicing by choosing different sets of exons to produce different
forms proteins isoforms. The splicing of pre-mRNA results in a string of exons known as
messenger RNA or mRNA. Upon completion of splicing, the transcribed genetic
information embedded in mRNA migrates from nucleus to the cytoplasm of a cell. A
strand of mRNA is then translated into a protein with the aid of special protein molecules,
ribosome and transfer RNA or tRNA. Each set of three nucleotide bases along the strand
of mRNA forms a symbol of genetic code known as codon. During translation, the
codons are sequentially translated into their corresponding elemental protein units known

as amino acids. The codon chart in Figure 1-3 shows complete set of codons and their

corresponding translated amino acids.



L

z
&

|
0 Histiding

re

Figure 1-3: The codon chart [45]

Notice that the genetic code is redundant as shown in the codon chart. In other words, a
single amino acid can be mapped to multiple codons. Consequently, although there are
64 possible codons, there exist 21 amino acids in total instead of 64 amino acids. The
translation of mRNA begins with binding of ribosome (primarily made of ribosomal
RNA or rRNA) at the site of start codon, ‘methionine’ (4UG), and terminates at a stop
codon which can be, ‘amber’ (UAG), ‘ochre’ (UAA), or ‘opal’ (UGA). Transfer RNA or
{RNA carries out the translating process of codons. tRNA molecule is made of anti-
codon on one end and its corresponding amino acid on the other end like key-value pair.

The anti-codon part of tRNA binds to its complement codon on mRNA resulting in an

arrangement of amino acids. The strand of amino acids is glued together by peptide bond



with the aid of ribosome to form a chain of amino acids known as polypeptides or simply

protein.

Function of a protein is primarily determined by its structure [54]. A protein is
shaped through a series of folding of polypeptides. The initial linear strand of amino
acids known as primary structure transforms into another structure known as secondary
structure as it folds onto itself to form a coil-like structure known as alpha-helix or a zig-
zag structure known as beta-sheet. The secondary structure is further transformed into
tertiary structure through a higher order of folding. Most proteins exist in a tertiary
structure to serve their functional purpose; however, some proteins exist in a quaternary
structure formed by joining of multiple polypeptides. Transformed proteins, in turn, are
used to serve as cellular structural elements and provide cellular functions such as

intercellular communication medium and catalyzing enzymes.

A complete set of all DNA sequences of an organism is known as genome. For
example, a human genome consists of DNA sequences stored in 23 pairs of chromosomes
with the base length of approximately 3 billion nucleotides. Interestingly, despite distinct
distinguishable character traits, known as phenotypes, among humans such as disease
vulnerability, response variation to drugs, and physical appearance, any two individuals
share 99.9% of their genetic information. Variation among individuals originates from
small genetic differences or alternative forms of a given gene known as alleles existing at
a specific locus of a genome. An allele with a single nucleotide base difference is known

as a single nucleotide polymorphism or simply SNP. Similar to the definition of



genome, a complete set of expressed transcript sequences present in all nRNA molecules

is known as transcriptome.

While genome content stays quite static, gene expression can dynamically vary
depending on the environmental condition of a cell at a given time. Thus, growing
collection of annotated genomes through high-throughput sequencing technologies and
advanced bioinformatics tools can provide a deeper understanding of biological
diversities among species through studies such as multiple genome alignment and
phylogenetic comparative analysis. In addition, the ongoing international effort on
predictive diagnostic and personalized medicine through genetic testing can allow
understanding of a person’s illness on genetic level instead of symptoms, and provide
better preventive treatment. Overall, bioinformatics will play a critical role in the

advancement of future medicine with the aid of computing science.

1.3 Sequencing Technology

The early revolutionary development of sequencing methods by Walter Gilbert
and Frederick Sanger [55] opened the door to the possibility of studying and
understanding the fundamental workings of biological systems from genetic level.
Sequencing simply denotes the process of decoding the underlying nucleotide bases of a
biological sample in the order of their arrangement. Hence, sequencing technology is an

indispensable tool for generating the biological data needed for any genetic studies.



Polymerase chain reaction or simply known as PCR [56] plays an important role
in sequencing technology. PCR is a widely used method to amplify a copy of a genetic
sample by simulating the DNA replication process in an artificially designed
environment. The basis of PCR involves repeated process of denaturing of double-
stranded DNA samples and annealing of primers. In nature, DNA replication is carried
out by an enzyme known as DNA polymerase that sequentially adds new nucleotide
bases complementary to a sequence of bases present in the target DNA template. The
replication process is initiated at the site of a short sequence known as primer sequence
(~10 bp) on the target sequence being replicated. Starting at the site of the primer, the
polymerase builds a new chain of nucleotide bases on the target DNA template by
binding the 5’ end of a new nucleotide to the 3’ end of a sequence strand being extended.
In PCR, the environment for DNA replication is prepared with mixture of a double-
stranded DNA sample being copied, primers, raw nucleotides or dNTP, and DNA
polymerases in a buffer solution. Then, DNA synthesis is carried out by systematically
adjusting the temperature of the solution to denature the double-stranded sequences into a
pair of single stranded DNA templates and to anneal the primer sequences onto the DNA
templates for the polymerase to build a new chain of sequences. The process of
denaturing and annealing is repeated to generate exponential number of copies of the

original sample sequence in each cycle.



10

1.3.1 Sanger Sequencing

In Sanger sequencing [14], amplified DNA templates, DNA polymerases,
primers, and raw dNTPs are also used as in PCR. However, unlike PCR, defected
radiolabeled nucleotides, ddNTPs, are used to terminate the polymerase from extending
the chain of nucleotides complement to the target template. The ddNTP lacks the
hydroxyl group on its 3’ end, thus preventing other nucleotides from binding to the chain.
This is the reason why Sanger sequencing is also well known as chain-terminating
sequencing method. By using the chain-terminating nucleotides, multiple copies of
sequences with different length, called Sanger fragments, can be obtained. Then, all
fragments are aligned based on their molecular size using capillary electrophoresis (CE)
and x-ray image of those sequences with radiolabeled ends is obtained to decode the
position of each nucleotide of the DNA sample. Four separate mixture reactions had to
be used initially to carry out the process independently for each kind of radiolabeled
ddNTPs in order to distinguish each type of the nucleotides on the x-ray image.
Unfortunately, this pioneering technology was tediously time consuming, expensive, and
unsuitable for sequencing long DNA fragments. Chain termination by ddNTPs typically
occurs before reaching a long end of a target template. Thus, Sanger sequencing was

only suitable for sequence length of less than 1000 nucleotides long.



11

1.3.2 Shotgun Sequencing

Frederick Sanger further developed a method known as Shotgun sequencing [16]
to overcome the problem of sequencing a long DNA sequence. With Shotgun sequencing
method, whole genome sequencing became possible for the first time. Early genome
sequencing of many different species, including the approximately 3 billion nucleotides
long human genome from the human genome project (HGP) [17], was performed with
the Shotgun sequencing method. Shotgun sequencing is mainly characterized by
shearing of a large DNA strand at random positions followed by sequencing the resulting
DNA fragments using the Sanger’s chain termination method. Instead of using the
radiolabeled ddN'TPs during the chain termination, however, use of fluorescently color
dyed ddNTPs was largely incorporated during this time. This allowed identifying the
sequence of nucleotides in a single capillary instead of four. Also, multiple lanes of
capillaries, known as capillary array, were used to sequence the Sanger fragments
simultaneously in parallel; in addition, automated shotgun sequencing systems became
available with the technology advancement. However, in order to identify the sequence
of nucleotides of each fragment using the chain terminating method, multiple copies of
each fragment were required in an efficient manner compared to PCR. For this task, all
fragments were digested into self-replicating plasmids known as vectors. Then, the
vectors were placed into highly active bacteria such as E. coli for fertilization on a
culture. The results were million copies of each fragment ready for the chain termination
reactions. Despite the improvement from the Sanger sequencing, the Shotgun sequencing

still lacked processing time efficiency and cost effectiveness. The main disadvantage of



12

the Shotgun sequencing is the loss of genetic information originating from processes
involved in the library preparation. Since only the sheared fragments with a proper base
length can be used to bind to the plasmid, a large amount of loss of genetic information
can result from filtering of fragments outside the acceptable base length. In addition, not
all cloning vectors succeed in entering the bacteria, which accounts for another source of
loss of the original genetic information. Thus, the resulting fragments from the
amplification process do not cover the entire sequence of the original sample. The time
consuming processes and the necessity for resequencing the sample to close in the gap of
loss of coverage largely accounts for the considerable amount of time spent for decade-

long human genome project (1990 — 2003).

1.3.3 Next Generation Sequencing

Modern sequencing technologies, collectively known as Next Generation
Sequencing (NGS) [10], incorporate massively parallel techniques that allow high
throughput sequencing at a high coverage level. A human genome can now be sequenced
in a matter of a day with as little as 100 dollars. Compared to the duration of the human
genome project that cost almost $3 billion dollars, it shows how sequencing technology
has rapidly advanced. Illumina sequencing technology is one of the most widely used
NGS technologies today [15]. NGS sequencing technologies are largely characterized by

application of techniques known as bridge amplification and sequencing by synthesis.



13

As in Shotgun sequencing, fragments from random shearing of a DNA sample are
first obtained. However, instead of cloning the fragments into vectors and bacteria,
amplification of the fragments is accomplished through ligation of adapters on both ends
of each fragments followed by cycles of replication of adapter-ligated fragments through
bridge amplification. First, the adapter-ligated fragments are placed onto the lanes of
glasses called flow cell. The flow cell is coated with a lawn of two types of primers that
are complementary to the either side of the adapters on the fragments. Then, fragments
bind to the primers complementary to one end of their adapters on the flow cell, followed
by the other adapter ends hybridizing with the other primer type on the flow cell resulting
in a bridge formation. Subsequently, similar to PCR, polymerase builds a chain of
nucleotides complement to the bridged fragments. The two stranded fragments are then
denatured into two single stranded fragments. A series cycle of bridging, generating new
complementary fragments, and denaturing is repeated to generate amplified clusters of

the original fragments.

The amplified fragments are then sequenced by a method known as sequencing by
synthesis. Unlike the chain termination method, all raw nucleotides are fluorescently
labeled and have the property to terminate the polymerase chain reaction to prevent other
raw nucleotides from binding. However, this terminating property can be chemically
cleaved off to transform them into normal extendable dNTPs. Using this property, all
nucleotides of all fragments are identified one at a time simultaneously as they bind to the

fragment templates and are being excited and emit light, which is then detected and



14

recorded. In addition, the accuracy of each identified base is also measured and recorded

based on the wavelength and the intensity of the light it emit.

Most modern sequencing adapts pair-end sequencing, which identifies bases on
the 5° ends of both strands of each fragment instead of single ends. Sequenced fragments
are generally called reads. Reads generated from the pair-end sequencing are called pair-
end reads or forward/reverse reads as shown in Figure 4. By paring the both ends of

fragments, it helps to recover the original orientation of sequenced reads during sequence

assembly.
forward read
5’ n = 3’
N Cooro
AGGTTC "°°°° CCAACT
TCCAAG GG TTGA
3, | 1 | ! | | ! ! ! | | ! 5,
< =]

reverse read

Figure 1-4: The pair-end sequencing of Next Generation Sequencing

Despite the advantage of low cost, high-coverage, high-throughput sequencing
technology, the reads generated by NGS are still considerably short. Typically, the
length of these reads is less than 200 base pairs. Thus, there exists a great reliance on
computing science to restore the fragmented reads back to their original long sequence

during the sequence assembly.




CHAPTER 2

SEQUENCE ASSEMBLY PROBLEM

High throughput and massively parallel NGS technology allowed for a
remarkable enhancement of sequencing rates while plunging the cost per sequenced
reads. Yet, as a consequence of the random fragmentation of the genetic information
taking place during NGS, the challenge of assembling the pieces of short sequence reads
is still a necessary sequel procedure to finalize the process of decoding the genetic
sequence of a biological sample. Fragmented short sequences are either assembled with
or without the aid of a reference genome. In reference-based assembly, a known genome
is used as a guide during assembly to assemble the generated reads by mapping them to
their variant genome. Alternatively, in de novo assembly, reads are assembled from
scratch in the absence of a reference genome. Due to the existing variability between
genotypes of even the same species, referenced-based assembly, in a counterintuitive
manner, does not guarantee a better assembly of reads. Instead, de novo assembly,
despite its higher computational cost, has shown to perform better in the highly variant
regions of a sample [21]. Thus, hybrid approaches that take the advantage of both

assembly paradigms have been recently emerging [21].

15



16

2.1 Overlap Layout Consensus Assembly

Assembling sequenced reads is mainly facilitated with searching and matching the
overlapping base patterns between fragmented strings of bases. The strength of overlap
between two reads indicates how well the fragments fit together and can be computed by

finding the maximum count of matching bases between the two aligned reads.

ACTGGAT ACTGGAT ACTGGAT
GGATCAA ——GGATCAA — GGATCAA
N O O I O I O 0 I I
A-1-1-1-11 -1 1-1-1-1-1-1 11-1-1-1
score = -5 score = -6 score = -3
ACTGGAT ACTGGAT
—> GGATCAA ——’???TCAA
N i
11 11
score = -1
score =4

ACTGGAT ACTGGjTGGATCAA
—————><|3c|;ATCAA O
1 -1 5

score = -2

score = -1

Figure 2-1: The computation of overlap score between two reads

As shown in Figure 2-1, two reads are aligned to each other starting from their first bases.
Then, the overlapping scores are computed by summing the scores for matched and
unmatched bases in the aligned bases. Out of the aligned bases, each set of matched
bases contributes a score of one (+1) whereas the unmatched bases contribute score of

negative one (-1). Here, the score can be adjusted to place different level of emphasis on



17

each matching bases if needed. For instance, a greater negative value can be used for the
unmatched bases to give more penalizing score for the unmatched bases. The maximum
overlap score between two reads is found by iteratively computing each overlap scores by
sliding one of the read against the other one base at a time. This way, an entire set of
reads can be aligned against each other with the maximum overlapping score to output a
contiguous read based on the most frequently occurring bases in each positions as shown

in Figure 2-2. This method of assembling reads is known as the overlap layout consensus

assembly.

ACT.GGAT: : :

. T.GGATCA: :
. IGAATGAA:
.1 IGATCAAT

ACT:GGATCAAT

Figure 2-2: The formation of a consensus sequence (contig) from aligned reads with maximum overlap score

A contiguous read generated from assembling a set of reads is called a contig. The total
overlap score in a contig indicates how likely the set of reads making up a contig

originates from the same segment of the original sequence string.

The main challenge in the reconstruction of fragmented genetic information arises
from exploring and finding the optimal arrangement and alignment of the reads that
outputs the maximum overlap score. In addition, a small amount of sequencing error and

loss of base coverage present in the generated reads can further complicate the challenge



18

of the sequence assembly problem. The coverage value measures the number of reads
covering each nucleotide bases in a genome on average. With a given number of

generated reads (N), the average read length (L), and its genome length (G), the coverage

value (C) is obtained with the following computation.

N-L
C = —

Thus, a higher coverage value indicates increased likelihood of having overlapping
regions between reads that span the whole genome. On the other hand, low coverage can
lead to gaps between two assembled contigs with no overlapping bases. Particularly,
assembling the improperly ordered reads is one of the main causes of the gaps between
contigs. Importantly, a higher coverage also means that there is a higher chance of
overcoming the erroneous bases present in a read with other properly sequenced reads in
the same region during the overlap layout consensus assembly. However, higher
coverage is directly related to higher processing time and cost. Therefore, optimal
coverage amount relative to the genome length should be considered to avoid producing

unnecessarily high redundant overlapping regions.

Even in the case of sequence assembly with ideally generated reads with no error
and complete coverage, pervasively present repeating base-patterns in species can still
aggravate the challenge of the sequence assembly problem. As a glaring example of this
phenomenon, a recent study claims that over two third of human genome is believed to be
repeats [19]. Sequence assembly can easily involve millions of reads; However, Figure 2-

3, assuming an over-simplified case of sequence assembly with only seven reads with no



error and no gaps in coverage, demonstrates how repeated reads can easily lead to the

wrong ordering of reads and result in poorly overlapped consensus sequence.

read alignment 1
GTCA
TCAG
CAGT
sequenced reads Agg A
TCAT
/. TCAT hY CATT
GTCA
gene sequence ! aate ) GTCAGTCATT
GTCAGTCATT —— > ! GTCA |
\ CATT  caaT |
\, TCAG /
. L, read alignment 2
T GTCA
TCAT
TCAT
CATT
GTCA
TCAG
AGTC
GTCAT TCATT GTCAGTC

Figure 2-3: An example of alternative read alignments caused by a repeating base pattern

Here, the read ‘GTCA’ can be matched with either ‘TCAG’ or ‘TCAT” with an equal
overlap score. However, the choice between the two alternative reads can result in
dramatically different outcomes. As shown in the ‘read alignment 2’ of Figure 2-3,
improper alignment results in a poor average contig overlap score and average contig

length. In addition, the number of resulting contigs and number of gaps between contigs

has increased.

The overlap strength between reads can be expressed as a directed graph where its

vertices are the reads and directed edges connect between overlapping reads with their



20

respective overlap score. For example, Figure 8 below shows an alternative

representation of the read alignment from Figure 2-3 using a weighted directed graph.

Figure 2-4: An example of representing read overlaps using a directed graph

The integers on the edges of the directed graph indicate the number of overlapping bases
between reads. The directed edges colored in red show the path that leads to the
optimum assembly of reads. The overlap strength between reads from Figure 2-4 can

also be presented in adjacency matrix as shown Figure 2-5.



21

GTCA; TCAG AGTC GTCA, CAGT TCAT CATT

GTCA; o0 3 1 0 2 3 2
TCAG 1 0 2 1 3 0 0
AGTC 3 2 0 3 1 2 1
GTCA, o 3 1 0 2 3 2
CAGT 2 1 3 2 0 1 0
TCAT 0 1 0 0 0 0 3
CATT 0 3 1 0 2 3 2

Figure 2-5: An example of representing read overlaps using an adjacency matrix

Finding the optimum contig for a given set of reads can also be viewed as solving
the shortest common superstring problem (SCSP) where aligned reads with maximum
total overlap result in the shortest contig and the most reliable assembly. Also, if the
overlap scores of the directed graph in Figure 2-4 were negated, then the problem of
assembling the reads becomes strikingly similar to the traveling salesperson problem
(TSP). Just as the shortest Hamiltonian cycle that takes a salesperson to each city exactly
once and back to the starting city is sought in the TSP, the sequence assembly problem
similarly explores the constructed directed graph to find the Hamiltonian path that visits
each read exactly once with the minimum total overlap score. The complexity of the
sequence assembly problem has been shown to be NP-hard [20]. Due to the similar
computational complexity of the SCSP and the TSP, the optimization methods of
computational intelligence have been widely used for approaching the sequence assembly

problem. In general, the overlap layout consensus assembly can be described as finding



22

the permutation of reads that maximizes the overall overlapping regions between the
reads while minimizing the number of gaps between the contiguous regions to produce

the contigs with optimum length that represents the original sequence string as much as

possible.

The generated contigs can be further processed using the preserved information in
the paired-end sequence data to arrange the contigs in the proper order, adjust their
orientation respect to their original chromosomes, and to minimize the identified contig
gaps. This procedure is known as scaffolding where a scaffold consists of linked contigs

in their proper position and orientation as shown in Figure 2-6.

Scaffold

AN

Contig Contig 2

-

= == e==p G
** —— ‘:-

=< Fragment
@== Read (known sequence)
——  Roughly known length but not known sequence

Figure 2-6: The composition of a scaffold [22]

When only one end of the fragments is sequenced, the orientation of each of the
sequenced reads is lost since they could be originating either from their forward strand or
the reverse strand. However, this problem is alleviated by the pairing of both sequenced

ends of forward and reverse strand for each fragment as described in the previous section.



23

In addition, the measured gap length between the reverse read and the forward read of a
sequenced fragment provides a spatial relationship between contigs and assists in

identifying specific regions of a chromosome that lacks coverage.

2.2 De Bruijn Graph Assembly

The most widely used modern sequence assembly method is De Bruijn graph
assembly. ABySS [23], Trinity [24] and Velvet [25] are some of the most popular de novo
assembly software tools based on the De Bruijn graph assembly method. The main
accomplishment of De Bruijn graph assembly was overcoming the challenge related to
the high computational cost in the overlap layout consensus assembly. The De Bruijn
graph assembly is based on Nicolaas De Bruijn’s solution to the superstring problem that
adapts the Leonhard Euler’s approach to solving the Konisburg Bridge problem [26].
Euler proved that a walk that visits all seven Konisburg bridges exactly once does not
exist by pointing out the imbalanced number of bridges connecting to each city. In other
words, Eulerian cycle that visits all edges exactly once exists if and only if the graph is

strongly connected and balanced. A graph containing a Eulerian cycle is called Eulerian
graph.

Consider a case of solving a superstring problem involving binary digits, Os and
1s. For a set of all possible binary, so-called k-mers, the superstring problem finds the

shortest binary string composed of exactly one of each binary k-mers. The term ‘k-mer’

is a widely used term in bioinformatics to refer to a sequence string composed of k



24

number of nucleotide bases. Thus, ‘ACCT” is an example of a 4-mer and ‘CGGGAT’ is
an example of a 6-mer. This way, a binary k-mer, ‘0110’ is an example of a 4-mer.
There are N* possible k-mers where N denotes the number of possible elements for each
positions of a k-mer. Using all unique binary 3-mers, a set of 23 binary motifs

(000,001,011,111,110,101,010, 100), a directed graph can be constructed as

shown in Figure 2-7.

superstring for binary 3-mers: 0001110100

Figure 2-7: A construction of a superstring for binary 3-mers

Here, nodes of the graph represent the binary k-mers whereas directed edges represent
shared (k-1)-mers between two nodes. A directed edge is formed between two nodes if
the suffix (k-1)-mer of preceding k-mer matches with the prefix (k-1)-mer of following k-
mer. Then, the superstring is found by exploring a Hamiltonian path that visits each

node exactly once. As discussed briefly in the previous section, the computational



25

complexity of finding a Hamiltonian path is NP-complete. In other words, there are no

known algorithms that can solve this problem in polynomial time.

Nicolaas De Bruijn reduced the computational complexity of solving the binary
superstring problem to tractable polynomial time with an alternative method inspired by
the Konigsberg problem. Instead of denoting each k-mer as a node of the directed graph,
each of the k-mers is used to denote an edge of the directed graph. As shown in Figure 2-
8, each k-mer is decomposed into two (k-1)-mers; preceding node takes the prefix (k-1)-

mers and the following node takes the suffix (k-1)-mers.

prefix = 01110
>
' ' ‘ 011101
011101
:4_—>:
suffix = 11101

Figure 2-8: Decomposition of a k-mer into (k-1)-mers

In turn, the two decomposed (k-1)-mers are connected by their k-mer edge from its prefix
node to its suffix node. Then, a directed graph is constructed by overlapping the
matching nodes between (k-1)-mer suffix of a k-mer and a (k-1)-mer prefix of another k-

mer as shown in Figure 2-9. A directed graph built in such a way is known as De Bruijn

graph.



26

011101

11101 011101
11101 o

111010

11101

Figure 2-9: An example of constructing a De Bruijn graph with decomposed k-mers

This way, an alternative directed graph is constructed for the set of the binary 3-mers as
following as shown in Figure 2-10. The depicted De Bruijn graph is strongly connected
since any node can be reached from any node. Also, it is balanced since every node has
an even number of incoming and outgoing edges. Therefore, the depicted De Bruijn

graph is Eulerian and a superstring can be constructed by taking a Eulerian walk that

visits all edges exactly once.

010 Eulerian trail
000 000

° - ° N

0001011100

100

Figure 2-10: An example of constructed De Bruijn graph for binary 3-mers



In De Bruijn graph assembly,

27
a De Bruijn graph is built with a given set of sequenced k-
mer reads in the same manner,
construction involving a set of 3-mer reads.

gene sequence

TGGGGACCAGACGATCAA

The Figure 2-11 shows an example of De Bruijn graph

S
%,

ACG

decomposition
L of k-mers
N
ACC GAC TCA & e T N
ACG GAC \
! AGA GAT 166G 1 ,
\ ATC GGA : |
C CAG J
CCA GGG
CGA GGG

Figure 2-11: An example of constructing a De Bruijn graph with 3-mer sequence reads

As shown, each k-mer is decomposed into its (k-1)-mer prefix and its (k-1)-mer suffix to

shows the completed De Bruijn graph.

represent each node pairs connected by a directed edge denoted with their parent k-mer.
Then, a De Bruijn graph is constructed by overlapping the matching nodes. Figure 2-22



28

De Bruin Graph of TGGGGACCAGACGATCAA

Figure 2-22: An example of constructed De Bruijn graph of 3-mer sequenced reads

Then, the original sequence is extracted by taking the marked Eulerian trail sequentially

from the constructed De Bruijn graph.

Theoretically, by applying a small transformation, the complexity of the sequence
assembly problem is reduced from finding a Hamiltonian path to finding an Eulerian
path. However, the theoretical complexity advantage of De Bruijn graph assembly can
lack in practicality in actual sequence assembly. As discussed, the sequenced reads
contain errors, repeats, and incomplete coverage. Notice that the repeat read, ‘GAC’,
introduces an alternative Eulerian path in the depicted De Bruijn graph in Figure 2-22,
yielding an assembled sequence string of TGGGGACGACCAGATCAA. Given an

ideal sequence data such as the one used in the example, a multiple number of Eulerian

paths often exist due to the repeats in the constructed De Bruijn graph. Unfortunately,

there is no known method to identify the correct path to properly map the reads into their

original sequence string prior to fragmentation. Thus, the constructed graph is often



29

broken into its maximal non-branching paths to extract contigs that are present in any
Eulerian path. Also, erroneous reads introduce erroneous nodes in the De Bruijn graph,
which leads to formation of erroneous paths. In turn, correcting the erroneous graph can
easily intensify the processing complexity and further raise the chance of producing
erroneous contigs. Unlike overlap layout consensus assembly, a fixed k-mer length must
overlap between reads in the De Bruijn graph assembly. This often necessitates De
Bruijn graph assemblers to break the reads into much smaller sized k-mers in order to

increase the coverage in De Bruijn graph as shown in Figure 2-23 [27].

CTCCGACTCAGAACGTTTA CTCCGACTCAGAACGTTTA
CTCCGACTC CTGCC
CCGACTCA nggA
CTCAGAAC =
GAACGTTTA GACT
ACTC
CTCA
TCAG
CAGA
AGAA
GAAC
AACG
ACGT
CGTT
GTTT
TTTA

Figure 2-23: An example of read breaking

As a consequence, such read breaking not only jumbles the initial genetic information but
also complicates the structure of the constructed De Bruijn graph. On the other hand, the
overlap layout consensus assembly shows high tolerance to read errors and incomplete

coverage. Through consensus choice of each base from the overlapping reads, correctly



30

sequenced bases can overrule the erroneous bases. Unlike De Bruijn graph assembly, the
length of overlapping regions between reads can vary which makes more sense intuitively
since the original genetic information was fragmented at random locations. In turn, it

allows preserving the sequenced genetic information as it is while maintaining their true

coverage.

Studies have shown that overlap layout consensus assembly, in general,
outperforms De Bruijn graph assembly for long sequence reads with low coverage.
Meanwhile, De Bruijn graph assembly has demonstrated better performance in a short-
read high-coverage setting. The length of sequenced reads is expected to grow in
parallel with the advancement of the sequencing technology. Hence, the overlap

consensus assembly is expected to be the leading assembly method in the future [28].



CHAPTER 3

AN OVERVIEW OF MULTI-OBJECTIVE OPTIMIZATION

The term, computational intelligence (CI), applies to a set of computing
algorithms that tackle complex problems with nature inspired heuristic strategies.
Common computational intelligence algorithms include artificial neural network (ANN)
algorithms, which are based on the functioning of the nervous system, box counting
algorithms based on fractal geometry of nature, negative selection algorithms based on
the immune system, and so on. Particularly, the ant colony optimization algorithm
(ACO) and evolutionary algorithms (EAs) have been widely utilized for solving
combinatorial optimization problems such as the Knapsack Problem and the Traveling
Salesperson Problem (TSP). Hence, these methods are also suitable for solving the

Sequence Assembly Problem (SAP).

3.1 Ant Colony Optimization

The ant colony optimization algorithm [29] is founded on the exhibited
collectively intelligent behaviors emerging from a colony of ants’ decentralized simple

behaviors. Particularly, the emergent intelligence observed in their foraging behavior

31



32

has been well adapted for solving combinatorial optimization problems [30, 31, 32].
Ants exploit a discovered food source through a positive feedback mechanism known as
stigmergy. Carrying a piece of food stimulates an ant to lay a chemical substance called
pheromone on the path taken. Consequently, the pheromone attracts other ants to the
path that leads to the food source. As a result, a pheromone trail leading to the food
source is defined and strengthened relative to the amount of pheromone deposited by
ants. Due to the evaporating property of pheromones, a longer path is likely to lose more
pheromone strength in a given time compared to a shorter path. Thus, a shorter path to a
food source from a nest is more likely to be exploited by more ants and maintain a
strongly defined path. Therefore, when an obstacle is placed on a path being exploited, a
shorter path around the obstacle becomes more defined over time as shown in Figure 3-1.
The strength of the pheromone around the shorter side (‘C’) of the obstacle becomes
more defined over time than the longer side (‘H’) of the obstacle due to the pheromone

evaporation and difference in the distance traveled around the obstacle.



33

Figure 3-1: An illustration of stigmergy observed in ant colony foraging activity. [33]

Interestingly, not all ants are attracted to a particular path based on the pheromone
strength. A few ants will continue to explore in random areas instead of exploiting the
path taken by the majority of other ants. This behavior helps to explore for other food

sources that could potentially be better.

The manifested collective intelligence of ants foraging behavior, largely
characterized by the exploitation of the optimizing objectives and the exploration for a
better solution, has made the ant colony optimization algorithm exceptionally suitable for
solving of the Traveling Salesperson Problem. As discussed earlier, both the Traveling
Salesperson Problem and the Overlap Consensus Sequence assembly problem search for
an optimal Hamiltonian path for a given set of objectives. Hence, the basic concept of

the ant colony optimization algorithm for the Traveling Salesperson Problem will be



34

described as an introduction to the modified Ant Colony Optimization (ACO) algorithm

used in the proposed system presented in a later section.

Given a connected graph, G = (V jzies, Epatns), a randomly distributed K ants
build candidate solutions of unique Hamiltonian paths in parallel. The algorithm runs for
t iterations and the best solution is found by iteratively updating the global optimal
solution with the top solution returned by ants in each iteration stage. Each city-to-city
transition taken by an ant can take place either to exploit or explore the solution search
space. Exploration occurs with a very small probability to explore other random
solutions not bound by a current environment setting such as a local optimal solution.
During exploration, an ant k takes a transition from its current city i to a randomly
chosen city 7. When exploiting, a transition taken by an ant k from city i to a next city j

is determined by the level of heuristic visibility (77;;) and pheromone strength (7;;)

present on the path between city i and city j. In TSP, the inverse distance between two
cities can be used as the measured value of heuristic visibility so that a shorter path is
preferred over a longer path. The pheromone strength on an edge is determined by the
amount of pheromone deposited by the ants from previous iterations and the lost amount
of pheromone due to evaporation. In addition, an ant can transition to a city only if the
city was unvisited previously since the problem seeks a Hamiltonian path. Tokeep a

track of unvisited cities, ants are given a simple memory location known as ‘tabu list’.

In summary, the transition probability p{‘j (t) for an ant k at iteration t can be expressed

as:



35

K [ ®]" - ]
P =\ T, ulra (@ -l ifJ €I
0 ; otherwise

Here, the contribution level of the heuristic visibility and the pheromone amount in the
transition probability can be controlled by the weighting exponent values of a and .
The normalizing denominator is computed by summing the product of heuristic visibility

and pheromone level of each of the unvisited neighbor cities J k.

Upon completion of a tour T in iteration t by an ant k, pheromone Ar{‘j(t) is
deposited on each of the visited edges. Here, the amount of pheromone deposit is

inversely related to the length of the tour L¥(t) weighted by a user specified Q value.

ATh(t) = %5 ;if (i, ) € T()

0 ; otherwise

This way, the total amount of pheromone At;;(t) deposited on an edge between cities i

and j by all ants in iteration ¢ is obtained by summing all their pheromone amounts laid

on the edge with respect to their tour length.
A‘l'ij (t) = zk AT{CJ (t)

Also, the current pheromone amount on an edge of city i to j is reduced by a pheromone
evaporation rate p. Thus, the remaining pheromone amount after evaporation is

considered for the pheromone update.

1) — p -7 (®) = (1 = p) - 735 ()



36

Therefore, the pheromone updates on the edges of the paths taken by ants are updated

upon completion of their tour as follows:

7ij(0) = (1 = p) - 7;;(t) + At;j(t) ,where p € (0,1]

The flowchart shown in the Figure 3-2 outlines the sequence of the main operations of
the ant colony optimization algorithm. The algorithm runs for a specified total iteration
‘max_iter ' and the best solution is found by comparing the top solutions found in each

iteration and updating the current best solution with a better solution.

l ==

Initialize Ants

\/

Build Solutions

\/

Evaluate Solutions

\/

Store The Best Solution

\/

Update Pheromone

S

Figure 3-2: The flowchart of the Ant Colony Optimization (ACO)

The ant colony optimization algorithm for the traveling salesperson problem can be

further improved by emphasizing the path taken by the best solution found so far up to



37

the current iteration by an elitist ant during pheromone updates. With incorporation of

such elitism, the pheromone update can be stated as follows.

;i) =1 —-p)- 7;;(8) + Ary(t) + b.Atf’j(t),

where,

Qe ...
AT?j(t) = {Lbest ;if(i,)) € best
0 ; otherwise.

3.2 Evolutionary Algorithm

Evolutionary algorithms, also referred to as genetic algorithms, are inspired by
Darwin’s discovery of evolving species on Earth where the fittest species in a given
environment were observed to have a higher chance to pass their genetic material to the
next generation. Through selective reproduction and random mutation, individuals are
genetically evolved so that individuals equipped with genes with better adaptability and
higher survivability are presented to their environment in each generation. Since the
environment itself is also changing, its population’s evolution is continuous and non-
convergent. However, the evolutionary algorithm simulates the evolving process with a
given set of candidate solutions for solving a problem with fixed objectives. Intermixed
and randomly altered traits of individual candidate solutions are passed to the next

generation to iteratively lead them toward a set of quasi-optimal, “near-convergent”

solutions.



Figure 3-3 displays a schematic outline of the main procedures involved in an

evolutionary algorithm in their sequential order.

Initial Population

Fitness Evaluation

\/

Selection

\/

Reproduction

\/

New Population

e

v

Figure 3-3: The flowchart of the Evolutionary Algorithm (EA)

Initial population is composed of randomly generated candidate solutions to a given
problem. Each candidate solution is often referred to as chromosome, or simply,
individual. Various types of chromosomes, or encoding of chromosomes, exist for
different types of problems. Particularly, the permutation encoding is suitable for the
combinatorial optimization problems such as the TSP. For instance, a chromosome for

the TSP represents a unique sequence order of visited cities as shown in the Figure 3-4.
e r

38



39

Q|9l0l3l6l4l7l2|8|D
Q|8|3I7I4I1I2|0I9l5>

Figure 3-4: Two examples of permutation encoding for TSP involving ten cities.

Fitness of a chromosome measures the strength of the solution with respect to the
objectives of a problem. In TSP, chromosome fitness can be measured by taking the
inversed total distance of the route traverse according to its encoded sequential order of

cities. Thus, the fittest chromosome in a population contains the shortest tour of the

traversed cities.

Selection operation in genetic algorithm plays the role of passing the ‘good’
genetic material to the next generation by selecting chromosomes for reproduction based
on their fitness. A chromosome’s fitness is directly correlated with its chance of getting
selected. Maintaining the diversity of chromosome prevents introducing biased and
constricted solution search space into next generations. By assigning all chromosomes a
probability of getting selected according to their fitness, premature convergence to a local
optimum solution is prevented while keeping the solutions evolving toward the global
optimum or quasi-optimum solution. Common selection methods include, but are not

limited to, tournament selection, Roulette wheel selection, rank selection, and so on.

Reproduction in genetic algorithms is a process that simulates the exchange of

genetic material between selected parent chromosomes using Crossover, with the addition



40

of some, usually of low-probability, mutation. This way, genetic recombination of
chromosomes allows for exploration of different candidate solutions. In addition, highly
customizable crossover and mutation operators allow flexible operation of genetic
algorithm appropriate to the type of problem and the type of chromosome encoding. For
example, Figure 3-5 shows a crossover operation called order-I-crossover for

chromosomes encoded to represent the permutation of visited cities in the traveling

salesperson problem.

Parent Chromosome 1= (__ 1191013161417121815
+
Parent Chromosome2: (__ 6181317141112101915 )

v

Child Chromosome: (8!1!0]3|6I4I712|915>

Figure 3-5: An example of order-1-crossover for chromosome with permutation encoding

Here, random consecutive bases are selected from the parent chromosome 1 as shown by
the blue marks. Then, the child chromosome inherits the chosen consecutive bases in the
same locus. Lastly, the rest of the bases are filled in by iteratively placing the bases from
the parent chromosome 2 that are complementary to the selected consecutive bases from

parent chromosome 1. Inthe same way, another child can be produced by selecting a

string of random consecutive bases in the parent chromosome 2 instead of parent

hr some 1. Another common Crossover operator for permutation-encoded
chromo ‘



41

chromosome is the edge recombination crossover operator [34]. This operator is
especially useful to preserve the existing edges, or adjacent nodes, of the selected parent
chromosomes during crossover. Such controlled genetic recombination technique can
help prevent a potentially ‘good’ subset solution from getting easily lost from random
shuffling techniques observed in other crossover operators. Figure 3-6 depicts an

example of generating a new child chromosome from the selected parent chromosome

using the edge recombination operator.

Parent Chromosome 1: (__1191018161417121815 D [ Listor Gomected Nefghbers
+

0:9329 5:8196
parent Chromosome 22 (___ 6181317141112101915 ) | 1:5042  6:3458

27819 T:4234
Q 3:0687 82563
46771 91005

Child Chromosome: <1|4I7I219|0I3I6I5ID

Figure 3-6: An example of edge recombination crossover for chromosome with permutation encoding

The child chromosome is built based on the neighbor relationships of each node of the
selected parent chromosomes as shown in the adjacent list. Initially, a random parent
node is selected as the first node of the child chromosome. Then, the rest of the nodes are

filled in by iteratively taking the following two steps. First, the current selected parent

node is removed from the adjacency list. Second, the neighbor of the current selected

node with the minimum number of unselected neighbors is selected as the next node of

the child chromosome. In the case of equal number of unvisited neighbors, a neighbor

node having the highest number of redundant unvisited nodes takes the precedence.



42

Otherwi ;
se, a random neighbor of the selected node is chosen as the next node for the

child chromosome. The edge recombination operator typically requires higher

processing time than other crossover operators. However, it has shown to be
advantageous over other crossover operators in combinatorial optimization problems
such as the traveling salesperson problem and the sequence assembly problem. Mutation
operator is applied to each child chromosome independently. Various mutation
techniques exist for permutation chromosomes. However, they are mainly characterized

by switching the position of randomly selected nodes as shown in Figure 3-7.

(1.9 03647 ging <61813|7|411i2|0|915>

U U

(1;9 83‘6:4‘7‘250:5) <6[8\3[114I7l2|0|915>

Figure 3-7: An illustration of swap mutation

Crossover and mutation operators dictate how the search space is explored in the
evolutionary algorithms. Thus, the method of choice and their probability of occurrence
can control the randomness in the solution exploration. In nature, next generations

ultimately completely replace their previous generations. However, in evolutionary

algorithms individual chromosomes with good fitness can continue to contribute their

genes to the following generations in order to help lead the next generation solutions to

the optimal solution. In addition, it helps to preserve the best solutions found so far. This



43

population selection method is known as elitism. Evolutionary algorithms continues to
run the cycle of the main processes described above until one or more stop criteria are
met. Generally, evolutionary algorithms stops its cycle when the specified number of

evolution cycle is completed or no significant fitness improvement occurs in the

population.

Multiobjective evolutionary algorithm (MOEA) considers multiple, potentially
conflicting objectives as fitness evaluation criteria for evolving candidate solutions. For
instance, in the traveling salesperson problem, a salesperson might have to consider
minimizing the cost of traveling, but at the same time maximizing sales while also
minimizing the total distance traveled. In the sequence assembly problem, the fitness of
each candidate solution can be based on maximization of the overall overlap strength,
minimization of the total number of contig gaps, and maximization of the average contigs
length. With such fitness evaluation criteria, the multiobjective evolutionary algorithm
evolves the candidate solutions toward Pareto optimal state that best satisfy the trade-off
between the problem’s objectives. Pareto optimal, also known as Pareto efficient, is a
term used to denote a state of optimal allocation of values along problem’s objectives
where there exists no improvement of an objective without making another objective
worse. Thus, Pareto improvement is only possible when there exists an improvement
along a problem obj ective without worsening the conditions along the other objectives.
A set of Pareto optimal solutions can also be stated as nondominated solutions given all

other solutions with alternative allocations of values along the problem’s objectives

evaluate to be suboptimal.



44

3.2.1 NSGA-II

Some of the widely used multiobjective evolutionary algorithms are
Nondominated Sorting Genetic Algorithm II (NSGA-II) [35], Strength Pareto
Evolutionary Algorithm (SPEA) [36], and Pareto Archived Evolution Strategy (PAES)
[37]. Particularly NSGA-II has shown to outperform other multiobjective evolutionary
algorithms including SPEA and PAES in various test problems [35]. The strength of
NSGA-II comes from its efficient sorting method that ranks each candidate solution
based on their level of nondomination, ensuring the diversity of the solution using

dynamically computed crowding distance measurement, and incorporating elitism in

population selection.

Sorting by nondomination rank refers to assigning solutions according to their
level of Pareto optimality. In NSGA-IL, each level of nondominated solutions are
iteratively found, leaving out the explored nondominated solutions from the solution set
in each iteration until all solutions are sorted according to their nondomination rank. A
crowding distance measures how crowded a solution is by its surround neighbor solutions
and it is used to help maintain diverse solutions throughout generations. In NSGA-IL,
crowdedness of a solution is the averaged distance of two nearest adjacent solutions
along each objective. A less crowded solution from a set of solutions belonging to same
ank is the less common solution and therefore takes preference over

nondomination T

more crowded solution since it contributes more to the overall diversity of the solution

population.



45

In ; ]
each generation, the parent solutions and their child solutions are combined to

reinforce elitist selection strategy and sorted based on their nondomination rank.

Subsequently, N numbers of next generation candidate solutions are selected based on

their rank and their crowding distance. During population selection, the lower ranked
solutions, i.e., solutions that are less dominated by other solutions, take precedence over
the higher ranked solutions, i.e., solutions that are more dominated by other solutions.
Meanwhile, solutions with higher crowding distance from less crowded solution set take
precedence over the solutions with lower crowding distance. This way, the Pareto set

iteratively evolves toward its true Pareto efficient solution set throughout generations.



CHAPTER 4

PROPOSED METHODOLOGY

Taking the advantages of the overlap layout consensus sequence assembly and the
fast-growing sequencing technology into consideration, I propose a new method for
solving the sequence assembly problem with hybridization of ant colony optimization
and a multi-objective evolutionary algorithm. Figure 4-1s shows the overview of the

proposed method.

Sequence
Reads

v

ACO

v

Permutations of
Contigs

v

MOEA

v

Set of
Quasi-optimally
Assembled
Contigs

Figure 4-1: A schematic diagram of the hybridization of ACO and MOEA for solving the sequence assembly problem

46



47

The main :
purpose of the modified ant colony optimization algorithm is to assemble a set
f sh
of short sequence reads and produce the quasi-optimal contigs that yield the highest

average overlap score. The resulting contigs which span the whole input sequence reads
are permuted to generate the individuals of the initial population for the further
processing with a modified multiobjective evolutionary algorithm. A widely used
multiobjective evolutionary algorithm, NSGA-II (Nondominated Sorting Genetic
Algorithm 1I), is used to explore the optimal arrangement of the contigs through
controlled shuffling with respect to the objectives of the sequence assembly problem. By
applying the overlap layout consensus assembly method on the resulting arrangement of

the contigs, the proposed system produces a set of quasi-optimally assembled contigs.

4.1 ACO - Contigs Generator

Initially, a set of artificial reads obtained from a sequencing simulator is recorded
in an associative array where each read is uniquely identified by an integer value. Also,

overlap strength between each of the reads is computed and stored in an adjacency matrix

as shown in Figure 4-2.



TGGCA

TTATG
CTTAT

TATGG
ATGGC

.......... overiap scores

Y as e
key value 1 X 0001
1 TGGCA | 2 2 X 0 4 3
2 TTATG >

‘ 3 1 4 X 38 2

3 CTTAT
4 TATGG ¢ e
5 ATGGC 5 40 10X

Figure 4-2: An example of constructing an adjacency matrix with read overlap scores

Overlap score between two reads is obtained using the method shown in Pseudocode 1
where the maximum overlap score between two reads is found by iteratively computing

the overlap score as one read slides against the other read one base at a time.



49

FindMaxOverlapScore(read,, read;)
Scoremx € -1;
SCOremax_tndex € -1;
t € read:.length;
FOR i=0 TO t
Matchedbases €« 0;
Unmatchedpases € 0;
Scorecurrent € 0;
Residualpases € t - i; //remaining num of bases
IF Residualpases >= Scorepx DO
FOR j=9 TO0 Residualbases
IF readi[i+j] == read:[j]
Matchedpases € Matchedpases + 1
ELSE

Unmatchedpases € Unmatchedpases + 1
END
Scorecurrent € Matchedbases - Unmatchedbases
IF Scorecurrent > Scoremax THEN
Scoremax € SCOr€current
SCOremax_tndex € 1
END
ELSE
BREAK
END
END
RETURN (SCOremax, SCOM€max_index)

Pseudocode 1: The algorithm used for finding the maximum overlap score of two sequence reads

Due to the overlap directionality between two reads, the overlap scores above and below

the diagonal of the depicted adjacency matrix in Figure 4-2 are shown to be unequal.

The ant colony optimization component of the proposed method was implemented

by modifying an open source code of ant colony optimization [40] written for solving the

traveling salesperson problem using multithreaded programming in Python. The

pseudocode for the modified ant colony optimization algorithm is shown in Pseudocode

2. Overall, the

modified ant colony optimization generates a set of partially assembled

diverse patterns of contigs as local improvement to solving the assembly problem.



50

Shest € RandomSolution(seqReadsInRandOrder) H
Sbest_cost € AvgContigOverlap(Spest);

Pheromone ¢ IntializePheromone(Q);
WHILE iteration < T DO
ContigPermutations =

1 = [1]; //candidate solutions
FOR i=1 TO K DO //K ants

Si € ConstructContigs(OverlapAdjacencyMatrix, Pheromone, a,
B, minOverlap);
Si_cost € AvgContigOverlap(S;:);
IF Si cost < Svest_cost THEN
Sbest_cost € Si_cost;
Sbest € Si;
END
ContigPermutations € S;;
END
EvaporatePheromone(Pheromone, p);
FOREACH path € ContigPermutations DO
Selite € Sbest;

UpdatePheromone(Pheromone, path, pathcost ,Selite);
END

END
RETURN Sbest ;

Pseudocode 2: The algorithm used for the main loop of the modified ACO

Based on the computed read overlap scores in an adjacency matrix, contigs are generated

by each ant in each iteration using the algorithm shown in Pseudocode 3.



51

Constr‘ucth_mtigs(OverlapAdjacencyMatrix, Pheromone, a, B,
minOverlap)

Rstart € InitialStartNode();

Pathexpiored € [Rstart]; //path taken
Pathunexpored < [ID_of__All_Reads - Rstart];

Reurrent € Rstart;

WHILE |Pathunexpiorea| > © DO

Rnext € ChooseNextNode(Rcurrent, OverlapAdjacencyMatrix,

Pheromone, a, B); //apply a transition rule
IF OverlapScore(Rcurrent, Rnext) < minOverlap DO
Rnext € PickRandomNode();

Pathexpiored.append(Rnext); //start of a new contig
ELSE

Pathexplored [ | Pathexplored | -1 ] .append ( Rnext) H
END

Pathunexplored. remove (Rnext) ;

Rcurrent (_ Rnext;
END

RETURN Pathexpiored;

Pseudocode 3: The algorithm for constructing contigs per each complete tour around all sequence reads

The probabilistic transition, ChooseNextNode(...), of an ant is made from a current
sequence read to next sequence read, determined by the overlap strength and the amount
of pheromone existing between the current sequence read and its neighbor sequence
reads. Condition exists for extending a current contig where a specified minimum
overlap score, minOverlap, must be satisfied between two reads. In the case of condition
failure, a random neighbor sequence read is selected and becomes the beginning
sequence bases of a new contig. Consequently, the transition condition helps to prevent
the formation of contigs by reads with weak overlap strength. Pheromone deposit on the
path traversed by an ant is directly correlated with the average overlap scores of the

formed contigs. Formally, pheromone deposit on an edge between sequence read i and j



52

is computed by taking the average of the overlap score C of n number of contigs formed

by ant k at iteration t.

n_ Ck(t)
. &p=1Cp
Aty = 1@ = Lif (L)) € T*(D)
0 ;otherwise

Pheromone deposit amount is applied if and only if the edge is part of the traversed path
T and is weighted by a specified value Q. Additionally, the best path found so far until
current iteration t is further reinforced during pheromone updates through incorporation
of elitism. The current pheromone level is also reduced by pheromone evaporation to
prevent premature convergence to local optimal solution. Overall, pheromone update at
iteration t is defined by reduction of current pheromone level by the pheromone

evaporation rate p, pheromone deposit by all ants, and pheromone deposit by the elite ant

with the best path so far.
Tij(t) =(1- p) . Tij(t) + ATij(t) + bATg(t)

At the completion of a specified total number of iterations, the optimal set of contigs with

the maximum average overlap scores is obtained.

4.2 Permutations of Contigs

A new associative array and adjacency matrix are obtained based on the set of
contigs output from the modified ant colony optimization. Consequently, by taking N

random permutations out of the key values of the contigs from the associative array,



53

tnitial population input to the subsequent multiobjective evolutionary algorithm is

generated as shown in the Figure 4-3.

keys  contigs ind.  contigs permutations

0: ACCTACCGCG .

0 aogmeca 1: 01234567809
3TA1TCCGAA 2:1359024687
4 CGCA % 5942108763
5. CCGCGATTGTAC L > -

6- GGGAACT

7- TCAGG

8 TGTTAAT .

o AT N: 4732951608

Figure 4-3: Reassigning IDs to new contigs and generating an initial population for MOEA

4.3 MOEA - Contigs Assembler

A nondomination-based multiobjective evolutionary algorithm, NSGA-II [35],
was implemented using the framework provided by Python package DEAP (Distributed
Evolutionary Algorithm in Python) [44] for processing of the individuals of contig
permutations toward the final quasi-optimal solutions of the sequence assembly. The
evolutionary algorithm component of the proposed system aims to heuristically explore
the search space bounded by contig permutations to find a set of solutions that optimally

dominates the objectives of the individual fitness criteria with the aid of custom genetic

operators and elitist selection strategy incorporated into NSGA-IL. The pseudocode

h . Pseudocode 4 Pseudocode 5, and Pseudocode 6, gives a high-level description
shown in s

of the main operations of NSGA-IL



54

initPop €« InitializePopulation(PopSize)
FastNonDominatedSort(initPop)

RankSolutions(initPop) //based on nondomination level
Pe € Select(Po, N)

Qo € MakeNewPop(Po)

WHILE t < T DO //run for T generations
Rt € Pt U Q¢ //combine parent and offspring
F € FastNonDominatedSort(R:)
Pts1 =@ //next parents
i=1 //front(nondominated) level
WHILE |Pea|+|Fi] < N DO //N num of parents
CrowdingDistanceAssignment(F;)
Pts1 € Praa U Fy
i=1i+1
END
Sort(Fi, <,) //<p crowded-comparison operator
Prvr € Praa U Fi[1:(N-|Pea|)] //fill the last by distance
Qw1 € MakeNewPop(Pt.1)
t€t+1
END
RETURN Qr

Pseudocode 4: The algorithm used for the main loop of the NSGA-II MOEA [35].

=



FastNonDominatedSort(P)

FOR EACHp € P //P alL solutions
Np = @ //num of solution that dominates p
Se = @ //solutions that p dominates
FOR EACH qEP
IF p < q THEN //If p dominates q
Sp = Sp U {q}
ELSE IF q < p THEN
np = np + 1

END
END
IF ny,=0 THEN
Prank = 1
Fi=F1 U {p} //add p to front
END
END

i=1 //front counter
WHILE F; # @ //initial Fi=F;=Nondominated front
Q =@ //members of the next front
FOR EACH p € F;
FOR EACH q € S; //Sp=P - Fy
Ng =nNqg -1
IF ng = © THEN
Qrank = 1 + 1

Q=QuU {q}
END
END
i=1i+1
Fi = Q
END

Pseudocode 5: The algorithm for the fast nondominated sorting method [35]

CrowdingDistanceAssignment(I)

L = |I| //number of solutions in I
FOR EACH i . )

set I[i]aistance=0 //initialization
END

FOR EACH objective m o
I = sort(I, m) //sort for each objective
I[lldistance = I[lldistance =
FOR i=2 TO (1-1) ] ) - -
I[i]distance = I[i]distance + (I[1+1].m-1[1-1].m)/(fm - fn )
END
END

Pseudocode 6: The algorithm for computing and assigning the crowding distance [35]

55



56

length. Assumi
gth uming that C denotes the overlap score of a contig, and L denotes the length

ofa contig ivolving N total number of contigs, the fitness functions can be stated as

follows.

1N
f=N-1

>N,
fz= N

Then, the evolutionary algorithm evolves the candidate solutions towards the optimal
tradeoffs between maximization of average contig overlap score, minimization of total

number of contig gaps, and maximization of average contig length.

A set of candidate solutions for the next generation is produced by edge
recombination crossover operator and swap mutation. As mentioned in the previous

section, the edge recombination helps to retain the edge information of the parents during

crossover operation. In turn, it prevents from random exploration in the search space and

helps to pass the good partial solution content found in parents, assembled contigs with

high overlap score, to their offspring in a controlled setting as shown in Figure 4-4.



57

contigs

1: AGGTACG
2: TTAGC

3: CAGGT
4: AGCAA
5: ACGT

6: GTTCAG

edge recombination

parentA: 312456 arent B: 5
CAGGTACG TTAGCAA ACGTTCAG* D B 52314

ACGTTCAG TTAGC CAGGTACG AGCAA*

offspring: 132456
AGGTACG CAGGT TTAGCAA ACGTTCAG*

* represents assembled contigs with minimum overiap score of 2

Figure 4-4: An illustration of edge recombination crossover operator used for the proposed assembly method

Swap mutation operation brings change in the contig permutation pattern of an offspring

through random partial reformation of its genetic content. Mutation operators, in general,

occur at a relatively low probability compared to crossover operators and they are

primarily used to explore other random solution candidates in order to overcome

converging into a locally optimal solution. Swap mutation operator in the proposed

system i ed to simply exchange the randomly chosen elements in two loci as
ystem is programim

shown in Figure 4-5.



58
contigs

offspring: 1 | 3| 2 |
: AGGTACG 1214|5
. TTAGC 1516 AGGTACG CAGGT TTAGCAA ACGTTCAG"

: CAGGT

: AGCAA ‘
« ACGT

6: GTTCAG OffSPring mutateq:

413121156 AGCAA CAGGT TTAGC AGGTACGTTCAG"

*
represents assembled contigs with minimum overlap score of 2

Figure 4-5: An illustration of swap mutation for the proposed assembly method

Taking the advantage of elitism, a specified N number of next generation candidate

solutions are selected from a pool of both offspring and parents solutions based on their

non-dominating ranks and their crowding distance. At the completion of ¢ generations, a
set of Pareto optimal solutions that represent the quasi-optimally fitting set of assembled

contigs along the objectives are obtained.



CHAPTERS5
EXPERIMENTS

The main goal of conducted experiments was to study the advantages and
disadvantages in various aspects of the proposed system, but also to estimate the degree
of positive contribution made by the proposed system relative to a modern OLC-based
sequence assembler. The areas of the studies included: 1) testing for proper functionality
as designed, 2) studying the role of each component of the proposed system, 3)
examining the diversity of Pareto-front solutions of assembled contigs, 4) analyzing the
output variability under varying input sequence settings, and 5) assessing the quality,
accuracy, and practicality of the assembled contigs in comparison with other sequence

assembly methods.

5.1 Experiment Setups and Settings

Libraries of input sequence data were prepared for experiments using a

sequencing simulation tool, ART [38]. The synthetic sequence data were sequenced in
qu ,

reference to randomly generated genomes and samples of known genomes. The

imulated sequencing technology was [llumina sequencing technology, HiSeq 2500 [53].
simulate

59



60

default
The default read length, read depth, and read error rate were set as shown in Table 1 for

the sequencing simulation.

Read Length (nt)

Read Depth | Error Rate

50

10x 1.5%

Table 5-1: The default setting for single read sequencing simulation (HiSeq 2500)

The default settings for the control parameters of each component of the proposed system

are displayed in Table 5-2 and Table 5-3.

Parameter Parameter Value Description
T 50 number of iterations
N 10% of number of reads number of ants
Omin 10% of read length minimum read overlap score
p 0.35 pheromone evaporation rate
a 1.0 read overlap weight
B 1.0 pheromone strength weight
Cina 0.25 wt. of avg. read overlap score in individual contig
Cavg 0.75 wt. of avg. read overlap score of all contigs

Table 5-1: The default control pa

rameter setting for the ACO component of the proposed method




61

Parameter Parameter Value Descripti
ption
T
200 number of generations
N

10% of number of reads population size

Onin 10% of avg. read length
CX 1.0

minimum read overlap score

crossover probability rate

MT 0.2 mutation probability rate

Table 5-2: The default control parameter setting for the MOEA component of the proposed method

The size of the ant colony in ACO and the population in MOEA were set to change
dynamically relative to the size of the input sequence reads to provide sufficient amount
of solution exploration. The minimum read overlap score required for contig formation
was set to 10% of average read length to prevent formation of long contigs with poor read

overlaps which in turn may lead to false qualification of each candidate solution.

5.2 Evaluation of System Reliability

Based on the default settings, the proposed system was evaluated for its

performance reliability. The test was conducted using a set of synthetic input sequence

reads sequenced based on a synthetic genome with length of 1000 nucleofides (nt). The

reliability of the system was observed by inspecting the overall change in solution quality

during the sequence assembly processing in each component of the proposed system.

Specifically, the averaged contig overlap scores throughout iterations during the ACO



62

r 09289 m 18051

000000000

©000000000000000

The Best Avg Overlap Score

0000000 GO0000000000000

Iterations

Figure 5-1: The scatter plot of the best avg. contig overlap scores throughout iterations during ACO processing

The observed correlation measurement of 0.9289 and the positive slope coefficient value

of 1.8051 from a fitted simple linear regression model indicated an overall improvement

; i arance of
of the averaged contig overlap scores throughout iterations. However, the appe

stai like plot was called into question whether solutions were being discovered
rcase-like

. i tem, the to
stochastically. In order to investigate the questioned behavior of the sysie d

[utions returned by all ants in each iteration was plotted as shown in
all solutions return

solution out of .
at an iteration refers to the best solution found

Figure 5-2. For clarity, the best solution - o

i iterati anwhile the top solution a
t of all solutions from jterations preceding the iteration, me

out of all solutio



63

an iteration refers to the to :
p solution found out .
of all solutions onl
y from the current

iteration.

Top Avg Overlap Score

g

r 00335 m 00454

e

Figure 5-2: The scatter plot of the top avg. contig

iterations. However, similar behavior persisted throughout

choice of initial start node/read and

the minimum read overlap

Iterations

score constraint is suspected to be one

overlap scores throughout iterations

The plot shows that the top solutions found in each iteration does not suggest overall

increment throughout iterations. To ensure that it is not caused by lack of solution

exploration, the ACO component was tested with different ranges of ant colony sizes and

different parameter settings.

The cause of the questioned behavior is highly suspected to be rooted in the random

the multiple occurrence of random choice of

node/read encountered whenever minimum overlap score is not satisfied. In other words,

of the main reason to



64
observed difficulty in quasi-optimal solution convergence. Still, the overall best solution
was used to produce the ACO-generated contigs that serves to form the initial population
for the following MOEA processing. - Similarly, to assess the reliability of the MOEA
component of the proposed system, the fitness measurements along each objective

throughout generations were plotted as displayed in Figure 5-3, Figure 5-4, and Figure 5-
5.

r 09624 m 20334

Averaged Indnadual Avg Overlap Score

Generations

Figure 5-3: The scatter plot of averaged individual avg. contig overlap score fitness measurements throughout

generations



65

r 09492 m .94914

Averaged Indwidual Contig Gaps

Generations

Figure 5-4: The scatter plot of averaged individual contig gap fitness measurements throughout generations

r 09662 . m 39075

Averaged Indniidual Avg Contig Lengths

Generations

] . h 1|t||es measur m t "ela“()n



66

1 i ; .
The plots display evolution of the Initial population toward its quasi-optimal Pareto

fitness with consiste imizat; T
nt maximization of individual average contig overlap scores,

minimization of individual number of contig gaps, and maximization of individual

average contig lengths throughout generations. As indicated by the slope coefficient of
the fitted regression model, the MOEA component displayed lack of high leverage in

fitness per generation. This observation suggested that incorporation of the edge

recombination crossover operator might possibly be decelerating the rate of fitness
improvement. In addition, incorporation of elite solutions from previous generations
were considered to be the main contributing<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>