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ABSTRACT

In this thesis, we apply various numerical methods to solve ordinary di↵erential equa-

tions and the paraxial wave equation. The numerical methods we applied to solving paraxial

wave equation are the 4th order Runge Kutta method, the Crank-Nicolson method, the

Leapfrog Crank-Nicolson method, and the splitting spectrum method. The advantage of the

explicit RK4 method is the high order accuracy in time. We perform detailed comparison

between these numerical methods. The paraxial wave equation is derived from Maxwell’s

equation and we focus on the case of cubic Kerr nonlinearity presents, which is applied

to study optical pulse propagation in nonlinear Kerr media. The Leapfrog Crank-Nicolson

method, being an implicit method, is the most cost e�cient method and when choosing

small step sizes can be the most accurate when applied to paraxial wave equations.
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Chapter I: INTRODUCTION

The nonlinear Schrodinger Equation (NLSE) is an important equation for studying the

dynamics of optical pulses [3, 6] and Bose-Einstein condensation [9]. Recent investigation on

the propagation of light pulses through optical fibers have lead to the interest in the study of

nonlinear Schrodinger Equation (NLSE) [2]. Some applications of NLSE are wave interaction

between electrons and ions, chemical interaction based on the first principle, nonlinear optics,

protein folding, and the flow of superfluids without friction. In optics NLSE mimic the pulses

which preserve their shape inside fibers despite their dispersive e↵ects. The equation could

describe the wave group envelope of such pulses in material, and it could also describe the

solutions propagating in fluid [17]. NLSE describes the propagation of short optical pulses

as fundamental and higher order solutions inside optical fibers. When two or more optical

waves at di↵erent wavelengths are launched inside a fiber simultaneously, the several new

nonlinear e↵ects become important [1]. In dispersive nonlinear media, optical pulse has

self-focusing and self-steepening e↵ect [12, 15]. Numerical tools are key to understand these

phenomenons [8, 13, 10].

In this thesis, we first review basic numerical Runge Kutta methods for solving ordinary

di↵erential equation (ODE) initial value problem, then we focus on the paraxial wave equa-

tion. The numerical method we applied to solving paraxial wave equation are the 4th order

Runge Kutta method, the Crank-Nicolson method, the Leapfrog Crank-Nicolson method,

and the splitting spectrum method. We performed detailed comparison between these nu-

merical methods. The paraxial wave equation is derived from Maxwell’s equation and we

focus on the case where the cubic Kerr nonlinearity presents. This paraxial wave equation is

applied to investigate the self focusing of optical pulse in nonlinear media. The paraxial wave

equation can serve as a tool to help us to study the nonlinear optical pulse propagation in

nonlinear media using Maxwell solvers such as the Finite-Di↵erence Time-Domain (FDTD)
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method [16, 14]. Using FDTD method to solve the Maxwell equations for long range pulse

propagation (millions of wavelength or longer) is a very challenging task. This mainly due

to the small time step from the explicit finite di↵erence algorithm. Progress was made to

archive this goal, such as the moving frame FDTD method [7, 11]. The solution of the

paraxial wave equation can be used as a reference solution to help us on developing feasible

FDTD based pulse propagator.

The thesis is organized as follows. In chapter 2, we will review the basic Runge-Kutta

method for solving ordinary di↵erential equations. In chapter 3, we will first derive the

paraxial wave equation from Maxwell’s equations under the paraxial assumption. Numerical

examples on solving paraxial wave equation will be presented in chapter 4. We will com-

paratively show the di↵erence between the various numerical methods and their accuracy

discrepancies. Conclusion and future work is discussed in Chapter 5.
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Chapter II: NUMERICAL METHODS FOR DIFFERENTIAL
EQUATIONS

In this chapter we will describe the various numerical methods used throughout this

paper. Along with a description we will derive, explain, and give an algorithm for each

method. These numerical methods will be used to solve the following Ordinary Di↵erential

Equation (ODE) initial value problem:

y0 = f(t, y), a  t  b, y(a) = ↵. (2.1)

2.1 Euler’s Method

When it comes to solving ODE initial value problem the Euler’s Method is the most

elementary approach. Euler’s Method is a first order method and estimates the next ap-

proximations based on the rate of change at the current point. Euler’s Method is derived

directly from Taylor’s Series Expansion in the from:

y(t
i+1) = y(t

i

) + hy0(t
i

) +
h2

2!
y00(t

i

) +
h3

3!
y000(t

i

) + · · ·+ hn

n!
y(n) +

hn+1

(n+ 1)!
y(n)(⌧), (2.2)

where h = t
i+1 � t

i

and ⌧ is some value between (t
i

, t
i+1). For instance, if n = 1, we get:

y(t
i+1) = y(t

i

) + hy0(t
i

) +
1

2!
h2y00(⌧). (2.3)

We can truncate the last term of the right hand side to obtain a first order approximation of

the numerical update equation of the di↵erential equation. Because y(t) satisfies the ODE

(2.1), we obtain the Euler’s algorithm [5, 4],

y(t
i+1) = y(t

i

) + hf(t
i

, y(t
i

)). (2.4)
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Let w
i

⇡ y(t
i

), for each i=1, 2,. . . ,N . Using the Euler Method an approximation of the

numerical solutions of at t
i

, i=1, 2,. . . ,N , can be obtained using the numerical method of:

w0 = ↵, w
i+1 = w

i

+ hf(t
i

, w
i

), for each i = 0, 1, . . . , N � 1. (2.5)

The algorithm of Euler Method can be written as follows:

INPUT: endpoints a, b; integer N ; initial condition ↵.

OUTPUT: approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b� a)/N.

t = a;

w = ↵;

OUTPUT (t, w). (The initial condition)

Step 2 For i = 1, 2, ..., N do Steps 3,4.

Step 3 Set w = w + hf(t, w);

t = a+ ih.

Step 4 OUTPUT (t, w).

Step 5 STOP.

This method is very basic, direct and first order accurate, but can be less accurate than

higher order methods. An approximation of the error is proportional to the step size h.

Hence, a good approximation is obtained with a very small h which can take a long time

and be computational expensive.

2.2 Runge Kutta method of order two

To improve the order of accuracy, the Euler’s method can be extended to higher order.

In this section, we review two second order methods, the modified Euler method and the

midpoint method.
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The Modified Euler Method approximates f(t, y) at t
i

using the average value of f(t, y
i

)

and f(t, ỹ) where ỹ is the solution of the Euler method. The modified Euler method can be

written as:

w0 = ↵

w
i+1 = w

i

+
h

2
[f(t

i

, w
i

) + f(t
i+1, wi

+ hf(t
i

, w
i

))], for i = 0, 1, . . . , N � 1. (2.6)

The algorithm for the modified Euler method follows:

INPUT: endpoints a, b; integer N ; initial condition ↵.

OUTPUT: approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b� a)/N.

t = a;

w = ↵;

OUTPUT (t, w).

Step 2 For i = 1, 2, ..., N do Steps 3,4.

Step 3 Set w = w + h

2 [f(t, w) + f(t+ h, w + hf(t, w))];

t = a+ ih.

Step 4 OUTPUT (t, w).

Step 5 STOP.

The midpoint method approximates the right hand of the di↵erential equation f(t, y)

using f(t, ỹ) where ỹ is the solution at t
i

+ h/2 using the Euler method. The midpoint

method can be written as:

w0 = ↵

w
i+1 = w

i

+ hf
⇣
t
i

+
h

2
, w

i

+
h

2
f(t

i

, w
i

)
⌘
, for i = 0, 1, . . . , N � 1. (2.7)

The algorithm for the midpoint method follows:

INPUT: endpoints a, b; integer N ; initial condition ↵.
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OUTPUT: approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b� a)/N.

t = a;

w = ↵;

OUTPUT (t, w).

Step 2 For i = 1, 2, ..., N do Steps 3,4.

Step 3 Set w = w + hf
⇣
t+ h

2 , w + h

2f(t, w)
⌘
;

t = a+ ih.

Step 4 OUTPUT (t, w).

Step 5 STOP.

Both methods are the Runge Kutta methods of order two (RK2).

2.3 Runge Kutta method of order 3

A Runge Kutta method of order 3 (RK3) is given below.

Starting with:

w0 = ↵,

we get

w
i+1 = w

i

+
1

6
(k1 + 4k2 + k3)h, for i = 0, 1, . . . , N � 1, (2.8)

where

k1 = f(t
i

, w
i

),

k2 = f(t
i

+
1

2
h, w

i

+
1

2
k1h),

k3 = f(t
i

+ h, w
i

� k1h+ 2k2h).

The introduction of k1, k2, and k3 in the code eliminates the need for successive nesting.

This made the code very easy to comprehend and debug.
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Below is the RK3 Algorithm:

INPUT: endpoints a, b; integer N ; initial condition ↵.

OUTPUT: approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b� a)/N.

t = a;

w = ↵;

OUTPUT (t, w).

Step 2 For i = 1, 2, ..., N do Steps 3,4.

Step 3 Set k1 = f(t, w);

k2 = f(t+ h/2, w + hk1/2);

k3 = f(t+ h, w � hk1 + 2k2h);

w = w + h ⇤ (k1 + 4k2 + k3)/6;

t = a+ ih.

Step 4 OUTPUT (t, w).

Step 5 STOP.

2.4 Fourth order Runge Kutta method (RK4)

The fourth order Runge Kutta method (RK4) is a very popular Runge-Kutta numerical

method. This method is the fourth order method which generally produces an approximation

with enough accuracy and larger stability region than RK2 and RK3. Similarly to the RK3

method we introduce k1, k2, k3, and k4. Here is the method:

w0 = ↵,

k1 = hf(t
i

, w
i

),

k2 = hf
⇣
t
i

+
h

2
, w

i

+
1

2
k1

⌘
,
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k3 = hf
⇣
t
i

+
h

2
, w

i

+
1

2
k2

⌘
,

k4 = hf(t
t+1, w

i

+ k3),

w
i+1 = w

i

+
1

6
(k1 + 2k2 + 2k3 + k4), for i = 0, 1, . . . , N � 1. (2.9)

The higher order of numerical method generally give less error than lower order methods,

because the truncation error is proportional to hn and the smaller h is the more accurate

the method is. If the exact solution of the ODE is a polynomial of order n or less, it would

be solved exactly by RKn. For example, Euler’s Method will solve a first degree polynomial

(linear line) exactly and RK4 will solve a fourth degree polynomial (or less) exactly. Below

is the coding algorithm for RK4.

Below is the RK4 Algorithm:

INPUT: endpoints a, b; integer N ; initial condition ↵.

OUTPUT: approximation w to y at the (N + 1) values of t.

Step 1 Set h = (b� a)/N.

t = a;

w = ↵;

OUTPUT (t, w).

Step 2 For i = 1, 2, . . . , N do Steps 3,4.

Step 3 Set k1 = hf(t, w);

k2 = hf(t+ h/2, w + k1/2);

k3 = hf(t+ h/2, w + k2/2);

k4 = hf(t+ h, w + k3);

w = w + (k1 + 2k2 + 2k3 + k4)/6;

t = a+ ih.

Step 4 OUTPUT (t, w).

8



Step 5 STOP.

In the chapter IV, we will show some numerical examples on the solution to ODE using

Runge Kutta method, followed by the solution to paraxial wave equation using Runge Kutta

and the comparison with some other commonly used numerical methods.
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Chapter III: PARAXIAL WAVE EQUATIONS AND THEIR
NUMERICAL SOLUTIONS

Recent investigation on the propagation of light pulses through optical fibers have lead

to the interest in the study of nonlinear Schrodinger Equation (NLSE). An example of a

NLSE is:

@
t

 (~x, t) = �"
2

2
r2 + V (~x) + �| |2 , (3.1)

where: t represents time, ~x(2 <d) is spatial coordinate,  (~x, t) is the complex-valued wave

function, V (~x) is the real-valued external potential, � is a given interaction constant, 0 <

"  1 is the scaled Planck Constant [2].

In this chapter, we first derive the paraxial wave equation from Maxwell’s equations

and then review some of the commonly used numerical methods for solving paraxial wave

equation, including the explicit Runge Kutta method, the implicit Crank-Nicolson method,

the leapfrog Crank-Nicolson method, and the splitting spectrum method.

3.1 From Maxwell Equations to Paraxial Wave Equations

In this section our goal is to derive the paraxial wave equation from Maxwell equations.

First, the Maxwell equations in time domain given by:

r⇥ E = �µ0@tH, (3.2)

r⇥H = ✏0n
2@

t

E, (3.3)

where E and H are the electric and magnetic fields respectively, n is the refractive index,

and ✏0 and µ0 are vacuum permittivity and permeability respectively.

Using substitution on the system of equations from equation (3.2) and (3.3) we get:

10



r⇥r⇥ E = �µ0✏0n
2@2

t

E. (3.4)

Now using the paraxial approximation, we can simplify r⇥r⇥E = r(r ·E)�r2E ⇡

�r2E. Also applying a Fourier transform to @2
t

E to get �!2E and substituting µ0✏0 =
1
c

2 ,

we get:

r2E +
!2

c2
n2E = 0, (3.5)

Focusing on Equation (3.5) we split r2E to assist simplifying

r2E = r2
?E + @

zz

E. (3.6)

Consider the plane wave solution:

E = Aeikz, (3.7)

where A = A(x, y, z) is the amplitude of the wave.

Evaluating for @
zz

E we get:

@
z

E = A
z

eikz + Aikeikz, (3.8)

and by the product rule we have:

@
zz

E = A
zz

eikz + 2A
z

ikeikz + A(ik)2eikz. (3.9)

Using paraxial approximation, A
zz

= 0, so the above equation is simplified to

@
zz

E = (2ikA
z

� k2A)eikz, (3.10)

11



where k = !

c

n0.

For nonlinear media, using the fact that

n = n0 +�n, (3.11)

where n0 is the refractive index for linear part and �n is the index for nonlinearity.

We have

n2 = n2
0 + 2n0�n+�n2. (3.12)

In general, the nonlinear wave is much smaller than the linear wave, so �n << n0.

When we square a small number it becomes ever smaller implying �n2 ⇡ 0 therefore

n2 = n2
0 + 2n0�n. (3.13)

Substituting equations (3.6), (3.10), and (3.13) into equation (3.5), we get:

2ik@
z

E +r2
?E + 2k2�n

n0
E = 0. (3.14)

Equation (3.14) is a partial di↵erential equation (PDE) in (x, y, z) space. In the next

few sections, we focus on the numerical solution to the paraxial wave equation in (x, z) to

study the wave propagation in z direction in Kerr nonlinear media where �n = n2|E|2. We

let u = E, k = k0 = n0!0/c and rewrite the paraxial wave equation as:

u
z

=
i

2k0
u
xx

+
i!0

c
n2|u|2u. (3.15)

Let c1 =
1

2k0
and c3 =

!0n2
c

, the equation (3.15) can be simply written as

u
t

= ic1uxx

+ ic3|u|2u. (3.16)
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3.2 RK4 for Paraxial Wave Equations

In Chapter 2 we introduced the RK4 algorithm for ODEs, in this chapter we will modify

it to accommodate the paraxial wave equation (3.16).

Let u(z, x) = u(n�z, j�x) = un

j

. We use centered finite di↵erence to approximate u
xx

,

we get:

u
xx

=
u(n�z, (j + 1)�x)� 2u(n�z, j�x) + u(n�z, (j � 1)�x)

�x2
(3.17)

=
un

j+1 � 2un

j

+ un

j�1

�x2
. (3.18)

Plugging it into the right hand side of equation (3.16) we get

f(un

j

) = ic1
un

j+1 � 2un

j

+ un

j�1

�x2
+ ic3|un

j

|2un

j

, (3.19)

For the left hand side of equation (3.15), we have

u
z

=
u((n+ 1)�z, j�x)� u(n�z, j�x)

�z
=

un+1
j

� un

j

�z
. (3.20)

The incremental in z direction is decided according to the CFL condition for parabolic

equation: �z = h = �x2/(2c1). This is to guarantee stability.

The boundary condition is the Dirichlet boundary where u(x = x
L

, z) = u(x = x
R

, z) =

0.

The RK4 Algorithm for paraxial wave equation (3.15) is given below:

INPUT: computational domain x
L

< x < x
R

, a < z < b and initial condition.

OUTPUT: solution u(x) at each z = b.

Step 1

Set �x = (x
R

� x
L

)/N
x

, h = �x

2

2c1
, N = (b� a)/h.

Initial value w = w(z = a, x).

13



Step 2 For i = 1, 2, . . . , N do Steps 3.

Step 3 Set k1 = hf(w);

k2 = hf(w + k1/2);

k3 = hf(w + k2/2);

k4 = hf(w + k3);

w = w + (k1 + 2k2 + 2k3 + k4)/6;

Apply boundary condition.

Step 4 OUTPUT (x, w).

Step 5 STOP.

3.3 The Crank-Nicholson method

The Crank-Nicholson method is another popular method for NLSE or paraxial wave

equation. Starting with the same paraxial equation

u
z

= ic1uxx

+ ic3|u|2u. (3.21)

Using the similar finite di↵erence approximation we get:

un+1
j

� un

j

�z
=

ic1
2

 
un+1
j+1 � 2un+1

j

+ un+1
j�1

�x2
+
un

j+1 � 2un

j

+ un

j�1

�x2

!
+ ic3|un

j

|2 ·
un+1
j

+ un

j

2
. (3.22)

Here the approximation of u
xx

uses u at both time levels n and n + 1. Rearranging terms

and simplifying gives us:

un+1
j

�un

j

=
ic1�z

2�x2

�
un+1
j+1 �2un+1

j

+un+1
j�1 +un

j+1�2un

j

+un

j�1

�
+
ic3�z|un

j

|2

2
un+1
j

+
ic3�z|un

j

|2

2
un

j

,

(3.23)
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= R
�
un+1
j+1 � 2un+1

j

+ un+1
j�1 + un

j+1 � 2un

j

+ un

j�1

�
+ b

j

un+1
j

+ b
j

un

j

, (3.24)

where R = ic1�z/(2�x2) and h
j

= ic3�z|un

j

|2/2.

Distributing and rearranging terms we get

�Run+1
j�1 + (1 + 2R� h

j

)un+1
j

�Run+1
j+1 = Run

j+1 + (1� 2R + h
j

)un

j

+Run

j+1. (3.25)

The above equation is a tridiagonal system and we use Thomas Method [5] to solve it

a
j

un+1
j�1 + b

j

un+1
j

+ c
j

un+1
j+1 = d

j

(Thomas) ) un+1
j

. (3.26)

The initial condition and boundary conditions are the same as for RK4 method. Crank

Nicolson method is an implicit method so there is no CFL restriction, i.e., �z can be chosen

to be much larger than the one we used in RK4. However, usually larger �z will result in

larger numerical error.

3.4 Leapfrog Crank-Nicholson

The next numerical method is the Leapfrog Crank-Nicholson method which is very

similar to the Crank-Nicholson method. The di↵erence is instead of
u

n+1
j

�u

n

j

�z

this method is

going to skip over the un

j

and go from un�1
j

to un+1
j

hence the name is leapfrog. Here is the

Leapfrog Crank-Nicholson method

un+1
j

� un�1
j

2�z
=

ic1
2

 
un+1
j+1 � 2un+1

j

+ un+1
j�1

�x2
+

un�1
j+1 � 2un�1

j

+ un�1
j�1

�x2

!
+ ic3|un

j

|2 ·
un�1
j

+ un+1
j

2
.

(3.27)
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Simplifying above equation similarly as we did for the Crank-Nicholson method we get

un+1
j

�un�1
j

=
ic1�z

�x2

�
un+1
j+1 �2un+1

j

+un+1
j�1 +un�1

j+1 �2un�1
j

+un�1
j�1

�
+ ic3�z|un

j

|2(un�1
j

+un+1
j

),

(3.28)

which can be written as

�Run+1
j�1 + (1 + 2R� h

j

)un+1
j

�Run+1
j+1 = Run�1

j�1 + (1� 2R + h
j

)un�1
j

+Run�1
j+1 , (3.29)

where R = ic1�z/�x2 and h
j

= ic3�z|un

j

|2. Using the Thomas Method as in the Crank-

Nicholson method we can solve from here.

3.5 Splitting Spectral Method

The splitting spectral method is the next method used to solve the paraxial wave equa-

tion.

u
z

= ic1uxx

+ ic3|u|2u. (3.30)

The highlights of this method is to split the paraxial wave equation into two equations

as such:

u
z

= ic3|u|2u, (3.31)

and

u
z

= ic1uxx

. (3.32)

Equation (3.31) is solved in (x, z) domain

u
z

u
= ic3|u|2, (3.33)

so

@
z

log(u) = ic3|u|2, (3.34)

16



which leads to the solution

u⇤ = une�zic3|un|2 . (3.35)

After solving equation (3.31), the updated value of u⇤ is used as the initial condition to

solve equation (3.32) in spectrum domain. First, we perform a Fourier transform from x to

⇠:

û
z

= �ic1⇠
2û, (3.36)

where û is the solution in spectrum domain ûn = F(u⇤). It can be solved analytically:

ûn+1 = ûne��zic1⇠
2
. (3.37)

Then the solution is obtain by inverse Fourier transform:

un+1 = F�1(ûn+1). (3.38)
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Chapter IV: NUMERICAL EXAMPLES

In this chapter we will first show some numerical tests on solving ODEs, followed by the

study of paraxial wave equation using the various numerical methods described in chapter 2

and 3.

4.1 Numerical Example on ODE

The first method we attempted was the first order Euler’s Method for solving ODEs

initial value problem

y0 = y, 0  t  5, y(0) = 1. (4.1)

We test convergence of the numerical results by adjusting the number of grid points (N

value) because if we reference the algorithm from chapter 2 we see that the N is integrated

into the “step size”, h, where h = 5
N

. The step size is the common di↵erence between each

point. The smaller the common di↵erence, h, ideally the less error in the approximation, so

to make h smaller we simply increase N consequently giving us less error.

4.1.1 Euler Method

Reviewing some of these results of the numerical solutions, we know that the results

should closely mimic the exact solution u = u(0)et. Looking at Figure 4.1 we can see that

the Euler’s Method with small N values result in larger error. Figure 4.1 shows how all five

curves look with 0  t  5. Figure 4.2 zooms in at t = 4 and shows the error of each curve

and how when N is increase the error of each curve will decrease by getting closer to the

exact solution. Table 4.1 shows the order of Euler’s Method and we can see this method is

of order one. In summary Euler’s Method is not a very accurate method but will approach

the correct answer very slowly when N is set to be a larger number.
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Figure 4.1: Euler’s Method with N=10, 20, 40, and 80

Figure 4.2: Euler’s Method with N=10, 20, 40, and 80

4.1.2 RK4

RK4 was the next numerical method we tried. Similar to previous method, N values

are chosen to be 10, 20, 40, and 80. We can see in Figure 4.3 that all four curves are fairly

accurate. After adjusting the scale we can see the discrepancies of all four curves in Figure

4.4. As we expected when N = 10 the most error occurs which is shown in Table 4.2. Figures

4.5 and 4.6 are displayed to show how close the RK4 method can get to the exact solution

depending how large we make N . Comparing these results to the Euler’s Method we can see

that with N equaling 10, 20, and 40 RK4 method was more accurate and approaching the

exact solution quicker.
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Figure 4.3: RK4 with N=10, 20, 40, and 80

Figure 4.4: RK4 with N=10, 20, 40, and 80 zoomed in

4.1.3 Numerical Method Comparison

Next we compared the common numerical methods of Euler’s Method, RK2, and RK4

in Figures 4.7, 4.8, and 4.9. We let N=40 in all four algorithms and plotted them all on

Figure 4.7 with the exact solution. At first glance you will see the outlier of Euler’s Method

which is the purple curve and it is much lower than the other four curves. I zoomed in

slightly on Figure 4.8 and you will see that the curve of Euler’s Method is about 15 units

lower than the other four. In Figure 4.9 we adjusted the scaling further and you can see the

di↵erence of RK2 and RK4. This error is attributed to the order of each method. Euler’s

being only order one has the most error, RK2 is a second order method, and RK4 is fourth
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Figure 4.5: RK4 with N=10, 20, 40, and 80 zoomed in

Figure 4.6: RK4 with N=10, 20, 40, and 80 zoomed in

order making it the most accurate.

4.2 Numerical Examples of Paraxial Wave Equations

In this section, we solve the paraxial wave equation. The paraxial wave equation is in

the form:

u
z

=
i

2k0
u
xx

+
i!0

c
n2|u|2u,

where k0 = n0!0
c

, 0  z  d, x
L

 x  x
R

. Initial condition is a Gaussian pulse u(0, x) =

A0e
� (x�x0)

2

2b2 . Boundary condition is Dirichlet boundary condition u(z, x
L

) = u(z, x
R

) = 0.

Other parameters are c = 299792458 is the speed of light in vacuum, k0 = 1, !0 = 2.35 ⇥
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Figure 4.7: Comparison of all methods with N=40 with 0  t  5

Figure 4.8: Comparison of all methods with N=40 with 3.9  t  4.1

1015, n2 = 63.66, b = 8.5⇥10�5, A0 = 1, x0 = 0, x
L

= �10�3, x
R

= 10�3, d = 10�7, 4x =

(x
R

� x
L

)/N, N = 400, 4z = 4x

2

2 .

Comparing this to the NLSE (3.1) in we can see that the “V (~x)” equals zero ultimately

ignoring the real valued external potential.

4.2.1 Solving a Paraxial Equation Using RK4 method

Since RK4 is one of the most accurate numerical method due to its fourth order in time.

The result is shown in Figure 4.10 and Figure 4.11. We can clearly see the features of the

higher accuracy when N is set to a higher value displayed in the Table 4.3. The accuracy for
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Figure 4.9: Comparison of all methods with N=40 with 3.997  t  4.002

the first run of N = 200 we consider to be very accurate and we can see the RK4 method is

coming in at 2nd order in space and we know from before RK4 is fourth order with respect to

z. Looking at Figures 4.10, 4.11, and 4.12 we can see the di↵erences of the curves in Figure

4.11 when zoomed in at the peak. Note the convergence rate from N = 200 to N = 400 to

N = 800 and N = 1600.

Figure 4.10: RK4 Method of Paraxial Equation
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Figure 4.11: RK4 Method of Paraxial Equation zoomed in

Figure 4.12: RK4 Method of Paraxial Equation zoomed in further

4.2.2 Solving a Paraxial Equation Using Crank-Nicholson Method

The next applied method is the Crank-Nicholson Method. This method is second order

with respect to time and space so we expected the RK4 method to be more accurate. We

can see from Figures 4.13 and 4.14 the results. For the Crank-Nicholson method we chose

to use N values of 100, 200, 400, and 800. Table 4.4 shows the error and order of the Crank-

Nicholson method. One thing that we found interesting is that with the RK4 method the

lower N value solutions were below the exact solution and as N increase the curves built

up to the exact solution. With the Crank-Nicholson method the exact opposite happens
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with the smaller N values the curves are above the exact solution. It seems the RK4

method undershoots the exact solution and the Crank-Nicholson method overshoots the

exact solution. In a future section when the two methods are graphed on the same graph

we notice that the RK4 method is always below the Crank-Nicholson method.

Figure 4.13: Crank-Nicholson Method of Paraxial Equation

Figure 4.14: Crank-Nicholson Method of Paraxial Equation zoomed in

4.2.3 Solving a Paraxial Equation Using Leapfrog Crank-Nicholson Method

Next method is the Leapfrog Crank-Nicholson Method. Because it is an implicit method,

so we choose �z to be 10 times larger than the one used in RK4. As a result, the CPU
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runtime is much less than the RK4 method. The results are shown in Figure 4.15 and 4.16.

We used N values of 100, 200, 400, 800, and 1600. Table 4.5 shows the order which came in

at the highest of all the methods we tried at more than second order.

Figure 4.15: Leapfrog Crank-NicholsonMethod of Paraxial Equation

Figure 4.16: Leapfrog Crank-NicholsonMethod of Paraxial Equation zoomed in

4.2.4 Solving a Paraxial Equation Using Splitting Spectral Method

Lastly we used the Splitting Spectral Method. We chose to use N values of 50, 100,

200, and 400. The results are shown in Figures 4.17 and 4.18. The error and order is recored

in Table 4.6.
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Figure 4.17: Time Splitting Spectral Method of Paraxial Equation

Figure 4.18: Time Splitting Spectral Method of Paraxial Equation zoomed in

4.2.5 Comparison of the Methods used to solve Paraxial Wave Equation

For this section we chose to record all the methods of the paraxial equation on the

same graph. Figure 4.19 shows the results. Each curve has an N value of 200 to make it a

fair comparison. At first glance we can see that the RK4 and the Leapfrog Crank-Nicholson

methods are very close to each other and the Crank-Nicholson and the Time splitting method

are very close. Our numerical results show that the Leapfrog Crank Nicolson (LF-CN)

method is the most accurate method for paraxial wave equation. For N = 800, we see

that the Error for LF-CN is 1.6⇥ 10�5, smaller than all other methods, including the RK4
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(5 ⇥ 10�5), the CN (2 ⇥ 10�5) , and the splitting method (7 ⇥ 10�5). Table 4.7 show the

time comparison of each method and how cost e�cient the LFCN method is with slightly

more error than RK4. For the LFCN and the splitting method we took the dz and made it

ten times larger than RK4 and the CN methods. Making the dz ten times larger made the

code run in a tenth of the time, while only giving up a small amount of error.

Figure 4.19: Comparison of the four Methods with N=200

Table 4.1: Errors and convergence rate of Euler’s method for ODE

Nt Error Order
10 9.9978 -
20 4.4108 1.1806
40 1.7876 1.3030
80 0.6826 1.3889
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Figure 4.20: Comparison of the four Methods with N=400

Table 4.2: Errors and convergence rate of RK4 for ODE

Nt Error Order
10 0.0276 -
20 0.0014 4.3206
40 6.4732e-05 4.4170
80 2.9409e-06 4.4602

Table 4.3: Errors and convergence rate of RK4 for Paraxial Wave Equation

Nx Error Order
200 8.0056e-04 -
400 1.9442e-04 2.0418
800 5.0863e-05 1.9345
1600 1.1208e-05 2.1820

Table 4.4: Errors and convergence rate for Crank-Nicholson Method for Paraxial Wave
Equation

Nx Error Order
100 0.0135 -
200 .0042 1.7010
400 1.4695e-04 4.8230
800 2.0097e-05 2.8702
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Table 4.5: Errors and convergence rate for Leapfrog Crank-Nicholson Method for Paraxial
Wave Equation

Nx Error Order
100 0.0108 -
200 8.5139e-04 3.6651
400 9.3498e-05 3.1868
800 1.6637e-05 2.4905

Table 4.6: Errors and convergence rate for Time Splitting Spectral Method for Paraxial
Wave Equation

Nx Error Order
50 0.0328 -
100 0.0057 2.5275
200 0.0023 1.3091
400 2.0264e-04 3.5006

Table 4.7: Comparison of time and error of each method

Method Time (sec) Error (Nx = 200) Error (Nx = 400)
RK4 .57 8.01e-4 1.94e-4
CN 1.26 4.20e-3 1.46e-4
Splitting .11 2.30e-3 2.02e-4
LFCN .15 8.87e-4 9.35e-5
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Chapter V: CONCLUSION

In this thesis, we applied various numerical methods for solving ODE initial value prob-

lem and the paraxial wave equation with cubic nonlinearity. The numerical method we

applied to solving paraxial wave equation are the 4th order Runge Kutta method, the Crank-

Nicolson method, the Leapfrog Crank-Nicolson method, and the splitting spectrum method.

The advantage of the explicit RK4 method is the high order accuracy in time. Our numerical

results show that the leapfrog Crank-Nicolson method is the most cost e�cient method as

(1) it has smaller than when comparing with all other methods with same spatial resolution;

(2) the step size can be chosen much larger than the explicit methods since it is implicit

so it saves CPU time. The paraxial wave equation is derived from Maxwell’s equation and

we focus on the case where the cubic Kerr nonlinearity presents, which is applied to study

optical pulse propagation in nonlinear Kerr media.

Further work will be on the extension of current work to NLSE including the potential

term and more complex media. Another future work will be the comparison with the numer-

ical solution to Maxwell’s equation using Finite-Di↵erene Time-Domain (FDTD) method.
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