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ABSTRACT

Automated cell segmentation and tracking enables the quantification of static and dynamic

cell characteristics and is significant for disease diagnosis, treatment, drug development and

several other domains in health and life sciences. The topic of this dissertation is the devel-

opment of techniques for fully automated cell segmentation, tracking, lineage construction,

and quantification. This work concentrates on two areas; cell segmentation and cell tracking.

We pursue a solution of the cell segmentation problem in the joint spatio-temporal do-

main to overcome weaknesses of previous works that operate only on the spatial domain of

each frame. Here we propose a PDE-based formulation of spatio-temporal motion diffusion

to detect the cell motion. In addition, we introduce an intensity standardization technique to

address intensity variability complicating frame-to-frame analysis in differential techniques.

To refine cell delineation accuracy produced by motion diffusion-based segmentation, we

propose to use energy minimizing geometric active contours that assume a piece-wise con-

stant image region model as a special case of the Mumford-Shah segmentation framework.

Furthermore, we introduce temporal linking of the region-based level sets to allow for faster

convergence and to resolve non-convexity that affects energy-based minimization that is

typical in image analysis inverse problems.

In the cell tracking part of this work we first propose a variational method for joint

local-global optical flow computation to estimate the cell motion. We utilize the predicted

cell motion along with cell areas in a probabilistic Maximum Likelihood decision strategy

assuming Markov dependency to find cell correspondences between consecutive frames. To

perform track linking and to identify the cell states in the time-lapse sequence we find the

solution that minimizes a global cost function defined over the set of all cell tracks by a

heuristic approach. We represent cell tracks by an acyclic graph that we use to visualize the

lineage tree. We use the region centroids to display the cell trajectories. Finally, we compute

morphological, motility, diffusivity, and velocity measures using the time-lapse images, the

cell label maps, and the tracking data.

v



We validate the cell segmentation and tracking stages both individually and as a joint

system against reference standards that were manually generated. The image sequences

and reference standards were obtained from a public database used for international cell

tracking competitions. The validation measures quantify the region delineation accuracy

by comparing levels of region overlapping and they calculate the cell tracking accuracy by

comparison of acyclic graphs constructed from the cell tracks. The proposed techniques

produce promising accuracy rates in comparison to the state-of-the-art. The ST-Diff-TCV

segmentation technique yields an average DICE score of 89% over all 12 time-lapse image

sequences. The automated tracking method using reference masks as input produces an

average TRA score of 99%, which validates the tracking stage, and the fully automated

system using both the proposed ST-Diff-TCV segmentation and tracking techniques produces

an average of 89% with the 8 out of 12 sequences producing TRA > 91%.
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Chapter I: INTRODUCTION

1.1 Cell Segmentation and Tracking

Studies of living organisms in biology and medicine require the analysis of their static and

dynamic properties. Advances in imaging technologies have enabled the acquisition of time-

lapse sequences of 2D and 3D data at the cellular and molecular level. Research in medicine

and biology has become increasingly dependent on this type of imaging data [49] because it

can be used to extract information about cell metabolism, growth, reaction to stimuli, and

reproduction [113].

The quantitative analysis of time-lapse microscopy images is a key for detection of

disease patterns and can be used in decision making to make a reliable diagnosis. Research

in pathology is a very significant step for diagnosis of a large number of diseases including

most cancers. Noninvasive cellular imaging allows the tracking of grafted cells as well as

the monitoring of their migration, suggesting potential applications to track both cancer

and therapeutic stem cells. Cell-based therapy holds great promise for cancer treatment.

The ability to non-invasively track the delivery of various therapeutic cells (e.g. T-cells

and stem cells) to the tumor site, and subsequent proliferation of these cells, would allow

better understanding of the mechanisms of cancer development and intervention. Moreover

data collected from individual patients at the anatomical, cellular and molecular levels, offer

unprecedented possibilities to design personalized therapies.

Studies of disease mechanisms are valuable for clinical research areas such as stem

cell research, tissue engineering, drug discovery, genomics, and proteomics. Morphological

changes correlate with disease progression. Study of cell lineage relationships is significant

for stem cell research, and disease etiology and progression studies [16, 63]. The statistical

analysis of the tracking measurements will assist researchers to more precisely track the

genetics of individual cells and detect and understand cell behavior and abnormalities.
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High content screening applications in drug discovery require the automated monitor-

ing of cell populations in a high-throughput experiment [1]. These applications depend on

accurate cell tracking of individual cells that display various behaviors including mitosis,

merging, rapid movement, and entering and leaving the field of view.

Quantitative analysis includes the study of cell morphometry, such as the cells’ shape

and their dynamic characteristics in a sequence such as the cell lifetime, motility, number

of divisions, and morphological changes with time among other characteristics. Cell quan-

titative analysis consists of the following main stages: cell detection, cell delineation, cell

tracking, cell event detection, and construction of cell lineage tree. Cell detection is the

localization and identification of the cell in the image sequence. Cell delineation also called

segmentation is the process of finding the boundaries of the cell and defining the cell region.

Cell tracking is the process of identifying the cells in all frames of the sequence. After cell

tracking is completed, we can follow the cells and identify cell events such as migration,

mitosis, apoptosis, and new cells entering the field of view. After finding all cell events we

can construct the cell lineage tree that stores and visualizes the cell events. Finally we given

the cell identifiers and tracking results, we can calculate and visualize cell characteristics and

their evolution with time.

1.2 Motivation and Open Problems

The data size of a single cell image sequence is typically in the range of hundreds of

megabytes. Diagnosing a disease after manually analyzing numerous data requires inten-

sive and laborious work and long time. Furthermore, manual analysis is dependent on the

level of experience of the human operator, and is almost certainly non-reproducible. As

a consequence, the use of automatic analysis and quantification can significantly improve

the reproducibility, efficiency, and accuracy of quantitative analysis, and overall benefit the

patient.
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The tasks of automatic cell detection, segmentation, and tracking in time-lapse fluores-

cent microscopy images pose a difficult problem due to high variability in images because of

numerous factors like differences in slide preparation (fluorescent concentration, presence of

foreign artifacts, time to prepare the sample, and time between each time lapse image for

the same sample, etc) and image acquisition (corruption by different types of noise, specific

features of the microscope such as resolution and contrast limitations, etc). To be able to

capture fluorescent microscopy images and observe live cell processes, like cell migration

apoptosis and proliferation, light exposure is kept minimal to reduce the photodamage, but

this reduces the image quality [80, 50, 52].

The aim of this work is to develop automated methods that successfully detect and track

cells enabling the analysis of their static and dynamic behavior including cell morphology, cell

migration, and changes in cell states (mitosis and apoptosis, for example). To reach these

objectives we introduce automated techniques for cell detection, segmentation, tracking,

construction of lineage trees of progenitor cells, and cell quantification.

1.3 Background

Cell tracking methodologies involve the tasks of preprocessing, cell segmentation and motion

tracking [128, 133, 65, 81, 30, 77, 51]. In this context, segmentation of cells is a particularly

challenging task that has a direct impact on the overall quantification process. Image seg-

mentation is a popular field in the domain of image analysis. More specifically, parametric

[61] and nonparametric active contour models [75, 38, 48, 87] have been widely used in devel-

opment of bio-imaging and biomedical image analysis techniques. An interesting aspect in

cell analysis methods is the relation between image quality and segmentation accuracy. Many

segmentation methods address certain types of datasets; however, for low-quality images and

different cell types and shapes, the same methods may yield varying levels of performance.

Cell tracking approaches can be categorized into (i) tracking by detection [129, 2, 56,
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65, 32, 72, 106, 12] and (ii) tracking by model evolution [136, 135, 84, 47, 66, 90, 46, 48, 65].

Tracking by detection methods consist of two separate stages; cell segmentation and data

association. Cell segmentation is accomplished by image segmentation techniques that we

briefly mentioned before. The data association stage involves cell matching and track linking

that can be accomplished by probabilistic techniques. Model evolution techniques integrate

the stages of segmentation and data association into a joint model that represents the cell

regions and their evolution with time. In this framework topological changes may account

for cell events. The models are frequently implemented using parametric or geometric active

contour models.

1.4 Main Points of Contribution

Overall one may argue that many approaches to cell tracking have been developed in the

past, but most are focused on the same type of optical imaging techniques, require extensive

post-processing, and are parameter intensive. We propose a method to overcome these

challenges to achieve high level of accuracy in these different cases. The key contributions

of this dissertation can be grouped as follows:

1.4.1 Cell segmentation

Intensity Standardization to address variability and differences in SNR and CNR

In order to obtain more stability in parameter choice, we apply a histogram transformation

approach to match the reference background threshold from the intensity distribution of

each three consecutive frames to an intensity distribution model learned from all frames of

the sequence during the training stage. After this step, each video sequence frame is scaled

and transformed into a sequence with background with same order of magnitude for a more

robust and a less sensitive parameter choice method.

Spatio-temporal motion diffusion Building upon previous ideas for estimating mo-

tion activity using spatio-temporal diffusion [73], here we develop and utilize a heat flow

4



analogy model in the joint spatio-temporal domain and combine this process with a region-

based level-set optimization approach for cell segmentation of images obtained by fluores-

cence microscopy. Spatial and temporal motion parameters of our model are estimated for

each dataset and an optimal Parzen bandwidth parameter is experimentally determined for

density estimation of edges and outliers in each dataset. High activity regions are initially

detected by solving numerically a system of coupled spatio-temporal nonlinear partial dif-

ferential diffusion equations on three consecutive frames [10].

Temporally linked level-sets for faster convergence We propose to use the moving

delineation curve as an initial level-set to be refined using a region-based process for final

segmentation. We validated the joint approach denoted by ST-Diff-TCV [9] over a set of

sequences against reference data and compared the segmentation accuracy of the joint spatio-

temporal and level-set technique with results derived from Chan-Vese (CV) segmentation

[28], a temporally linked level set method that we presented in [11] denoted by TCV, and

spatio-temporal diffusion based segmentation only (ST-Diff).

Spatio-temporal cell detection and segmentation advantages An additional con-

tribution of this work is that it can detect and segment newly appearing cells and cells that

are hardly detectable using only first order statistical information. This method allows to

detect cells that were impossible to detect using the region based CV segmentation because

the optimization criterion is defined by the mean intensity inside and outside the level set

defined moving curve. Hence, cell regions with low intensity values are considered as part of

the background, and the region competition process fails to delineate these cells. However,

these regions are detected by the spatio-temporal motion detection method because they are

rather detected by their high activity process than by their intensity value, then refined by

TCV model to detect the cell boundaries more accurately.
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1.4.2 Fully Automated Tracking using Joint Local-Global Optical Flow and

Probabilistic Cell Correspondence Measures

Our system automatically constructs the lineages of proliferating migrating cells. Cell lineage

is a critical and required step in stem cell research [63]. In addition, division patterns can

be correlated with changes in gene expression, and gene mutation. We can trace the roots

of manual cell lineage construction techniques in the 19th century. However manual analysis

can be a very laborious task with increasing number of cells and time frames. Therefore

automated cell lineage construction is very useful as it will enable the use of very large

volumes of data for analysis. Dealing with overlapping and clustered cells is a challenge in

the case of dense datasets. This creates many errors like false negatives, false positives, false

splitting operations and creates lineage tree edges with incorrect semantics. Thus, separating

falsely clustered cells is crucial for improving tracking accuracy. In the pre-tracking stage,

we propose to use the watershed transform on the Euclidean distance map produced by

the segmented cells and then apply the H-minima transform for minima reconstruction to

separate overlapping and clustered/touching cells. We also investigate the use of the solidity

measure to estimate the number of fused cells. In the main tracking stage we introduce a

variational method for joint local-global optical flow computation to estimate cell motion.

We utilize the predicted cell motion in a probabilistic Maximum Likelihood Bayesian decision

framework assuming Markov dependency to find cell correspondences between consecutive

frames. To perform track linking and to identify the cell states in the time-lapse sequence,

we find a solution that minimizes a global cost function given cell neighborhood constraints

defined over the set of all cell tracks. The proposed system is applicable to varying cell

shapes, types, and densities and image sequences of reduced image quality.
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1.4.3 Cell Quantification

Our method produces measurements of static cell attributes including area, shape, intensity

and their changes with time. Moreover it measures cell centroid localization, cell lifetime,

mitosis and apoptosis events. Then it calculates cell motility, diffusivity, and velocity mea-

sures. Our methodology constructs an acyclic graph that represents cell tracks, and enables

visualization of the lineage tree, quantification of cell events, and detection of potential be-

havioral anomalies. Overall, this system enables accurate quantitative analysis of cell events,

and provides a valuable tool for high-throughput biological studies.

1.5 Dissertation Structure

In Chapter II, we review the previous work in the areas of image segmentation including

region-based and model-based segmentation and cell tracking including the tracking by de-

tection and model evolution groups of methods. In Chapter III, we describe the proposed

cell segmentation methodology using spatio-temporal motion diffusion, intensity standard-

ization, and temporally linked level sets. In Chapter IV, we report experiments and validate

the results produced by our cell segmentation methodologies against manual segmentations.

We also discuss our findings and compare the tested methods. Chapter V introduces the cell

tracking methodology and the stages of motion prediction, cell matching and cell event de-

tection, and construction and visualization of the cell lineage tree. In Chapter VI, we report

results produced by the tracking technique using reference or automated segmentation and

validate our results against manually annotated cell tracking and we discuss these results.

Furthermore, we include visualizations of the identified cell trajectories and quantification

measures. Finally, Chapter VII summarizes the key findings of this research, and provides

insight into the applicability of the developed approaches.
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Chapter II: CELL SEGMENTATION AND TRACKING
BACKGROUND

2.1 Background on Image Segmentation

Cell segmentation is a very important topic in computer vision and image analysis. The goal

of image segmentation is to partition a given image into its objects, or to find boundaries of

objects. Cell segmentation techniques can be widely categorized into region-based, model-

based, and statistical methods. In Figure 2.1 we display the image segmentation taxonomy

that we will will discuss in this chapter.

2.1.1 Region-based Methods

Watershed Algorithm

Watershed segmentation is based on topographic concepts and mathematical morphology.

It visualizes an image in 3 dimensions: an edge map in two dimensions versus intensity

representing the altitude of the topographic surface. We next give the basic terminology for

elements used in watershed transform description [121, 111, 55, 83].

Definition 2.1.1 (Gradient minima). The points of regional minimum gradient magnitude

of a topographic surface are called gradient minima.

Definition 2.1.2 (Catchment basin). The set of points from which, a drop of water would

fall to the same minimum, is called a catchment basin. Hence, points that fall to the same

minimum are grouped together to form the same region.

Definition 2.1.3 (Watershed line). Set of points from which, a drop of water would fall to

more than one catchment basin. At these points a dam is built forming a crest line or a

watershed line.
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Figure 2.1: Image segmentation taxonomy.

Definition 2.1.4 (Image Gradient). The gradient of an image, defined by intensity function

f(x, y) at each image point is a 2D vector with the components given by the derivatives in the

2-dimensional domain. At each image location, the gradient vector points to the direction of

largest possible intensity increase, and the length of the gradient vector corresponds to the

rate of change in that direction. The gradient of an image is given by [55]:

∇f =

fx
fy

 =

∂f∂x
∂f
∂y

, (2.1)

where ∂f
∂x

and ∂f
∂y

are the gradients in the x and y directions respectively. The gradient
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magnitude |∇f(x, y)| and gradient direction ψ are calculated by [83]

|∇f(x, y)| =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

(2.2)

ψ = tan−1

[
fy
fx

]
. (2.3)

Considering an image as a topographic surface, the watershed algorithm can be visu-

alized as a flooding process. It starts from the minima of the surface, called markers, then

finds a path between each pixel of the image and a local minimum. During flooding, valleys

called catchment basins, are filled with water. When regions belonging to different catchment

basins are about to merge, dams representing watershed lines are erected between the basins.

The watershed lines separate the different regions and produce the segmentation result.

Many watershed algorithms have been suggested in the literature [111]. The first algo-

rithms were developed for elevation models. There are two main techniques for watershed:

(i) sorting and flooding, and (ii) gradient following. Sorting and flooding typically construct

ordered queues of the image pixel spatial coordinates that are connected to a minimum and

sorted by the image gradient. Gradient following methods utilize steepest descent algorithms

to determine the paths between image pixels and the gradient minima.

In cell segmentation applications, the watershed algorithm is found to sensitive to noise,

and works well for cell regions with very low intensity gradients inside the cells. Otherwise,

we may end up with the effect of over-segmentation due to the excessive number of regional

minima.

2.1.2 Model-based Methods

These methods propose and use mathematical and physical models to partition an image

[39, 85, 61, 134, 127, 130, 64, 28, 120, 86, 76, 74]. The models may evolve by minimizing

and energy functional using variational methods, or may be represented directly by PDEs
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in which case the solution corresponds to the steady state of the system.

Mumford Shah

In [39, 85], Mumford and Shah formulated an energy minimization problem that allows to

compute optimal piecewise-smooth approximations f of a given image f0 on the image plane

Ω. Let Ω ⊂ RD the image domain of D dimensions and f : Ω → R. We assume that

Ω is open and bounded. The Mumford Shah formulate segmentation as a solution (f, C)

of a piecewise constant function f corresponding to regions Ri and boundaries C ⊂ Ω by

minimizing the energy functional E

E(f, k) =

∫
Ω−C

(f − f0)2d~ω + α

∫
Ω−C
|∇f |2d~ω + β

∫
C

d~ω, (2.4)

where α, β are nonnegative constants and
∫
C
d~ω is total contour length. This approach

maximizes the homogeneity inside the segmented regions based on the intensity values.

Even though the Mumford Shah functional can formulate partitioning of an image into

disjoint regions and contours, it presents some applicability difficulties. More specifically, it

is not differentiable for suitable norms, therefore we cannot use Euler-Lagrange. Also, dis-

cretization of the unknown region boundary set may be particularly complicated. Therefore

approximations of the functional E may be utilized to find a solution. The main approx-

imation techniques are by (i) elliptic functionals [4, 3, 104], (ii) introducing second order

singular perturbations [15, 13, 21, 23, 22], (iii) introducing nonlocal terms [14], and (iv)

using of finite difference methods [27, 26].

The elliptic functional Fε converging to Mumford-Shah energy limε→0 Eε = E was pro-

posed in [4, 3] and is given by:

Eε =

∫
Ω

(f − f0)2d~ω +

∫
Ω

v2|∇f |2d~ω +

∫
Ω

(
ε|∇v|2 +

1

4ε
(v − 1)2

)
d~ω, (2.5)

11



where v(~ω) ≈ 0, if ~ω ∈ C and v(~ω) ≈ 1, if ~ω 6∈ C.

Also, specific solutions for the piecewise constant case have been proposed in [29, 28,

116] that we will describe in the next chapter.

Active contour methods

Active contour models are physics-based models that incorporate shape, image-based and

external energy terms to delineate image objects. The active contour model deforms under

the above energy terms until it reaches equilibrium. They typically seek to minimize an

energy functional [90]. In active contour models the contour can be explicitely represented

by a parametric curve, as in Snakes [61], or by an implicit representation as in level sets [103,

75, 118, 38, 37].

Parametric Active Contour Models - Snakes

The concept of Snakes introduced by [61], is an energy minimizing active contour model.

In general, this technique uses a spline that is deformed by constraints and image forces to

match the contours of an object in an image [61, 127, 130, 79, 41]. This method is robust

to noise but cannot handle topological changes like merging or splitting of the contour. A

snake is represented by a parametric curve

v(s) =
n−1∑
i=0

aiBI(s), (2.6)

where s is the parameter of a control point on the contour, ai are the coefficients and BI are

the base functions usually chosen to be splines of order n.

12



Energy functional

The proposed energy functional of the snake model included internal, image and prior

knowledge-based terms.

Esnake =

1∫
0

(Einternal(v(s)) + Eimage(v(s)) + Econstraints(v(s))) ds. (2.7)

Internal energy

The internal energy term incorporates shape requirements for smoothness and elasticity.

Einternal = (α(s) |vs(s)|2) + (β(s) |vss(s)|2) =

(
α(s)

∣∣∣∣dvds (s)

∣∣∣∣2 + β(s)

∣∣∣∣d2v

ds2
(s)

∣∣∣∣2), (2.8)

where v(s) = (x(s), y(s)) is the location vector of the control point s, and α(s) and β(s) are

the smoothness and elasticity parameters, respectively.

Image-based Energy

This energy term is used to attract the active contour model toward specific image

features such as lines, edges or corners:

Eimage = wlineEline + wedgeEedge + wtermEterm (2.9)

Eline = f(~ω) (2.10)

Eedge = −|∇f(~ω)|2 (2.11)

Eterm =
∂ψ

∂nR
. (2.12)

So the goal is to minimize the energy J of a contour C,

inf
C
J(C) = α

∫ 1

0

|C ′(s)|2ds+ β

∫ 1

0

|C ′′(s)|2ds− λ
∫ 1

0

g(|∇f0(C(s))|)ds. (2.13)
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Euler-Lagrange condition for minimization

In variational techniques the energy functional minimizer is found by use of the Euler-

Lagrange method summarized as follows:

d

ds
Evs − Ev = 0 (2.14)

− d

ds

[
α(s)

dv

ds

]
+

d2

ds2

[
β(s)

d2v

ds2

]
+∇Eext (v(s)) = 0. (2.15)

We solve the above equation by assuming that the curve is also a function of time v = v(s, t)

, setting an initial snake curve and evolving the curve by the following PDE until we reach

a steady state ∂v
∂t

= 0.

∂v

∂t
− ∂

∂s

[
α(s)

∂v

∂s

]
+

∂2

∂s2

[
β(s)

∂2v

∂s2

]
+∇Eext (v(s)) = 0. (2.16)

Implicit or geometric active contour models - level sets

Introduced by Osher and Sethian [112] for front propagation, the level set approach is an

implicit method that involves curves and hypersurfaces. For image segmentation a 2D curve

is embedded within a 3D surface. A curve that is modeled by a physical system evolves

by minimizing an energy functional and/or by following a PDE. This is a sophisticated

category of techniques that can incorporate intensity, shape and prior statistical knowledge

using elegant mathematical techniques [62, 103, 75, 134, 118, 130, 64, 38, 37].

Let C(~ω) be the boundary of regions in a segmentation problem, with ~ω ∈ Ω ⊂ RD,

where D is the image domain dimensionality. Let φ : Ω × T → R be a Lipshitz continuous
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function with φ
(
~ω(t), t

)
= 0, ∀ω ∈ C. This effectively defines the level set function φ as


φ(x, t) > 0 ∀x ∈ ΩO

φ(x, t) = 0 ∀x ∈ C

φ(x, t) < 0 ∀x ∈ ΩB,

(2.17)

where ΩO is the domain of the object regions, ΩB is the domain of the background region,

and C is the previously defined region boundary set.

We assume that the variation of φ is 0:

∂φ

∂t
+
∂φ

∂C

∂C

∂t
= 0 (2.18)

⇒∂φ

∂t
+∇φ∂C

∂t
= 0. (2.19)

We can use φ to define the surface normal vector ~N as follows

~N = − ∇φ
|∇φ|

. (2.20)

If φ > 0 inside the regions and φ < 0 outside of the regions, then ~N points outwards. The

normal of the curve and its curvature can be determined directly from the level set function.

An example showing a curve during evolution is displayed in in Figure 2.2. A propagating

surface moving along the surface normal by mean curvature is governed by

∂C

∂t
= V (κ) ~N, (2.21)

where V (·) is the speed term and κ denotes the curvature.
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Figure 2.2: Example of a curve during evolution.

It follows that

∂C

∂t
= −V (κ)

∇φ
|∇φ|

. (2.22)

Then the level-set evolution PDE becomes

∂φ

∂t
+∇φ∂C

∂t
= 0 (2.23)

⇒∂φ

∂t
+∇φ

(
−V (κ)

∇φ
|∇φ|

)
= 0 (2.24)

⇒∂φ

∂t
− V (κ)

∇φ · ∇φ
|∇φ|

= 0 (2.25)

⇒∂φ

∂t
= V (κ)

|∇φ|2

|∇φ|
(2.26)

⇒∂φ

∂t
= V (κ)|∇φ|. (2.27)

Furthermore, curvature κ is given by

κ = ∇ · ∇φ
|∇φ|

. (2.28)

We can derive a formula for the calculation of φ using derivatives in the discrete domain.
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Sethian Osher (front propagation)

An early approach to level set segmentation was the method of front propagation proposed

in [103, 112]. Here because V (κ) = κ, the level set evolution is strictly guided by the mean

curvature

∂φ

∂t
= |∇φ|

(
∇ · ∇φ
|∇φ|

)
. (2.29)

This level set does not include any image information and its result can be used as an initial

solution for a more advanced level set technique.

Shape detection level sets

The authors in [75] propose to use an edge stopping function g : R → R applied to the

intensities of the input image f0 and solve the PDE

∂φ

∂t
= g(|∇f0|)|∇φ|

(
∇ · ∇φ
|∇φ|

+ c

)
, (2.30)

where c is a constant force that can be used to drive the level set evolution towards one

direction.

Geodesic active contours

Another popular level set method called Geodesic Active Contours (GAC) was proposed in

[24]. This method seeks to find the path of minimum length

inf
C
J(C) = 2

∫ 1

0

|C ′(s)|g(|∇f0(C(s))|)ds. (2.31)

Using the level set formulation, this problem is equivalent to solving the following PDE

∂φ

∂t
= |∇φ|

(
∇ · g(|∇f0|)

∇φ
|∇φ|

+ cg(|∇f0|)
)
. (2.32)
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2.1.3 Statistical Methods

Statistical methods typically treat image segmentation as a procedure for creating group-

s/clusters/classes of samples using algebraic or probabilistic measures of distances between

samples, or groups of samples [45].

K-means Clustering

We can find the main regions of an image by applying clustering in the feature space of the

pixel intensities. Often times we may include additional features computed from the image

for multi-variate clustering. Then we can map the samples from the feature space back onto

the image plane to obtain the label map.

K-means is an unsupervised method used to partition a set of n samples {~xi, i =

1, . . . , n} where ~xi ∈ RD and D is the dimensionality of the feature space into k clusters ac-

cording to some defined distance measure DM , which is usually chosen to be the Euclidean

distance. To cluster the data based on the distance of their intensities to the centroid or

mean intensities, we need to minimize the objective function J :

J(W ) =
k∑
j=1

n∑
i=1

wijDM(~xi, ~µj), (2.33)

where ~µj, with j = 1, 2, . . . , k denote the k cluster centroids and W = [wij]n×k is the cluster

membership matrix with

wij =


1, if p = argminj DM(~xi, ~µj)

0, otherwise.

(2.34)

Let the dissimilarity measure DM be the Euclidean, that is

DM(~xi, ~µp) = ‖~xi − ~µp)‖2. (2.35)
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Then we can find the minimizing ~µp by setting the derivative of J with respect to ~µp to 0

and then the estimator becomes

~µp =

∑n
i=1 wip~xi∑n
i=1wip

. (2.36)

The objective function J is first minimized with respect to wij and then it is minimized with

respect to µp till convergence. The main steps of this technique are

Algorithm 1 K-means clustering

Require: Input image samples xi, number of clusters k
1: Initialize cluster centroids µj, j = 1, 2, . . . , k (usually by random seeding within the

variables’ range)
2: repeat
3: Compute distances DM(~xi, ~µj), i = 1, . . . , n j = 1, 2, . . . , k
4: Assign samples to closest centroid n = argminj DM(~xi, ~µj)

5: Compute objective function J(W ) =
∑k

j=1

∑n
i=1 wijDM(~xi, ~µj)

6: until There is no change between the current and previous values of J .
7: return Labeled image samples (pixels) li = xi

The objective function will decrease at each iteration, therefore the algorithm will surely

converge. However, it may find a local minimum depending on its initialization and the

difficulty of optimization.

Mean shift

Kernel density estimation (KDE)

Finds points with high density in the feature space. To find this high density location,

we use a non parametric density estimator by kernel functions. The analogy is that in a

continuous function, we move to the optimum by following the gradient descent and converge

to a stationary point where the gradient is close to zero. The kernel density estimator of an
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unknown density function f is defined as

f̂(x) =
1

nhd

n∑
i=1

K〈(x− xi) (2.37)

=
1

nhd

n∑
i=1

K
(x− xi

h

)
, (2.38)

where K is the kernel and h is a positive value parameter called the bandwidth. Among

the different choices of kernels uniform
(
K(u) = 1

2
1{|u|61}

)
, biweight

(
K(u) = 15

16
(1 −

u2)2 1{|u|61}

)
, triweight

(
K(u) = 35

32
(1−u2)3 1{|u|61}

)
, Silverman

(
K(u) = 1

2
e
− |u|√

2 ·sin
(
|u|√

2
+ π

4

))
or Epanechnikov, where 1{|u|61} is the indicator function:

1{|u|61} :=


1 {|u| 6 1},

0 {|u| > 1}.
(2.39)

For the mean shift technique [31, 43, 128, 129], we choose to use the Epanechnikov

kernel because it presents the lowest mean square error defined as

K(u) =
3

4
(1− u2) 1{|u|61}. (2.40)

The regional maxima of the density estimation are located at ∇f̂ = 0, where

∇f̂(x) =
2c

nhd+2

n∑
i=1

(x− xi)K′
(∣∣∣∣x− xih

∣∣∣∣2
)

(2.41)

=
2c

nhd+2

n∑
i=1

g
(
‖ (x− xi) /h‖2)(∑n

i=1 xi · g
(
‖ (x− xi) /h‖2)∑n

i=1 g
(
‖ (x− xi) /h‖2) − x

)
, (2.42)

where g(r) = K′(r).
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The mean shift vector m(x) is

m(x) =

∑n
i=1 xi · g

(
‖ (x− xi) /h‖2)∑n

i=1 g
(
‖ (x− xi) /h‖2) − x. (2.43)

The locations for density estimation are updated as

yj+1 =

∑n
i=1 xi · g

(
‖ (yj − xi) /h‖2)∑n

i=1 g
(
‖ (yj − xi) /h‖2) . (2.44)

In [35] the authors proved the following theorem of converge:

Theorem 2.1.5. If the kernel K has a convex and monotonically increasing profile, the

sequences {yj}, j = 1, 2, . . . and {f̂(yj)}, j = 1, 2, . . . both converge, and {f̂(yj)} increases

monotonically.

The estimation converges to a local maximum of the probability density function that

is the density mode, because the magnitude of mean shift vector converges to zero.

Mean shift segmentation is completed in the following steps:

Algorithm 2 Mean shift clustering

Require: Input image samples xi, kernel parameters
1: For each pixel in the image xi, set the density estimation location to yi,1 = xi
2: Iteratively compute yi,j+1 using the mean shift vector computed by (2.44) till convergence

to obtain yi,final
3: Obtain a filtered image with pixels zi = yi,final
4: Group samples zi into clusters Cp, p = 1, . . . ,m using as criterion the distance in the

joint intensity and spatial domain
5: Assign li = p|zi ∈ Cp for each pixel i = 1, . . . , n.
6: return Labeled image samples (pixels) li = xi
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Figure 2.3: Cell tracking taxonomy.

2.2 Background on Cell Tracking

Cell tracking methogologies can be divided into (i) tracking by detection and (ii) tracking

by model evolution [2, 65]. In the next subsections we give an overview of these approaches

described in Figure 2.3.

2.2.1 Model Evolution Methods

Active contour methods for image segmentation allow a contour to deform to partition an im-

age into regions. Deformable models try to fit one frame and use the result as initialization

in the next frame evolution model. The association step is implicitly solved and estab-

lished. However these techniques may require topology constraints and are computationally

demanding especially for sequences of high cell density.
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Parametric active contour models

These methods use explicit representations of the cell contours and perform segmentation

by energy functional minimization [136, 99]. The classic snake methods cannot address

topological changes related to cell events therefore they required some adjustments. Previous

works proposed to add repulsive cell-to-cell forces to avoid fusion of touching cells, and

incorporated topological operators for cell division [136, 135].

Implicit active contour models

Active contours are often implemented with level sets [90, 89, 47, 46, 48, 66, 65]. The

primary drawback, however, is that they are slow to compute. The level set can be initialized

manually as an initial contour or automatically exploiting the shape and characteristics of

cells to track multiple cells [84]. In [84], the energy functional depends on the gradient

magnitude along the boundary and region homogeneity within the boundary and spatial

overlap of the detected cells. As a cell moves in the sequence, this method uses the spatial

and shape consistency to modify the energy functional

E(Ci(s)) =−
∫ 1

0

g(|∇I|)ds

− κ
∫ ∫

µ(C〉)
H(x, y)dxdy

+

∫ ∫
µ(C〉)

(
∑

j=1,j 6=i

χj(x, y))dxdy, (2.45)

where g is a monotonically normalized increasing function, χj is the characteristic function

for the J th curve and µ(C|) is the region bounded by this curve.

g(z) =

(
2√
π

)∫ z

0

exp−t
2

dt. (2.46)
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The term
∫
µ

∫
C〉
H(x, y)dxdy represents the homogeneity of the image inside the region de-

limited by the boundary Ci [84] also used by [103, 130]. However the method in [84] does

not consider touching cells in the solution. We can find detailed discussion on Region-based

methods in [100].

Additional techniques propose spatio-temporal segmentation using level sets [88, 90].

These methods include a post-processing stage to separate cell cluster and to form cell

trajectories. Post-processing was also proposed in [129, 20] to correct cell fusions.

Zhang et al [132] proposed coupled geometric active contours and used one level set

function for each cell. The coupling constraints are applied to avoid cell overlapping. Du-

four et al [47] extended this framework to 3D analysis. In a more recent work, Dzyubachyk

et al [48] introduced an improved active couple surface technique by addressing sensitivity

to energy weights, handled touching cells and entering cells. However, this method is still

computationally demanding because multiple level set evolution PDEs needed to be solved.

Dufour et al [46] proposed some elegant approaches for multiple cell tracking by means of

discrete active meshes that reduces the computational cost. Another proposed solution was

to apply topological constraints in the level set evolution equation to prevent cell merging

while allowing cell division [60, 67, 87]. In a more recent method [77] the energy functional

was solved by applying a fast level set-like and graph cut-based framework without having to

numerically solve a PDE. The authors also used a topological prior on the object indicator

function to replace coupling of multiple models. In order to overcome the computational cost

and long execution time drawbacks of the model evolution methods, we can incorporate the

parallelism concept in the implementation and run multiple level set evolution PDEs simul-

taneously for each frame. This will be very beneficiary to achieve high-speed computation.

Furthermore, the authors in [98, 105, 97] utilize probabilistic motion prediction based

on Kalman tracking or Particle Filtering (PF) to complement active contours. Besides level

set evolution models, an alternate approach in [40] uses a mean shift model to track centroids
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of cells and perform backward tracking to handle cell divisions.

2.2.2 Tracking by Detection

These approaches typically detect the cells in each frame and then match cells between

consecutive frames. The first stage is achieved by image segmentation techniques based on

intensity, texture or gradient [56, 65, 106]. The second stage is completed by data associa-

tion and cell correspondence techniques. Usually these techniques use probabilistic functions

between frames. Tracking by detection techniques may face challenges in mitosis tracking

and when touching cells are segmented as a single cell. Their main advantages are that they

(i) can work on lower imaging frequencies than the model evolution techniques

(ii) involve advanced data association techniques for tracking

(iii) separate the segmentation and tracking tasks, therefore different segmentation tech-

niques can be used with a single tracking algorithm.

Data association is the process of associating some measurements to known cell tracks.

This process can use two different approaches:

• Bayesian Computes the full distribution in Data association space based on priors,

posterior information

• Non-Bayesian like Nearest Neighbor (works good if solutions are well separated), max-

imum likelihood estimate from all the Data Association possible solutions.

In previous reports in the literature, the authors in [2] used seeded watershed to address

touching cells, followed by feature-based cell matching. They performed image-by-image

track linking by means of integer programming. Yang et al [129] proposed to use watershed

and mean shift to identify cell cycle progression but did not construct cell lineage.

In the tracking stage, when we encounter increasing cell density, the temporal asso-

ciation step requires sophisticated strategies to deal with one-to-many and many-to-one
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matching problems [65, 89, 32]. In [65] image-by-image linking is accomplished using integer

programming. Padfield et al [89] introduced a coupled minimum-cost flow algorithm for

mitosis and merging events coupled with some operations on particular edges. They used

linear programming to choose the edges of graphically represented constraints.

In contrast to image-by-image linking techniques, batch algorithms use information from

future frames or whole image sequence to create cell tracks and detect cell events [7, 94, 88].

The authors in [72] proposed a batch algorithm that optimizes a probabilistic scoring function

and may address false positives and false negatives in detection stage, clustered cells. It can

also handle cell mitosis, apoptosis and other events.

Another subgroup of methods combines detection and data association using probabilis-

tic prediction models. These methods predict global motion and characteristic parameters

of the objects. Earlier approaches used Kalman filtering followed by Particle Filtering tech-

niques [110, 109, 107, 108]. In the approach proposed in [128], the authors used marker

controlled watershed and region merging with context information for cell detection and de-

lineation. They performed tracking using modified mean shift and Kalman filtering. Next,

we describe the original particle filter technique.

Particle filters

Particle filters (PFs) have been used for many tracking applications [33, 98, 97, 109, 94,

108, 68, 69, 106]. They use sets of probabilistically derived samples to describe the most likely

states of a system. They use the temporal structure of distributions. Let Xt = x1, x2, ..., xt

be the states of a system with respect to time t.

Let Zt = z1, z2, ..., zt be a sequence of observations related to xi and let xt follow the Marko-

vian assumption of dependence on xt−1, P (xt)|xt−1)

Let St = (sti, πti), i = 1, · · · , N be a weighted set of N samples si and their associated weights

πti . The measurements are determined using importance sampling. We assign probabilities
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Algorithm 3 Particle filter

Require: Input the weighted set of N samples si and their associated weights πti
1: Initialize St = (sti, πti), i = 1, · · · , N
2: Set c0 = 0, ci = ci−1 + π(t−1)i, i = 1, · · · , N
3: Set ci = ci−1 + π(t−1)i, i = 1, · · · , N

(Cumulative probabilities)
4: repeat
5: Generate nth sample of St, j = argmin(ci > r) ∈ [0, 1]
6: Prediction step
7: Use Markovian behavior of xt to derive Stn
8: In Kalman case:
9: Stn = At−1S(t−1)j + wt−1, for matrices At−1 and noise wt−1

10: Correction step
11: Estimate πtn = P (zt|xt = Stn
12: until Iterations = N
13: Normalize πti , i = 1, · · · , N
14: Estimate xt =

∑N
=1 πtiSti , or more generally f(xt) =

∑N
=1 πtif(Sti)

15: return

proportional to the importance weights πti which are approximations to the probabilities of

the samples such that
∑N

=1 πk = 1. Our goal is to derive St from St−1. So, we generate N

samples and weights at time t from St−1, using the Markov assumption and re-weight the

result given the observation zt. We list the main stages of the particle filtering in Algorithm

3. Moreover, Figure 2.4 displays a simulated cell tracking problem with 4 cells and random

motion. Particle filters work well for a small number of cells as we can observe in this figure.
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model of the object

(a) Particle filter ob-
ject model.
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Figure 2.4: Example of object tracking using the particle filter technique.
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Chapter III: CELL SEGMENTATION

3.1 Region-based Level-set Model with Temporal Linking

In contrast to edge based methods like classical snakes [61] and early level-set methods [75],

where an edge detector is used to stop the evolving curve, region-based methods tend to

be less sensitive to noise. The use of region-based statistics may prove advantageous for

images characterized by edge discontinuity and higher level of noise. The Chan-Vese (CV)

method [29, 28, 84] is a region-based active contour model for energy minimization. Here, we

describe the theoretical background of Chan-Vese model and its minimization framework.

This model is a special case of the Mumford-Shah functional [85] for segmentation using

piecewise constant approximation. This model segments an input scalar image I(x, y) with

I : Ω → R and (x, y) ∈ Ω ⊂ R2 into two disconnected regions Ω1 and Ω2 representing

the foreground and background respectively of low intra-region variance and separated by a

smooth closed contour C such that Ω = Ω1 ∪ Ω2 ∪ C. Here Ω denotes the image domain.

The segmentation of an image is computed by minimizing the following energy functional:

F (C, c1, c2) =µ · length(C) + ν · area(C)

+ λ1

∫
inside(C)

|I(x, y)− c1|2dxdy

+ λ2

∫
outside(C)

|I(x, y)− c2|2dxdy, (3.1)

where C is the evolving curve, c1 and c2 are the average intensity levels inside and outside

the contour C, and µ, ν, λ1, λ2 ≥ 0 are energy weights. The length of C and the area are

regularizing terms. The idea is to evolve the contour C from some initialization until the

fitting energy is minimized:

inf
C,c1,c2

F (C, c1, c2). (3.2)
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This method solves the Mumford-Shah [85] model but restricting the solution to be a piece-

wise constant with only two regions.

Chan and Vese proposed to use level-set functions to solve this optimization problem. In

the level-set method, the contour is represented as the zero level-set of a Lipschitz function

φ : Ω→ R, where φ is positive inside C and negative outside C:


φ(x, y) > 0, ∀x ∈ Ω1

φ(x, y) = 0, ∀x ∈ Γ

φ(x, y) < 0, ∀x ∈ Ω2.

(3.3)

The closed curve C that separates the image domain Ω into two distinct regions is defined

by Γ(t) as

Γ = {(x, y) ∈ Ω|φ(x, y) = 0}. (3.4)

Figure 3.1 shows the value of the level set function corresponding to a closed curve C

composed of three circles.

Figure 3.1: Representation of the level set function (right) corresponding to the image
(left).

The length and area of C are regularizing terms that are formulated using the Heaviside
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H and Dirac δ functions.The Heaviside step function is a discontinuous function whose value

is zero for negative argument and one for integer positive argument. It is an example of the

general class of step functions.

H(x) =


1, x ≥ 0,

0, x < 0,

(3.5)

where x is a real variable. The Heaviside function can also be defined as the integral of

the Dirac delta function: dH(x)
dx

= δ(x). The derivative of the Heaviside function is zero

everywhere except in zero where it goes to infinity.

By introducing the characteristic functions χ1 and χ2 defining the two regions Ω1(t) and

Ω2(t)

χ1(φ) = H(φ(x, y)) =


1, (x, y) ∈ Ω1(t),

0, otherwise,

(3.6)

χ2(φ) = 1−H(φ(x, y)) =


1, (x, y) ∈ Ω2(t),

0, otherwise,

(3.7)

we may rewrite (3.1) using (3.6) and (3.7) in terms of H and δ functions. The segmentation

of an image domain Ω is computed by minimizing the following energy functional using the

level-set function:

F (φ, c1, c2) =µ

∫
Ω

δ(φ(x, y))|∇H(φ(x, y))|dxdy + ν

∫
Ω

H(φ(x, y))dxdy (3.8)

+ λ1

∫
Ω

|I(x, y)− c1|2H(φ(x, y))dxdy

+ λ2

∫
Ω

|I(x, y)− c2|2(1−H(φ(x, y)))dxdy,
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where

c1(φ(x, y)) =

∫
Ω
I(x, y)H(φ(x, y)dxdy∫

Ω
H(φ(x, y))dxdy

(3.9)

c2(φ(x, y)) =

∫
Ω
I(x, y)(1−H(φ(x, y))dxdy∫

Ω
(1−H(φ(x, y)))dxdy

. (3.10)

• The length of C is
∫

Ω
|∇H(φ(x, y))|dxdy, because H(φ) is constant inside and outside

the boundary, then the gradient is equal to zero except on the boundary. This gives

exactly the number of points on the boundary.

Analytic approximation of the Heaviside

The Heaviside function is not differentiable. So, [28] suggest to use the smoothed

heaviside approximation regularized by some Hε(x) in C1 so that as ε → 0, Hε(x)

converges to H(x). Among the smooth analytic approximation to the step function we

use:

Hε = lim
ε→0

(
1

2
+

1

π
arctan(

x

ε
)

)
. (3.11)

The Dirac delta function δ(x) is then regularized to δε(x) = dHε
dx

δε(x) = lim
ε→0

1

π

(
ε

ε2 + x2

)
. (3.12)

The Chan-Vese algorithm uses variational calculus methods [5] to evolve the level set

function that minimizes some energy functional.

The Gateaux differential or Gateaux derivative is often used to formalize the functional

derivative generally used in the calculus of variations and physics. It is a generalization

of the concept of directional derivative in differential calculus.

Definition 3.1.1 (Gateau differential). Suppose X and Y are locally convex topolog-
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ical vector spaces, F : X → Y . The Gateaux differential dF (v;ψ) of F at v ∈ U in the

direction ψ ∈ X is defined as

dF (u;ψ) = lim
ε→0

F (v + εψ)− F (v)

ε
=

d

dε
F (v + εψ)

∣∣∣∣
ε=0

. (3.13)

If the limit exists for all ψ ∈ X, then one says that F is Gateaux differentiable at v.

Since dH(x)
dx

= δ(x). By chain rule we obtain

|∇H(φ)| = |δ(φ)∇φ| = δ(φ)|∇φ|. (3.14)

In [28] the Euler-Lagrange (E-L) equations and the gradient-descent method were used

to derive the following evolution equation for the level-set function φ that minimizes the

fitting energy using time to parametrize the gradient descent:

∂φ(t, x, y)

∂t
=δ(φ(x, y)) ·

[
µ · div

(
∇φ(x, y)

|∇φ(x, y)|

)
− ν

− λ1(I − c1)2 + λ2(I − c2)2

]
∈ (0,∞)× Ω, (3.15)

with initial and Neumann boundary conditions

φ(0, x, y) = φ0(x, y) ∈ Ω, (3.16)

δ(φ)

|∇φ|
· ∂φ
∂~n

= 0 ∈ ∂Ω. (3.17)
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Discretization

The discretized solution as reported in [28] is

φn+1
i,j − φni,j

∆t
= δε(φ

n
i,j)

[
µ

h2
∆x
−

 ∆x
+φ

n+1
i,j√(

∆x
+φ

n
i,j

h

)2

+
(φni,j+1−φni,j−1)

2

4h2



+
µ

h2
∆y
−

 ∆y
+φ

n+1
i,j√(

∆y
+φ

n
i,j

h

)2

+
(φni+1,j−φni−1,j)

2

4h2


−ν − λ1(Ii,j − c1(φn))2 + λ2(Ii,j − c2(φn))2

]
, (3.18)

where ∆x
−φi,j = φi,j − φi−1,j, ∆x

+φi,j = φi+1,j − φi,j,

∆y
−φi,j = φi,j−φi,j−1, and ∆x

+φi,j = φi,j+1−φi,j. Also, h denotes the space steps, ∆t denotes

the time step, (xi, yj) = (i · h, j · h) are the grid points, and φni,j = φ(n∆t, xi, yj) represents

the approximation of φ(t, x, y).

Temporally Linked Level-set Segmentation

The initial contour plays a very important part in the convergence of the Chan-Vese evolution

process. This approach makes use of temporal connection between consecutive level-set

results [28, 86, 90]. That is, when segmenting an image, which is a part of a temporal

sequence, we make use of the level-set results reached from minimization of the global energy

associated with the contours of the segmented cells found in the previous time point

φn+1(x, y; 0) = φn(x, y; ifinal), ∀(x, y) ∈ Ω, (3.19)

where n is the frame number in the time-lapse sequence, and ifinal is the number of iterations

required to converge for frame n. We take the contour result of each frame as the initial

contour for the following one. These results are utilized to minimize the energy functional
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of the next image. If the segmentation in frame n is accurate, then this initialization will

correspond to a point close to the global optimum of the energy functional in frame n+1. The

main steps of this technique are summarized in Algorithm 4. A flowchart of this algorithm

Algorithm 4 Temporally Linked Chan-Vese Segmentation

Require: frame Di, curve C of spatio-temporal mask result RSTM

1: φ0 ← Initial level-set signed distance (C)
2: repeat
3: Each iteration n Update average intensities c1 and c2

4: c1(φn)← Mean intensity of image pixels of Di inside the contour Cn

5: c2(φn)← Mean intensity of image pixels of Di outside the contour Cn

6: F (φn, c1, c2)← Normalized energy of image Di

7: Solve PDE ∂φ(t,x,y)
∂t

= 0 in φn to obtain φn+1 from (3.15) with c1(φn) and c2(φn)
8: Reinitialize φ locally to the signed distance function to the curve
9: until Convergence or n > nmax

10: Apply morphological operations to the segmented regions
11: RS ← Thresholding φfinal
12: return Binary mask RS

is displayed in Figure 3.2.

3.2 Spatio-Temporal Diffusion-based Motion Segmentation

We propose a moving object segmentation approach that includes a statistical intensity stan-

dardization stage, followed by a spatio-temporal system of coupled PDEs to apply nonlinear

diffusion in the joint spatial and temporal domain [10, 9]. We then apply non-parametric

density estimation followed by watershed segmentation and likelihood-based decision func-

tion to detect and delineate the moving objects.The main stages of this method are outlined

in Figure 3.3.

3.2.1 Frame Intensity Standardization by Histogram Transformation

PDE-based techniques calculate differential approximations; therefore they are sensitive to

variations in pixel intensity ranges. The main objective of this stage is first to reduce intensity

variations between frames of each sequence, and second, to obtain a robust intensity prior
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Figure 3.2: Main stages of the Temporally linked level-set segmentation.

for the cell delineation process. We apply a histogram transformation approach to match

the intensity distribution of each three consecutive frames defined by (3.20) to an intensity

distribution model learned from all frames of the sequence during the training stage.

P3F (I) = lim
Ntotal→∞

N(I)

Ntotal

, F3F (k) =

∫ k

0

P3F (I)dI. (3.20)
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Figure 3.3: Spatio-temporal diffusion-based technique.

The general idea is to transform the frame intensities so that the cell/background threshold

Iref determined from the FAF , as expressed in (3.21), matches the global Cumulative Distri-

bution Function reference value FAF (Iref ) corresponding to the Iref value (3.21) indicating

the tail of background intensity distribution of the complete sequence as displayed in Figure

3.4 (top).

PAF (I) = lim
Ntotal→∞

N(I)

Ntotal

, FAF (k) =

∫ k

0

PAF (I)dI. (3.21)

We aim to find a transformation so that the output image is a similar image that has a

background value with the same order of brightness of the input image. Figure 3.4 (bottom)

displays how we can determine the Itest value from the PDF of each three consecutive frames
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at the training stage using the prior value FAF (Iref ) as expressed by (3.22).

Itest = argmin
i
|F3F (I(ω))− FAF (Iref )|, (3.22)

where ω ∈ Ω3F , I : Z2 → R+. Using these values, the resulting images are scaled and

defined over the [0−255] range and with respect to the global minimum and global maximum

intensities of all the frames of the dataset sequence after applying equations (3.23), (3.24),

and (3.25).

T1(I) =
Iref −GMin

Itest − LMin

(I −GMin) +GMin. (3.23)

T2(I) =
255 · (I −GMin)

GMax −GMin

. (3.24)

IS(ω) = T (I(ω)) = (T2 ◦ T1)(I(ω)), ω ∈ Ω3F . (3.25)

We experimentally found that the matched frames are less sensitive to the temporal,

spatial diffusion parameters and Parzen kernel bandwidth values than the raw frames. In our

experiments we used 256 bins for all datasets. The following steps define the two algorithms

that learn the CDF reference value for background intensity FAF (Iref ) at the training stage

(Algorithm 5) and transform every source image at the testing stage (Algorithm 6) so as to

make its testing background as close as possible to the reference intensity.

Algorithm 5 Histogram transform training stage

Require: dataset D = {D1, D2, . . . , DN}
1: DAF ← Concatenate Dk, k = 1, . . . , N
2: GlobalMax ← Maximum pixel intensity of DAF
3: GlobalMin ← Minimum pixel intensity of DAF
4: Plot PAF (I) = limNtotal→∞

N(I)
Ntotal

5: Choose (reference value) Iref in PAF at beginning of histogram tail for background dis-
tribution

6: FAF (k)←
∫ k

0
PAF (I)dI

7: FAF (Iref )← Closest percentile of Iref
8: return FAF (Iref ), GlobalMax, GlobalMin, Iref ,
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Algorithm 6 Histogram transform testing stage

Require: dataset D = {D1, D2, . . . , DN}, FAF (Iref ), Iref , Globalmax, Globalmin
1: Dmir ← Mirror the frames at borders {D2, D1, D2, ..., DN−1, DN , DN−1}
2: for each three consecutive frames {Di−1, Di, Di+1} ∈ Dmir do
3: I3F

i ← Concatenate {Di−1 ∪Di ∪Di+1} vectors
4: Localmin ← Minimum pixel intensity of I3F

i

5: Compute P 3F
i (I3F

i ) = limNtotal→∞
N(I3Fi )

Ntotal
using 255 bins

6: F 3F
i (k)←

∫ k
0
P 3F
i (I3F

i (ω))dω
7: I testi ← min|F 3F

i (I3F
i (ω))− FAF (Iref )| where ω ∈ Ω3F , I : Z2 → R+

8: for all I3F
i ∈ Di−1 ‖ Di ‖ Di+1

9: T1(I3F
i ) = [(Iref −GlobalMin)�(I testi − LocalMin)] (I3F

i −GlobalMin) +GlobalMin

10: T2(I3F
i ) = 255 · (I3F

i −GlobalMin)�(GlobalMax −GlobalMin)
11: TI3Fi = (T2 ◦ T1)(I3F

i (ω)) where ω ∈ Ω3F

12: end for
13: return DT2◦T1

Figure 3.5 displays an intensity standardization example applied on three consecutive

frames. The top row displays the histogram of the complete dataset and transformations

T1 and T2 given by (3.23) and (3.24) respectively. The bottom row shows the histogram of

3 frames used to determine Itest, the original histogram of currently processed frame and

transformed histogram after applying (3.25). We note that after the histogram transforma-

tion and scaling, all frames of the same sequence are going to have similar pixel intensity

ranges.

3.2.2 Spatio-temporal Diffusion

Perona-Malik Anisotropic Diffusion

Diffusion algorithms perform image restoration by finding numerical solutions of the heat

diffusion PDE [125, 8]. In this framework, the linear diffusion model is equivalent to applying

Gaussian filtering to the image. The homegeneity of the gaussian diffusion filtering may lead

to diffusion of important image features. To avoid the blurring and localization problems

of linear diffusion filtering, Perona and Malik [92] proposed to replace the classic isotropic

diffusion equation with the nonlinear diffusion model by adding a diffusivity coefficient. This
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inhomogeneous coefficient depends on the space activity in the image based on the norm of

the local gradient of the image. Perona-Malik equation is based on the following PDE:

∂I

∂s
= div [g (|∇I(x, y, s)|) · ∇I(x, y, s)] , (3.26)

where I is the image intensity, s the scale variable for 2D case, and g(·) a function that deter-

mines the amount of diffusion, also known as diffusivity function. The problem formulation

with a Neumann boundary condition is


∂I
∂s

= ∇ [g (|∇I(x, y, s)|) · ∇I(x, y, s)]

∂I
∂s

= 0 ∈ ∂Ω

I(x, y, 0) = I0(x, y) ∈ Ω,

(3.27)

where Ω is the image domain which is a bounded subset of Rn with boundary of class C1.

We assume that the derivatives of I0 vanish at the boundaries of the image domain. The

diffusivity function is chosen to be monotonically decreasing from 1 to 0 while x changes

from 0 to ∞ satisfying limx→∞ g(x) → 0 so that diffusion is attenuated across edges. This

function is usually controls the amount or rate of diffusion according to the edge strength.

Common options for g(·) are the sigmoid and exponential functions also reported by Perona

and Malik in [92]:

g(x) =
1(

1 + x2

k2

) (3.28)

g(x) = e

(
−x

2

k2

)
, (3.29)

where k denotes the conductance parameter that is a positive constant that controls the

sensitivity to edges and is usually determined experimentally. This formulation was referred

to as anisotropic diffusion by Perona and Malik even though the locally adapted filter is

isotropic, but it has also been referred to as inhomogeneous and nonlinear diffusion [124,
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126] or Perona-Malik diffusion [92] by other authors. The inhomogeneous diffusion method

does not diffuse the image in a uniform way. The Perona-Malik diffusion equation is presented

and is shown to be equivalent to a a procedure that estimates a piecewise-constant image

from a noisy input image [101]. Nonlinear diffusion filter is used to enhance Gerig et al.

used such filters to enhance MR images [54, 44], to perform edge preserving smoothing of

MR images [119, 53]. Other authors have shown that diffusion filters can be used to enhance

and detect object edges within images [82], this method has been extensively used for image

restoration as it reduces smoothing at edges in order to preserve their contrast and location.

Spatio-temporal Nonlinear Diffusion

Partial Differential Equation Model

Here we propose to simulate nonlinear heat flow through the processed frames in both

spatial and temporal dimensions. This operation smooths-out the background regions and

simultaneously preserves the spatio-temporal discontinuities corresponding to cells. More

specifically, performs intraregion smoothing while inhibiting interregion smoothing. This

process is defined as follows: Given 3 consecutive frames of the sequence at times {t−1, t, t+

1}, we define a system of three coupled PDEs for each frame. At time points τ = {t−1, t, t+1}

∂I(i, j, τ, s)

∂s
=g(|∇I(i, j, τ, s)|) ·∆I(i, j, τ, s)

+∇g(|∇I(i, j, τ, s)|) · ∇I(i, j, τ, s). (3.30)

Initial condition

I(i, j, τ, 0) = I0(i, j, τ). (3.31)

Boundary condition

∂I

∂~n
= 0 on ∂Ω× ∂T × (0, S). (3.32)
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Numerical solution

Moving regions are initially detected in each three consecutive frames by numerically

solving the spatio-temporal partial-differential diffusion equation [11] where the diffusivity

function is applied to the gradient magnitude of the image I. In this work we used the

function (3.29) that is more suitable for region oriented applications [131]. This nonlinear

diffusion is bound to the gradient magnitude [117]. It applies more diffusion in uniform

regions and slows down at edges, therefore preserves high contrast edges over low contrast

ones. We used the Finite Difference method to solve the system of (3.30) on a 2D square

grid lattice. Since we assume that the derivatives of I0 vanish at the boundary of Ω, We

applied padding by replicating the pixel intensities at the image borders. This will give a

zero gradient at the boundaries of Ω and will enable the detection and localization of motion

within each 3 consecutive frames.

At t

Is+1
i,j,t = Isi,j,t + λs[g(|∇Isi+1,j,t|) ·Nt + g(|∇Isi−1,j,t|) · St

+ g(|∇Isi,j+1,t|) · Et + g(|∇Isi,j−1,t|) ·Wt]

+ λt[g(|∇Isi,j,t−1|) · PF + g(|∇Isi,j,t+1|) ·NF ] (3.33)

At t− 1

Is+1
i,j,t−1 = Isi,j,t−1 + λs[g(|∇Isi+1,j,t−1|) ·Nt−1

+ g(|∇Isi−1,j,t−1|) · St−1

+ g(|∇Isi,j+1,t−1|) · Et−1

+ g(|∇Isi,j−1,t−1|) ·Wt−1]

− 2λtPF · g(|∇Isi,j,t−1|) · PF (3.34)
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At t+ 1

Is+1
i,j,t+1 = Isi,j,t+1 + λs[g(|∇Isi+1,j,t+1|) ·Nt+1

+ g(|∇Isi−1,j,t+1|) · St+1

+ g(|∇Isi,j+1,t+1|) · Et+1

+ g(|∇Isi,j−1,t+1|) ·Wt+1]

− 2λtNF · g(|∇Isi,j,t+1|) ·NF (3.35)

where

Nt = Isi−1,j,t − Isi,j,t, St = Isi+1,j,t − Isi,j,t (3.36)

Wt = Isi,j−1,t − Isi,j,t, Et = Isi,j+1,t − Isi,j,t (3.37)

PF = Isi,j,t−1 − Isi,j,t, NF = Isi,j,t+1 − Isi,j,t. (3.38)

In (3.33), (3.34), and (3.35) λs, λt, λtPF , λtNF denote the numerical ”time” steps for spatial,

temporal, next frame temporal, and previous frame temporal terms respectively. In our

implementation we set λt = TSRatio ·λs and λtPF = λtNF , where TSRatio is a fixed parameter

for the ratio of temporal to spatial diffusion. The diffusivity function is applied to the

gradient magnitude of the image I.

3.2.3 Detection of Spatio-temporal Discontinuities by Parzen Density Estima-

tion

The idea is to estimate the likelihood of mean intensity in the neighborhood of each pixel in

the diffused frame. Assuming a model of unimodal probability density function (PDF) for

region interiors and bimodal PDF for edges, we use the likelihood of mean intensity as an

index of edge occurrence. Low values of this index correspond to a bimodal PDF indicating

an edge. We estimate this likelihood by the nonparametric technique of Parzen kernels [91,
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58, 35]. The Parzen density estimation belongs to the nonparametric density methods [23]

i.e. methods to estimate the probability density function of a random variable that do not

impose any initial assumptions about the shape of the probability density functions. Its

operation is based on placing at each observation sample a probability mass and producing

a potential according to a Gaussian kernel. The contributions of all the sample points are

averaged to estimate the density value at every point of the image [58].

fh(x) = 1/(n · hp)
n∑
i=1

K((x− xi)/h), (3.39)

where (x1, x2, , xn) is an independent and identically distributed sample drawn from some

distribution with an unknown density P , K(·) is the kernel and h > 0 is a smoothing

parameter called the bandwidth. We can see in (3.39) that the kernel-bandwidth h can

strongly affect the PDF estimate, especially when the number of observations n is finite.

Very small h values will produce a ragged density estimate, while very large values will

smooth the structure of the PDF. An optimal h value is usually experimentally determined

to find a compromise between the variability and accuracy and converge towards the true

PDF. Figure 3.6 shows three density estimates: the green solid line corresponds to a small

bandwidth, the black line corresponds to a large bandwidth, while the blue line represents

a bandwidth selection that produces a more accurate estimate of the underlying bimodal

distribution.

To show the effect of the bandwidth kernel width is vital for good results, we plot

motion masks of Hela 02 with different Parzen kernel widths. In regions of high density

we need to choose a narrow kernel width to allow us to model the variations in population

density accurately. Conversely, in the low density, a very wide kernel is preferable, since the

population there is very low. On a sample frame of a dense dataset, as in Figure 3.7 we

clearly see that few cells are not detected when we choose a wide parzen bandwidth.
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3.2.4 Cell Delineation and Identification

The edge map can be interpreted as a topographic surface consisting of valleys corresponding

to spatio-temporally homogeneous areas and peaks denoting spatio-temporal discontinuities

[93]. The next step is to apply watershed segmentation. Watershed analysis has emerged

from mathematical morphology and was implemented by a series of morphology operators

in its early versions [121] . Since then, several implementations have appeared, proposing

iterative, sequential, arrowing, flow line oriented and flooding techniques [111]. Regional

minima of the topographic relief are selected and flooded to form the moving regions. We

obtain a watershed region in the resulting segmentation for each minimum. We first find the

watershed ridges of the stochastic map of spatio-temporal discontinuities. The watershed

transform divides a multivalued image into separate regions by identifying the regional min-

ima and applying flooding operations to each minimum to fill the watershed basins. Each

basin corresponds to a region. We first invert the stochastic map produced by Parzen den-

sity estimation to form regions separated by spatio-temporal discontinuities. To separate

the cells we calculate intensities and areas of watershed regions and classify them into cells

or background using area and intensity prior information and likelihoods p(area|ci), p(I|ci)

in Gaussian form, where ci = {background, cell}. Adjacent watershed regions with coherent

motion should be merged together to form a moving object. We compute mean intensity

over the watershed regions and classify into foreground or background using as threshold

value the standardized reference value T (Iref ) calculated by (3.25).

3.3 Joint Spatio-temporal Diffusion and Temporally Linked Level-set Approach

(ST-Diff-TCV)

We propose a joint method combining the Spatial and Temporal differential information

with the high delineation accuracy that characterizes level set-based segmentation [36, 38,

42, 28]. More specifically, we use S-T Diffusion to delineate the cells first, then initialize TCV
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with the S-T Diffusion result to refine the cell segmentation. We apply the S-T Diffusion

technique on each modulo k frame to address cell events that may not be handled by TCV

such as cell mitosis, cell division, new cells entering the field of view, and other cases. This

strategy may also reduce the computational cost by applying the S-T Diffusion technique

to a limited number of frames. We apply these methods on several datasets of fluorescence

microscopy images with varying levels of difficulty with respect to cell density, resolution,

contrast, and signal-to-noise ratio. The flowchart in Figure 3.8 outlines the main stages of

our proposed technique. Furthermore, in Figs. 3.9 and 3.10 we display intermediate results

from each stage on a test frame and its temporal neighbors for the C2DL−MSC02 and

Fluo-N2DH-SIM04 sequences.
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Figure 3.4: (Training stage) Probability density function of 48 frames of C2DL−MSC02
dataset and cumulative distribution function. (Testing stage) Normalized PDF
and CDF of three consecutive frames of C2DL−MSC02 dataset.
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Figure 3.5: Histogram of all concatenated images of the C2DL-MSC02 dataset, and linear
transformations and scaling of each pixel of the image (top row, left to right).
The histogram of 3 consecutive frames that will be matched to the training
dataset, and the histograms of the current frame before and after transforma-
tion T (I(ω)) = (T2 ◦ T1)(I(ω)), ω ∈ Ω3F (bottom row, left to right).
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Figure 3.6: An example of (a) noisy edge detection using (b) nonparametric density es-
timation. Comparison of the Parzen density estimate for different bandwidth
values of h on the same image intensity samples plotted on the horizontal axis.
The optimal h value estimates the bimodality of the local intensity distribu-
tion. Use of smaller h is susceptible to statistical variability, while larger h will
reduce the estimation accuracy.

Figure 3.7: Comparison of detected cell masks using different Parzen bandwidth values
on the same sample frame of a dense dataset. (a) Parzen bandwidth h = 20
showing some missing cells, (b) Parzen bandwidth h = 2 leads to better results
as it can detect more cells than in (a).
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Figure 3.8: Outline of the proposed joint spatio-temporal nonlinear diffusion algorithm and temporally linked level sets
methods (ST-Diff-TCV).
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Figure 3.9: Intermediate results produced by ST-Diff-TCV on sample frames of C2DL-
MSC02 data sequence. First row: center, previous and next frames in the
temporal space (left to right) Second row: S-T diffused frame, kernel density
estimation of edge-moving regions then the inverted probability density map.
Third row: watershed result, cell identification after foreground/background
separation, and the reference segmentation mask (left to right).
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Figure 3.10: Intermediate results produced by ST-Diff-TCV on sample frames of Fluo-
N2DH-SIM04 data sequence. First row: center, previous and next frames in
the temporal space (left to right) Second row: S-T diffused frame, kernel den-
sity estimation of edge-moving regions then the inverted probability density
map. Third row: watershed result, cell identification after foreground/back-
ground separation, and the reference segmentation mask (left to right).

52



Chapter IV: CELL SEGMENTATION EXPERIMENTS

4.1 Data Description

The datasets consist of 2D fluorescent microscope time-lapse image sequences. We used 12

time-lapse video sequences; 6 real microscopy time-lapse sequences and 6 computer simulated

videos with various cell densities and noise levels. We obtained the training and challenge

data sets from the cell tracking challenge website [25]. Simulated videos: The 6 simulated

videos displayed fluorescently labeled nuclei of the HL60 (human promyelocytic leukemia)

cell line migrating on a flat 2D surface (N2DH-SIM01, N2DH-SIM02, N2DH-SIM03, N2DH-

SIM04, N2DH-SIM05, N2DH-SIM06). They differ in the level of noise, cell density of the

initial population, the number of cells leaving and entering the field of view and the number of

simulated mitotic events, yielding up to 70 cells in the field of view [25]. Real videos: We used

3 datasets each containing 2 time-lapse sequences. Two video sequences of Rat Mesenchymal

stem cells (Fluo-C2DL-MSC01 and Fluo-C2DL-MSC02), also known as mesenchymal stem

cells, are adult stem cells that can be found in the bone marrow or isolated from cord

blood, peripheral blood, fallopian tube, fetal liver or lung. Cultured mesenchymal stem cells

are an excellent tool for the study of adipocyte, osteocyte, and chondrocyte differentiation.

The videos were acquired in the Cell Therapy Laboratory of Center for Applied Medical

Research (CIMA) Pamplona, Spain. (Pixel size of 0.3977 x 0.3977 microns and Time step

of 20 minutes for Fluo-C2DL-MSC1 and 30 minutes for Fluo-C2DL-MSC02. Two real video

sequences named N2DH-GOWT101 and N2DH-GOWT102 of mouse embryonic stem cells

in 2D obtained by the Institute of Biophysics Academy of Sciences of the Czech Republic.

Brno. Czech Republic acquired using, Pixel size of 0.240 x 0.240 microns and time step of 5

minutes between each frame. Two video sequences named N2DL-HeLa01 and N2DL-HeLa02

expressing HeLa cells in 2D with pixel size of 0.645 x 0.645 microns and Time step of 30

minutes between each frame. A HeLa cell, is the oldest and most commonly used human cell
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line derived from cervical cancer cells. The cell line was found to be remarkably durable and

prolific which makes these datasets considered to have high level of difficulty [25] because of

the high cell density and mitoses events yielding up to 300 cells in the field of view and low

resolution and intensity. A sample frame of each dataset is displayed in Figure 4.1.

4.2 Intensity Distributions of Time-lapse Sequences

As we have described before, the datasets are characterized by intensity variability that

complicates the segmentation stages. This effect may be more pronounced in differential

approaches. We propose to reduce the variability within a time-lapse sequence and among

different time-lapse sequences using a statistical learning technique to perform intensity

histogram transformation.

In Figures 4.2 and 4.3 we display the computed global intensity histograms for our

simulated and real image sequences respectively. We also display the PDF and CDF of these

sequences. We note that the original distributions have clear differences in first and second

order statistics. We propose to use reference points that are learned on the CDF of the

global sequence to transform the intensity histograms of the individual frames. The goal

is to address translation and scaling variations between distributions and accomodate the

application of methods based on finite spatio-temporal differences. This is the case for the

spatio-temporal diffusion differential techniques and level-set approaches.
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Figure 4.1: The 6 real and 6 simulated time-lapse sequences used for validation.
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Figure 4.2: PDF and CDF of all the concatenated frames of each sequence of the simulated datasets.
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Figure 4.3: PDF and CDF of all the concatenated frames of each sequence of the real datasets.
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4.3 Generation of Reference Data for Segmentation [25]

One expert from CIMA-ES (Center for Applied Medical Research, España) annotated all

the real datasets used in the training phase. The real videos were manually annotated by

three experts from three sites, CBIA-CZ (Center for Biomedical Image Analysis part of the

national research infrastructure Czech-BioImaging) and ERASMUS-NL(Erasmus University

Rotterdam, Netherlands).

The task for annotators was to mark grid points belonging to cells as accurately as

possible. Therefore, each cell was segmented as a set of grid points with the same unique

label. The length of the videos and the high number of cells per frame in some of the

datasets prevented from having a complete manual annotation of all the cells. Therefore,

all the frames of each video were first randomly permutated to select the cells that were

used as ground truth. The segmentation masks were drawn in the entire image frame. The

annotators were asked to identify and annotate cells that in their opinion were prone to

causing segmentation problems, such as cells undergoing abnormal mitoses, dimly stained

cells, oddly shaped cells and colliding pairs of cells. They segmented at least 20 instances of

each problematic event.

4.4 Image Quality Assessment of Datasets

In our first experiment, we measured the image quality (IQ) of our datasets and then eval-

uated the segmentation accuracy. We utilized the available reference data for this purpose.

The reference data consist of manually annotated videos for segmentation and tracking along

with a short description and links to the raw datasets obtained from [25]. We first used the

reference data to estimate the average Signal-to-Noise Ratio (SNR) and Contrast-to-Noise

Ratio (CNR) of each dataset. The SNR and CNR measures are defined as follows:

SNR = 20 log10

ūC
ūB
, (4.1)
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CNR =
|ūC − ūB|

σB
, (4.2)

where ūC is the average image intensity over the cell regions, ūB is the average intensity over

the background and σB is the standard deviation of the background pixels. In Table 4.1

we list the average SNR (in dB) and average CNR that are means over all frames in each

sequence using (4.1) and (4.2) and corresponding standard deviations of each dataset over

cell regions. Summarized information on our test data image quality metrics and the level

of difficulty is listed in Table 4.1, including the image matrix size, voxel size, time step in

minutes, the number of frames in each sequence. A comparison between the level of difficulty

and the image quality metrics in Table 4.1 shows that the simulated sequences have higher

SNR and CNR, therefore being more amenable to segmentation than the real sequences.
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Table 4.1: Dataset properties and quality using Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR)

Dataset name Frame size Voxel size (µm) Average SNR Average CNR Time step (min) Level of difficulty

N2DH-SIM01 494x534 0.125x0.125 21.53 ± 0.69 7.96 ± 0.95 - Medium:different noise

N2DH-SIM02 569x593 0.125x0.125 22.21 ± 0.65 8.35 ± 0.96 - levels, cell density

N2DH-SIM03 606x605 0.125x0.125 18.59 ± 0.47 4.21 ± 0.47 - of the initial

N2DH-SIM04 673x743 0.125x0.125 18.97 ± 0.47 4.09 ± 0.49 - population and

N2DH-SIM05 597x525 0.125x0.125 19.49 ± 0.54 4.22 ± 0.60 - number of simulated

N2DH-SIM06 655x735 0.125x0.125 21.92 ± 0.54 7.90 ± 0.78 - mitotic events.

C2DL-MSC01 992x832 0.397x0.397 14.67 ± 0.67 2.11 ± 0.36 20 High:low SNR, cell

C2DL-MSC02 1200x782 0.397x0.397 15.09 ± 2.31 4.47 ± 1.49 30 stretching appear as

discontinuous extensions

of the cells.

N2DL-HeLa01 1100x700 0.644x0.644 26.60 ± 3.41 19.23 ± 7.67 30 High:high cell density,

N2DL-HeLa02 1100x700 0.644x0.644 16.02 ± 1.67 5.40 ± 1.08 30 low resolution,

frequent mitoses events

(normal and abnormal).

N2DH-GOWT101 1024x1024 0.240x0.240 22.47 ± 0.49 12.62 ± 0.77 5 Medium:heterogeneous

N2DH-GOWT102 1024x1024 0.240x0.240 18.91 ± 0.92 8.32 ± 0.91 5 staining, prominent nuclei,

mitoses and cells entering

leaving the field of view.
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4.5 Segmentation Evaluation Measure

We compute DICE coefficients to estimate the segmentation performance between each

method and the reference manual segmentations. The main purpose is to evaluate how

well the segmented cells match the cell regions of the reference mask. We quantify the accu-

racy of the segmentation performance by computing the DICE similarity coefficient denoted

by DSC. This is defined as:

DSC = 2× |RS ∩RRef |
|RS|+ |RRef |

∈ [0, 1], (4.3)

where RRef is the set of all pixels that belong to cell regions in the reference image, RS is

the set of all binary regions delineated by the tested segmentation technique. The DICE

coefficient measures the relative similarity between two binary images over their cardinalities.

It is frequently used for image segmentation validation. The value of 1 indicates perfect

matching. Figure 4.4 displays an example of cell regions used to compute the Dice coefficient.

Figure 4.4: Cell regions used to compute the Dice coefficient (DSC). Rs is the set of all
binary regions delineated by our segmentation technique. RRef set of all pixels
that belong to cell regions in the reference image.

4.6 Validation and Comparison of CV and TCV

In the first experiment we segmented the test sequences using CV method and TCV ap-

proach.We segmented each dataset using each method and evaluated the segmentation per-
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formance against reference masks. We computed means and the standard deviations of DICE

scores obtained by CV and TCV methods over all frames for each sequence as displayed in

Figure 4.5. Overall the accuracy in DICE scores derived from the linking method appears to

be similar in value with that obtained from CV method. However, there is a clear difference

in the values of the standard deviation. That is, the standard deviations obtained from the

temporal-linking method (0.006-0.1) are significantly smaller than those derived from the

CV method (0.02-0.4), indicating better convergence and stability.

Figure 4.5: Segmentation accuracy produced by the original CV algorithm (left) and the
temporally linked level-sets (right).

Better insight into the improvement from the temporal-linking method can be obtained

by looking at frame-by-frame segmentation and convergence. Consider the Fluo-N2DH-

SIM5 dataset, for example. In Figure 4.6 we show the frame by frame DSC score results

of energy minimization derived using the CV and temporal-linking methods. Because of

the non-convexity of the energy functional (allowing therefore many local minima), the CV

method reached on some frames a local minimum of energy where, however, the moving
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contour got trapped. In contrast, the temporal-linking method led to a global minimum

of the energy, yielding the actual cell regions. The mean number of iterations necessary

to perform segmentation of all the frames provides better insight into the convergence of

both methods. Here Figure 4.6 shows changes of the DICE coefficient for each frame. In

particular, notice the abrupt drop of the coefficient and the index to values very close to

zero on certain frames when using the CV method, whereas DICE scores produced by the

temporal-linking method appear robust indicating improved robustness.

Figure 4.6: Comparison of the DICE coefficient of each frame (total frame=77) of the
Fluo-N2DH-SIM5 data using the traditional CV segmentation (top) and the
temporal-linking method (TCV) (bottom). We note the greater DICE scores
and faster convergence of the proposed method.

Another consideration in our comparisons was the number of iterations until conver-

gence. Figure 4.7 the number of iterations required to achieve segmentation of one sample

image of N2DL-Hela2 dataset by (a) the standard CV segmentation (b) the temporal linking

method. We observe a significant reduction in the number of iterations (from 5000 to 173),
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because the initial level-set is very close to the actual regions to segment. However, the DICE

score produced by the temporally linked level-set is lower than the one produced by the CV

method. As indicated in Table 4.2, this dataset has a high level of difficulty due to the high

density and especially the frequent mitoses, low resolution and low fluorescence intensity. In

this case, we encountered the temporally linked level-set converges significantly faster than

CV. The local minimum is reached in a few iterations compared to the proposed technique

that reaches a more accurate solution. Building upon the previous observation, we tested

our hypothesis of faster convergence on our complete set of sequences. We report the average

number of iterations used to achieve segmentation of the cells for each dataset over all the

frames in Table 4.2. This table demonstrates the major reduction of the computational time

for minimizing the energy with the use of the temporal linking method that is equal to a

factor of 10.2. This reduction is achieved by exploiting the previously computed level-set

and using it for initializing the values for the minimization of the current image with possible

guessing of the initial values as implemented in the CV method.

Figure 4.7: Comparison between the number of iterations to required to obtain segmen-
tation result of one sample frame of C2DL-Hela2 dataset using (a) CV and (b)
TCV methods.

The previous observation can be explained in terms of the energy minimization. De-

pending on several factors, the energy can sometimes converge to a local energy minimum
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without reaching the desired global energy minimum. The contour may sometimes stop its

evolution before reaching the desired boundaries. In particular cases the splitting of the cells

is not delineated correctly; this case is very often en-countered in cell segmentation. In some

cases, especially in MSC data, stretched cells can leave a trace which can be detected by

single or few pixel objects which may be misdelineated as a cell. Since our energy function is

non-convex, allowing therefore many local minima, conventional CV initialization may lead

to premature convergence to a local minimum and segmentation errors.

Table 4.2: The mean number of iterations required to achieve segmentation of each se-
quence by both methods: CV and TCV

Dataset name Frame size Nb frames Nb iterations Nb iterations

CV TCV

N2DH-SIM01 494x534 56 261 106

N2DH-SIM02 569x593 100 1088 88

N2DH-SIM03 606x605 100 412 96

N2DH-SIM04 673x743 56 456 43

N2DH-SIM05 597x525 76 279 97

N2DH-SIM06 655x735 76 228 72

C2DL-MSC01 992x832 48 240 104

C2DL-MSC02 1200x782 48 343 224

N2DL-HeLa01 1100x700 92 1039 67

N2DL-HeLa02 1100x700 92 4470 82

N2DH-GOWT101 1024x1024 92 322 64

N2DH-GOWT102 1024x1024 92 2469 141

Mean 998 98

4.7 Validation and Comparison of CV, TCV, ST-Diff, and ST-Diff-TCV Meth-

ods

We applied the standard CV, TCV, ST-Diff, and ST-Diff-TCV methods on 12 time-lapse

fluorescent microscopy datasets listed in Table 4.1. Fluorescent microscopy imaging is often
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times subjected to a mixture of different types of noise. The main goal of a preprocessing

step is to reduce the corruption caused by noise and to improve the image quality [85]. To

facilitate data analysis, a combination of filters and histogram enhancement is applied to the

datasets to obtain better delineation accuracy.

We computed the DICE coefficient between the automated and reference segmentations

for each method and for each dataset. Further, we computed the means and the standard

deviations of the DICE similarity coefficients over all frames for each dataset sequence.

Figure 4.8 and Table 4.3 report the DSC estimates and their variations for each sequence.

In addition, the last row in Table 4.3 lists the overall DSC values for all datasets. In Figure

4.8 and Table 4.3 we observe that ST-Diff-TCV yields higher DSC values for 11 out of the 12

test sequences. ST-Diff-TCV yields an average Dice coefficient of 0.89 over all datasets, while

both CV and TCV yield 0.78, and ST-Diff yields 0.85 (Table 4.3). Furthermore, the standard

deviation values in Table 4.3 show more robustness and stability. That is, the standard

deviations obtained from ST-Diff and ST-Diff-TCV (0.01-0.03) are significantly smaller than

those derived from the CV method (0.01-0.4) and even TCV (0.02-0.08) indicating better

convergence and stability.
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Figure 4.8: Dice similarity coefficients (DSC) produced by standard Chan−Vese model (CV), temporally linked
Chan−Vese technique (TCV), spatio−temporal diffusion (ST−Diff), and the joint ST−Diff−TCV meth-
ods over all 12 datasets.
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Table 4.3: The mean DICE coefficient obtained from segmentation of each sequence by CV, TCV, ST-Diff, and the joint
ST-Diff-TCV method
Dataset name Size Frames CV TCV ST-Diff ST-Diff-TCV

N2DH-SIM01 494x534 56 0.92 ± 0.02 0.87 ± 0.03 0.92 ± 0.02 0.94 ± 0.02

N2DH-SIM02 569x593 100 0.78 ± 0.31 0.86 ± 0.03 0.88 ± 0.02 0.94 ± 0.02

N2DH-SIM03 606x605 100 0.94 ± 0.03 0.92 ± 0.02 0.92 ± 0.02 0.94 ± 0.02

N2DH-SIM04 673x743 56 0.88 ± 0.02 0.86 ± 0.02 0.91 ± 0.01 0.93 ± 0.01

N2DH-SIM05 597x525 76 0.70 ± 0.40 0.92 ± 0.04 0.88 ± 0.01 0.94 ± 0.01

N2DH-SIM06 655x735 76 0.83 ± 0.27 0.92 ± 0.02 0.88 ± 0.01 0.96 ± 0.01

C2DL-MSC01 992x832 48 0.74 ± 0.08 0.59 ± 0.02 0.67 ± 0.03 0.76 ± 0.03

C2DL-MSC02 1200x782 48 0.58 ± 0.09 0.74 ± 0.08 0.62 ± 0.03 0.81 ± 0.03

N2DL-HeLa01 1100x700 92 0.72 ± 0.01 0.68 ± 0.02 0.80 ± 0.01 0.82 ± 0.01

N2DL-HeLa02 1100x700 92 0.84 ± 0.01 0.67 ± 0.03 0.87 ± 0.01 0.87 ± 0.01

N2DH-GOWT101 1024x1024 92 0.77 ± 0.01 0.71 ± 0.03 0.91 ± 0.03 0.90 ± 0.02

N2DH-GOWT102 1024x1024 92 0.68 ± 0.02 0.67 ± 0.03 0.91 ± 0.02 0.92 ± 0.02

Mean DSC 0.78 0.78 0.85 0.89
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Figure 4.9: CV versus ST-Diff Segmentation on Mouse Stem Cells N2DH-GOWT102
dataset.

In some of our datasets, the fluorescent images present less bright nuclei or cells darker

than the background where there is absorption rather than fluorescence. Certain darker cell

regions have mean intensity lower than the mean intensity of the background like in MSC1,

N2DH-GOWT1-01 and N2DH-GOWT1-02 data sequences. We were able to detect those

cells by the motion estimation which significantly improves the segmentation accuracy from

0.77 to 0.91 and 0.68 to 0.913. This is simply performed by choosing a threshold lower

than mean intensity of the reference background where we had to choose a factor and 1/3

for N2DH-GOWT1-01 and N2DH-GOWT1-02 respectively. Hence, the region competition

process fails to delineate those cells. However, these cells are detected by the spatio-temporal

motion detection method because they are rather detected by their high activity process

and the Threshold factor for background as shown in Figure 4.9, which is proven to be more

efficient in this case.

To illustrate the performance comparison among the three tested methods in more

69



detail, we show in Figure 4.10, the results derived from CV, TCV, ST-Diff, and ST-Diff-

TCV methods on N2DH-SIM02 and N2DH-SIM04 datasets. In the N2DH-SIM02 sequence

(Figure 4.10(a)), we observe that because of the non-convexity of the energy functional

(allowing therefore many local minima), the CV method reached several local minima of

energy. In contrast, the TCV method led to a global minimum of the energy. ST-Diff-TCV

method yields accurate delineation of the cells with fewer fluctuations in the Dice coefficient

than the other methods. We note that ST-Diff-TCV yields an average Dice coefficient of

0.94, while CV yields 0.78, TCV yields 0.86, and ST-Diff yields 0.88. In the N2DH-SIM04

dataset as displayed in Figure 4.10(b) we observe that ST-Diff-TCV produces the highest

accuracy at a DSC value of 0.93, followed by ST-Diff, CV and TCV with Dice coefficients

of 0.91, 0.88 and 0.86 respectively.

Furthermore, Figure 4.11 displays cell delineations represented by yellow contour maps

for one frame of the sequence N2DL-Hela2 including the manual reference, and automated

segmentation produced by all tested methods. This sequence has an increased level of dif-

ficulty because of the high cell density and low contrast between some cells and the back-

ground. Because CV and TCV methods use piecewise constant approximations for object

and background as can be seen in (3.15), the low contrast cells are likely to be falsely iden-

tified as background therefore reducing DSC (CV: 0.84, TCV: 0.67). On the other hand,

both ST-Diff and ST-Diff-TCV identify the spatio-temporal discontinuities and detect the

cells that are missed by CT and TCV as outlined by white rectangles in Figure 4.11. In the

magnified local regions of the test image we note that ST-Diff-TCV yields more accurate cell

separation for adjacent cells than ST-Diff.
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Figure 4.10: Dice similarity coefficients (DSC) produced by standard Chan-Vese segmen-
tation (CV), temporally linked Chan-Vese technique (TCV), spatio-temporal
diffusion (ST-Diff), and the joint ST-Diff-TCV methods for each frame of (a)
N2DH-SIM02 and (b) N2DH-SIM04 datasets.
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Figure 4.11: Cell boundaries produced by the 4 tested methods on N2DL-HeLa02 sequence frame. The spatio-temporal
analysis enables the identification of more moving cells than the level-set models. Furthermore, ST-Diff-
TCV produces more accurate cell separation than ST-Diff (magnified regions).
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In some of our datasets, the fluorescent images contain low intensity nuclei where there

is absorption rather than fluorescence in local parts of the same image resulting in heteroge-

neous cell intensity levels. These darker regions have low intensity that can be mis-detected

as background. As a result the region competition process would fail to delineate them.

However, these cells are identified by the spatio-temporal motion analysis method because

of their high temporal activity, which is proven to be more efficient in these cases. For

example, we observed that CV was not able to detect some cells with very low intensity in

both N2DL-Hela and N2DH-GOWT sequences. Conversely, those cells were very well delin-

eated using the temporal differences between frames, i.e., by ST-Diff-TCV, thus significantly

improving the segmentation accuracy from 0.72 to 0.82 for N2DL-Hela01, and from 0.68 to

0.92 for N2DH-GOWT102 leading to DSC improvements up to 24% (Table 4.3).

On the other hand, the proposed technique involves parameters which are experimen-

tally determined for each sequence. These are TSRatio, λt for motion diffusion, µ region

length regularization weight for TCV segentation, the Parzen kernel parameters ParzenSize,

h, and the threshold factor ThreshFactor for cell/background separation. ST-Diff-TCV per-

formance exhibits moderate sensitivity to the parameter values. In this work we performed

exhaustive grid search in the parameter space to identify the optimal settings. Table 4.4 lists

the parameter values that we determined experimentally. Alternate parameter optimization

techniques may be required to achieve more accurate segmentation in sequences with sig-

nificantly different quality levels and cell types. In summary, our experiments suggest that

the joint ST-Diff-TCV method improves the segmentation accuracy compared to CV, TCV,

and ST-Diff, especially when applied to simulated and real microscopy images with cells

characterized by wide intensity variations and undergoing mitotic events, changes in density,

and low SNR (Table 4.3 and Figure 4.8).
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Table 4.4: Different parameters used for the joint ST-Diff-TCV method

Dataset name µ λt TSRatio ParzenSize h κ ThreshFactor

N2DH-SIM01 0.1 0.1 1000 3 2 4 1

N2DH-SIM02 0.1 0.1 1000 3 1 4 1

N2DH-SIM03 0.1 0.1 20 3 5 4 1

N2DH-SIM04 0.1 0.1 200 3 10 4 1

N2DH-SIM05 0.001 0.1 900 3 9 4 1

N2DH-SIM06 0.001 0.1 1200 3 2 4 1

C2DL-MSC01 0.01 0.1 610 3 8 4 1

C2DL-MSC02 0.001 0.1 1 3 6 4 0.5

N2DL-HeLa01 0.1 0.1 20 3 6 4 1

N2DL-HeLa02 0.001 0.1 1 3 5 4 1

N2DH-GOWT101 0.001 0.1 10 3 5 4 0.5

N2DH-GOWT102 0.01 0.1 11 3 5 4 0.75
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Chapter V: CELL TRACKING

The automation of tracking is a complex problem, and the cell correspondence complexity

increases exponentially with the increase of cell population. One reason for this is that the

biological cells may follow a Brownian movement, which makes the motion estimation very

hard. This chapter describes a method for automated tracking of biological cells in time-

lapse microscopy by motion prediction and minimization of a global probabilistic function

for each set of cell tracks. We identify cell events by backtracking the cell track stack and

forming new tracks to determine a partition of the complete track set.

This chapter is organized in six sections. The first section introduces an overview and

the main components of the tracking method. In the second section, we address the cell

separation problem in case of images with high density and cell cluster detection. In the

third section, we present the cell feature computation. In the fourth section, we highlight

the motion estimation methods, give an overview of optical flow methods, and describe a

joint local-global optical flow technique that we applied to our data. In the next section we

introduce our likelihood-based bi-frame cell matching technique to link cells between frames.

In the last section, we describe the proposed algorithms to create cell tracks and the acyclic

graph.

5.1 Method Overview

The goal of cell tracking is to identify all cells throughout the time-lapse sequence in order to

follow their motion and detect the main events such migration, mitosis, apoptosis, entering

and leaving the field of view. Our method belongs to the category of tracking by detection

. Therefore it uses cell indicator functions that were determined in each frame to perform

cell tracking and quantification. In Figure 5.1, we display the main stages of the proposed

system. These are
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1. Pre-tracking

2. Feature Vector Computation

3. Motion Model Estimation

4. Cell Matching

5. Cell Track Construction and Handling of Cell Events

6. Cell Quantification.

A tracking algorithm ideally should have the capability to address the main cell events

that occur in a sequence. These events are

• Cell Mitosis: division of a cell into two daughters

• Cell Disappearance: cell leaving field of view or collision

• Cell Apoptosis/Necrosis: death of a cell

• New Entering Cells: cell entering the field of view

• Cell Reappearance: cell re-entering the field of view

Figure 5.2 depicts a model of the cell events of appearance, disappearance, mitosis, and

collision. Furthermore, Figure 5.3 displays a pair frames with all detectable events. Cell

event detection usually follows cell tracking and requires analysis and linking or division of

cell tracks.

The association problem is usually the most complex and most challenging stage of the

tracking system. By increasing the number of cells, the complexity of the linking problem

increases exponentially. Changes in cell shape such as cell stretching may also cause false

appearances due to cell detection discontinuities. In Figure 5.4, we show in orange color
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Figure 5.1: Pipeline of the proposed tracking algorithm.

Figure 5.2: Association cases considered in our tracking system (a) migration, (b) mitosis,
(c) disappearance, or apoptosis, or leaving field of view, and (d) appearance,
or cells entering the field of view.
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Figure 5.3: Different events present on sample frame of Hela2 dataset

two false positives for cell reappearance caused by over-segmentation of a single cell. These

artifacts may reduce tracking accuracy.

Figure 5.4: Association problem with shape changes on three consecutive frames of C2DL-
MSC01 dataset. The red arrow show a cell entering the field of view while the
orange arrows show false disappearance (processed as an Apoptosis event)

Furthermore, we display a flowchart of the proposed tracking system in Figure 5.5. We

first apply cell fusion separation and over-segmentation reduction in the pre-tracking stage.

Then we estimate the cell motion use of a variational multi-scale optical flow technique. We

then apply the motion field to calculate a new frame and we apply max likelihood decision
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on a probabilistic function of overlap to find cell correspondences. We then construct cell

linked lists to represent cell tracks and we backtrace the lists to detect overlapping tracks

and divide overlapping. Overall, the tracking and cell detection problem can be viewed as a

partitioning problem by cost minimization.

The tracking system produces the following data and information: globally linked cell

indicator maps, the cell lineage tree, and the tracking output measurements about the birth

and death information, the mitosis events and cell velocities.

5.2 Pre-tracking

5.2.1 Small Region Removal

To distinguish between cell and non-cell regions in the segmented image we consider a thresh-

old value defined with respect to minimum cell area for an object to be considered as a cell

or part of the background. This removes all the non-cell detected objects before tracking to

reduce false positives.

5.2.2 Cell Influence Zones

A cell influence zone is a topology of points that are connected to only one cell region by a

specific relation [93]. Often times this relation originates from a measure of distance between

a region and a point, such as the distance function [62].

Having defined an influence zone at this stage we perform skeletonization by influence

zones denoted by SKIZ. This yields sets of points that belong to no influence zone therefore

they determine the boundaries by cell influence zones. The zones within the boundaries

can be used to define cell adjacencies and can be used later to estimate Parzen density

estimates for finding cell correspondences between successive frames. More specifically the

zone determines an area in space called gate, which is used to limit the area for prediction

in our data association stage. If a candidate cell of a neighboring time frame lies within the

gate of the current frame then we can consider it as a candidate for a matching association.
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Figure 5.5: Flowchart of our tracking system.

80



To perform SKIZ, we first calculate the distance transform of the image. Distance

Transform assigns each pixel with the distance to the nearest image feature point [78] like

edges or object boundaries. The skeleton then lies along the curvature discontinuities or

creases in the distance transform, which correspond to the local maxima on the distance

transform [102]. The SKIZ set can be computed using the watershed transform.

5.2.3 Separation of Cell Clusters

In case of dense datasets, the cells can be so close that they can be falsely detected as

clusters of cells and segmented as a single foreground object as shown in Figure 5.6. Thus,

it is important to split clusters of multiple cells that were segmented as a single cell using

some geometrical shape priors, shape statistics, distance transform watershed operation and

H-transform [95].

Figure 5.6: Examples of clusters of cells detected as the same foreground object by our
segmentation.

To distinguish between colliding cells we apply watershed segmentation to the Euclidean

distance map computed on the cell segmentation map. This operation creates a boundary

between the different cells in the cluster. The watershed transform has been proposed by

many authors for nuclei segmentation [122, 34]. However, the number of peaks in the distance

map may result in over segmentation by splitting the clusters of cells into more regions than

necessary. Figure 5.8, middle column, illustrates the over-segmentation effect produced by

the detection of extraneous minima. The next step is to reduce the number of over-segmented
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cell fragments by a morphological reconstruction technique call the H-minima transform.

H-minima Transform

H-minima Transform [111, 95] is a morphological operation obtained by erosion of the

image I increased by a height h defined by

H(I, h) = Rε(I + h) (5.1)

where Rε is defined as the reconstruction by erosion morphological operator and h is a depth

parameter. H-minima transform removes spurious local minima and avoids oversegmentation

by supressing all the regional minima whose depth is smaller than h. H-minima/maxima

transform has been largely used in nuclei detection in biomedical images [96, 115, 59].

To detect the presence of cell clusters that were undersegmented into a single cell, we

compute the solidity characteristic. We give the following definitions for the solidity measure

and the convex point set that is used in solidity computation.

Definition 5.2.1 (Convex point set). A set of points is defined to be convex if it contains

the line segments connecting each pair of its points. The convex hull of a given set X is

defined as the smallest convex region that contains X. It is also referred to as a convex

envelope surrounding the shape.

Definition 5.2.2 (Solidity). Clusters of cells have contours with points of high concavity.

Solidity is the measurement of the overall concavity of a cell. It is defined as the area of

the shape region Ashape, divided by the convex hull area Aconv. Returns a scalar specifying

the proportion of the pixels in the convex hull that are also in the region. Prior information

about a unique cell or cluster of cells has to be used as a threshold for our estimation. The

solidity of a convex shape is always 1. We show in Fig 5.6 some examples of clustered cells.
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Computed as

S =
Ashape
Aconv

. (5.2)

Therefore, the main steps of the cell separation approach approach are:

1. Cell number estimation based on the solidity feature of the cells

2. Distance transformation on original segmentation binary mask to obtain distance map

3. H-transformation to accurately locate the centroid of each cell in the cell cluster

4. Watershed segmentation to delineate the different cells in each cluster

Regional minima are connected components (using 8-connected neighborhoods) of pixels

with a constant intensity value, and whose external boundary pixels all have a higher value

and h is a threshold value used for the H-minima transform.

As an example, we show in Figure 5.7 the distance transform, boundaries and watershed

of the distance transform of frame 74 of Hela02 dataset.

Figure 5.7: Example of cell cluster separation on frame 74 of N2Dl-Hela02 dataset.
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In Figure 5.8 we show the watershed ridges for cell separation that separate the same

object into different cells after an H-minima transform of the distance transform of the

original binary mask, where we used a threshold to impose a number of minima. This

Figure 5.8: Labeled image frame of Hela02 dataset, cell separation showing oversegmenta-
tion and our final cell separation result after H-minima Transform and water-
shed segmentation.

threshold value is experimentally determined based on the number of cells detected in each

cluster and by comparing this number to the number of estimated cell number using the

solidity feature of the cells of the dataset. Solidity is area fraction of the region as compared

to its convex hull. So solidity is what fraction of the actual area your region is. We display

an example of the contours of adjacent cells before and after cell separation in Figure 5.9.

5.3 Feature Computation

Compute cell properties to be used for finding cell correspondences. After the pre-tracking

stage, we compute intensity, size, and shape characteristics for each cell. Let for each cell A,

cA ∈ R2 be the centroid of the cell, sA ∈ R be the number of voxels occupied by the cell. We

compose a pattern vector that corresponds to each cell that may also be called observation.

A usual approach to finding cell correspondences would be to compute distances between

the pattern vectors and use a nearest neighbor algorithm to find the closest pairs of vectors.

But our experiments showed that a cell could have several close matches, only one of which
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Figure 5.9: Contours delineating the cell boundaries of cell clusters on frame 74 of N2Dl-
Hela02 dataset.

is correct. Based on this observation we suggest using optical flow to estimate the motion

pattern of each cell to be used for matching. This strategy resulted in a very good association

independent probability estimate of the cell matching and association problem.

5.4 Estimating Cell Motion

5.4.1 Optical Flow Computation

The optical flow estimates the velocity of each pixel between two consecutive frames at times

t and t + ∆t based on spatio-temporal image intensity variations. This method is used in

computer vision to characterize and quantify the motion of objects. Many algorithms have

been proposed and used to solve or optimize the optical flow methods [71, 57, 6, 17, 19, 18,

114, 123, 70].

Methods for optical flow estimation are based on the computation of partial derivatives

of the image intensities signal. The two most popular methods are Lucas and Kanade

[71] and Horn and Schunk [57]. Lucas and Kanade proposed a local method that uses a
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spatial constancy assumption. The method by Horn and Schunk is a global method that

supplements the optical flow constraint with a regularizing smoothness term.

Differential optical flow methods assume that the intensity value I at each pixel ~ω =

(x, y) at time t is not affected by its displacement ~δ = (dx, dy) at t+ 1.

I
(
~ω + ~δ, t+ 1

)
= I (~ω, t) . (5.3)

If we approximate I
(
~ω + ~δ, t+ 1

)
by first order Taylor expansion we have that:

I
(
~ω + ~δ, t+ 1

)
= I (~ω, t) + ~∇I · ~d+O(∂2) (5.4)

I (x+ dx, y + dy, t+ 1) = I (x, y, t) +
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt (5.5)

Because of intensity constancy assumption in 5.3, it follows that:

∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt = 0⇒ (5.6)

−It = Ix
dx

dt
+ Iy

dy

dt
(5.7)

−It = ~∇I · d
~δ

dt
(5.8)

−It = ~∇I · ~α, (5.9)

where ~α =
~dδ
dt

= (u, v).

However we cannot find a unique solution (u, v) using this equation only; therefore we

have to deal with the aperture problem. This limits us to calculating only the optical flow

that is normal to the edge direction.

In the computation of optical flow we usually make implicit or explicit assumptions

that set constraint conditions to our problem. We assume gradual changes of image motion

of an object. That is, the image motion slowly changes in time (Figure 5.10). In practice,
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this means the temporal increments are fast enough compared to the motion of objects in

a frame. In this case, the temporal difference approximates the derivative of the intensity

with respect to time. An additional constraint is that of spatial smoothness that requires

neighboring pixels to have approximately the same motion. Finally, we may assume that

the gradient of the image intensities is not changed by the displacement. This is known as

the gradient constancy assumption.

∇I (x, y, t) = ∇I (x+ dx, y + dy, t+ 1) (5.10)

Local estimation technique

To overcome the aperture problem, Lucas and Kanade assumed that the optical flow is

constant within a neighborhood ρ. They proposed to use a least square fitting method to

minimize the following function and estimate the optical flow components [71, 19]:

ELK(u, v) = Kρ ?
[
(Ixu+ Iyv + It)

2] . (5.11)

By setting partial derivatives extremum conditions ∂ELK
∂u

= 0, ∂ELK
∂v

= 0, we get the

following linear system of equations

ELK =

 Kρ ? (I2
x) Kρ ? (IxIy)

Kρ ? (IxIy) Kρ ? (I2
y )


u
v

 =

−Kρ ? (IxIt)

−Kρ ? (IyIt)

 (5.12)

Because we cannot find solutions at all points, the resulting field is non-dense. Therefore

an interpolation step is used to alleviate this shortcoming.

Global estimation technique

Another group of approaches estimates dense flow by minimizing a global functional with

regularization constraints. Horn and Schunk proposed to find the field ~α as the minimizer
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Figure 5.10: Assumption behind Lucas and Kanade optical flow: Motion is slow relative
to the frame rate.

of the following functional:

EHS =

∫
Ω

[
(Ixu+ Iyv + It)

2 + λ
(
|∇u|2 + |∇v|2

)]
dxdy, (5.13)

where λ is a Langrangian multiplier for imposing smoothness constraints to the optical flow

field. To solve the above convex functional we need to solve the Euler-Lagrange equations

with reflecting boundary conditions:

0 = ∆u− (1/λ)
(
I2
xu+ IxIyv + IxIt

)
(5.14)

0 = ∆v − (1/λ)
(
IxIyu+ I2

yv + IyIt
)
, (5.15)

where ∆ is the Laplace operator:

∆ = ∂xx + ∂yy. (5.16)
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This solution of these diffusion-reaction equations is unique. Moreover, at locations where

|∇I| ≈ 0, the local flow cannot be computed but the regularization term provides an estimate

based on neighboring pixels. Therefore this technique yields a flow estimate for the complete

image domain and no interpolation is needed. However global differential methods may be

more sensitive to noise than the local techniques. Flow fields are less regularized at noisy

image regions because noisy regions are characterized by high gradients that overcome the

smoothness regularization term.

5.4.2 Combined Local/Global Optical Flow Method (CLGOF)

In Lucas-Kanade [71] and Horn-Schunck [57] optical flow techniques, the vector field ex-

tracted may not be dense, may have many discontinuities [71, 17] or may not be robust [57,

17]. Here we adopt a solution that combines the local and global optical flow estimation

principles [17, 19].

Energy Functional

The functional includes data and smoothness terms. The data term measures the devi-

ations from the intensity constancy assumption and the gradient constancy assumption and

is given by:

EData(u, v) =

∫
Ω

(
|I(~ω + ~δ)− I(~ω)|

2
+ γ|∇I(~ω + ~δ)−∇I(~ω)|

2
)
d~ω (5.17)

A function Ψ(s2) may be applied to the integrand to moderate the effect of outliers:

EData(u, v) =

∫
Ω

Ψ
(
|I(~ω + ~δ)− I(~ω)|

2
+ γ|∇I(~ω + ~δ)−∇I(~ω)|

2
)
d~ω. (5.18)
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The smoothness term is:

ESmooth(u, v) =

∫
Ω

Ψ
(
|∇STu|2 +∇STv|2

)
d~ω, (5.19)

where ∇ST = (∂x, ∂y, ∂t)
T .

The energy functional is given by:

ECLG = EData + λESmooth. (5.20)

Minimization

Based on the calculus of variations, the minimizer of 5.20 is a solution of the Euler-

Lagrange equations:

Ψ′(I2
x + γ(I2

xz + I2
yz)) · (IxIz + γ(IxxIxz + IxyIyz))

− α∇ · (Ψ′
(
|∇STu|2 +∇STv|2

)
∇STv) = 0

Ψ′(I2
z + γ(I2

xz + I2
yz)) · (IyIz + γ(IyyIyz + IxyIxz))

− α∇ · (Ψ′
(
|∇STu|2 +∇STv|2

)
∇STv) = 0. (5.21)

In the system of 5.21 we use reflecting boundary conditions.

Coarse to Fine Strategy

In order to approximate the solution for the displacement field we numerically solve the

system in 5.21 at two scales; a coarse grid and the original grid. A multi-scale approach

yields a more accurate global solution than a single-scale approach. This technique includes

fixed point iterations in conjunction with a downsampling strategy. The final solution found

at the coarse scale is used to initialize the finer scale.
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This technique yields an approximation of the displacement field δ̂:

δ̂ = argmin
~δ
ECLG. (5.22)

An example of the optical flow estimate using this method is displayed in Figure 5.11.

Figure 5.11: Optical flow estimate (left) between frames 42 and 41(middle) and the warped
frame 41 (right) of SIM04 dataset.

5.4.3 Applying Motion Field to Previous Cell Indicator Frame

The estimated displacement field δ̂ is used to calculate a warped frame Î by:

Î(~ω + δ̂, t+ 1) = I(~ω, t). (5.23)

We define a cell indicator function L : Ω → Z that maps pixel values onto unique cell

identifiers produced by the cell segmentation stage. We apply warping to the cell indicator

frame to find L̂ before linking the current and previous frame:

L̂(~ω + δ̂, t+ 1) = L(~ω, t). (5.24)

The cell matching and linking stage is applied between the pairs of frames {I(~ω, t+1), Î(~ω, t+

1)} and {L(~ω, t + 1), L̂(~ω, t + 1)} using probabilistic decision functions. An example of the
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optical flow calculation and application for warping during cell division is displayed in Figure

5.12.

Figure 5.12: First row: optical flow estimate (left) between frames 9 (middle) and the
frame 8 (right) of SIM05 dataset. Second row: middlebury color coding
of computed optical flow (left), difference between cell indicator functions
between reference cell masks of frames 8 and 9 middle), difference between
cell masks of frame 9 and warped frame 8 using computed optical flow (right).

5.5 Likelihood-based Bi-frame Cell Matching - Linking Cells Between Current

and Previous Frames

The problem of finding the association with the highest probability is performed by comput-

ing the max-likelihood matching for each cell of the current frame among all the cells of the

previous warped frame.

We formulate bi-frame cell matching as a classification problem.

Let Ξt = {ξt1, ξt2, . . . , ξtn} be the states of a system with n cells at time t, Xt =

{xt1, xt2, . . . , xtn} be the set of observations for all cells at time t, and St = {st1, st2, . . . , stn} be

the set of samples for all cells at time t.
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We also assume a Markov process that transition probability depends only on the state

of the mother cell or the same cell in previous frame P (St+1|St).

We compute the likelihood that the cell i in frame t+1 is connected with cell j in frame

t. Assuming that each cell i in frame t corresponds to a state of nature sti, we calculate:

πt+1
ij = p(xt+1

i |ξt+1
i = stj). (5.25)

Here we define a likelihood function πtij based on the observations derived from the

computed cell features. We currently use spatial proximity between cells of warped previous

indicator function L̂(ω + δ̂, t+ 1) and cells of the current indicator function L(ω, t) to form

the observation vectors. Hence

p(xt+1
i |ξt+1

i = stj) ∝ exp
{
−(1/2)(xt+1

i − xtj)
T

Σ−1(xt+1
i − xtj)

}
. (5.26)

We make a decision using a maximum-a-posteriori (MAP) rule that becomes a maximum

likelihood (ML) rule assuming equal priors. We also use a reject option to model cell re-

appearance when the maximum likelihood is still very low. Figure 5.13 displays the cell

matching procedure.

ĵ = argmax
j
πt+1
ij . (5.27)

After making a decision we assign the predicted cell class ĵ to the cell indicator map

L(~ω, t+ 1).

5.6 Creating Cell Tracks and Acyclic Graph

Definition 5.6.1 (Individual cell track). Each track φi ∈ ΦM is the set of identified cell

states in the sequence.

φi = {ξti | t = tstart, . . . , tend}, (5.28)
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Figure 5.13: Example of possible cell associations and maximum likelihood matches in
bold. The reject option yields the newly appearing cell that has no match
with previous frame.

where tstart and tend denote the first and last frame of the track in the sequence with 0 ≤

tstart ≤ tend ≤ N − 1.

Definition 5.6.2 (Cell track set). Let N be the number of frames in a time-lapse sequence,

M the total number of cell tracks. and LG = {ξti} the set of cell labels among all frames.

Let ΦM , be the set of all cell tracks in a sequence with |ΦM | = M .

Cell tracking optimization problem

Our goal is to identify all cell tracks ΦM in the sequence. This can be formulated as

follows: Let C{ΦM} be the cost computed over a specific track set ΦM .

Find cell track set

Φ̂M = arg min
ΦM
C{ΦM}, (5.29)

with the conditions

ΦM =
⋃

i=1...M

φi (5.30)
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φj ∩ φk = ∅, ∀j 6= k. (5.31)

After finding a solution Φ̂M , we assign a track label l ∈ LG to each cell. The track duration

is defined from the discrete time point of cell appearance till its disappearance, division, or

reaching the end of sequence. If a cell reappears, then we create a new track. In the case of

cell division we end the track of the mother cell and create two new daughter tracks.

5.6.1 Creating Cell Tracks

We create linked lists of the cell states that represent the tracks. The elements of this list are

quadruples Q =
[
t, ξtm, tp, ξ

tp
n

]
, that contain the frame id, cell label (indicator) id, previous

frame id and previous label id respectively. We create these lists by traversing the set of cell

states in reverse chronological order. This procedure is outlined in Algorithm 7.

Algorithm 7 Identify cell tracks

Require:
1: for each linked list starting from last to first do
2: for each cell in linked list do
3: identify cell track stacks by finding parent cell labels that maximize likelihood of

cell matching recursively using Cell Linked Lists
4: Use stack to check if a tested cell has been added to a previous track
5: end for
6: end for
7: return

The previous procedure produces cell linked lists that represent the tracks φi and adress

cell appearance and disappearance. However, at the end of this stage some tracks may

be partially overlapping that is in the case of cell division, where different cells have a

common ancestor. We address these cases by finding the overlapping parts of two tracks φj

and φk creating three new tracks, one for the ancestor φp = φj ∩ φk and the 2 daughters

φq = φj − (φj ∩ φk) and φr = φk − (φj ∩ φk). This procedure is outlined in Algorithm 8.
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Algorithm 8 Identify cell events

Require:
1: for each track do
2: while there exists a parent do
3: check if [frame#, label#] is in a previous track and find matches
4: if new match is found then
5: division is detected, start a new track
6: if cell is found in another track but not the already labeled then
7: create a new track for division
8: else if cell is only in previous tracks then
9: close track and set parent label to 0

10: end if
11: else
12: add cell to existing track
13: end if
14: end while
15: end for
16: return

5.6.2 Minimal Cost Cell Labeling

The individual maximum likelihood tracks φi constistute minimum error solutions according

to Bayesian theory [45]. Therefore, the proposed algorithm can be considered as a forest of

minimal cost chains with temporal constraints that minimizes the cost C in the universe of

cell tracks Φ defined as:

C =
∑
φi∈Φ

C(φi), (5.32)

where C(φi) is the total cost of the cell track φi.

C(φi) =
∑
j∈φi

c(πij)], (5.33)

where c : R → R is a decreasing function of sigmoid or exponential form. Our approach

outlined in Algorithm 7 constitutes a greedy solution to this combinatorial optimization

problem. The cell event analysis described in Algorithm 8 ensures that the solution set is

non-overlapping and exhausts the universe of cell tracks for each sequence.
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5.6.3 Representing Cell Tracks using an Acyclic Oriented Graph

Cell tracking results can be represented using an acyclic oriented graph. The nodes of such

a graph correspond to the detected cells, whereas its edges coincide with temporal relations

between them. The acyclic graph G = (V,E) consists of a vertex set V and an edge set E

such that E ⊂ V × V . The condition for an ordered vertex pair to belong to the edge set E

is: (
ξt1i , ξ

t2
j

)
∈ E ⇔ (i = j ∧ t2 = t1 + 1) ∨ (i 6= j ∧ t1 < t2 ∧ P (ξi) = j) . (5.34)

The function P : Ξ→ Ξ, where Ξ is the universe of cell states ξi, returns the ancestor ξa of

an entity ξi that is ξa = P (ξi). The first case of an edge in (5.34) represents cell migration,

while the second case represents cell division. The graph is guaranteed to be acyclic because

the edges are oriented and they follow the ascending temporal ordering of the cell state

indicators within and between tracks.

We create acyclic graph table by traversing Processed Cell Trajectories to find last

frame, first frame, and parent track id. Finally we create an adjacency list of the graph nodes

and sort and relabel the nodes to create a tree representation. The last step is outlined in

Algorithm 9.

Algorithm 9 Create adjacency list and write to file

Require:
1: for each row [track id, first frame, last frame, parent track id] do
2: Sort rows by first frame
3: Relabel track ids in increasing order starting from 1
4: Write table to file
5: Plot acyclic graph using tree visualization with node color coding
6: end for
7: return

We assign graph node labels LG(V ) to cells in each indicator image and create global

indicator function FL : Ω→ LG represented by a 2D+t label structure.
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Chapter VI: CELL TRACKING EXPERIMENTS

In our work, cells are first detected in all the frames of the sequence independently from

the tracking method. The tracking is done sequentially throughout the whole time-lapse

sequence, and each cell of each frame is paired to none, one or two objects of the next frame.

In this chapter we describe the cell tracking experiments including the validation against

reference data for tracking and we discuss the results. In addition, we display and discuss

the cell lineage trees, the detected cell trajectories, and cell quantification results. We track

the cells by associating the segmented cell regions and making connections to accurately

handle physiological cell events that take place during the course of the imaging experiment.

6.1 Construction of Reference Data for Tracking

The final ground truths (TRA-GT-F) were constructed by combining three pairs of manual

annotations (TRA-GT) created by three experts from (CBIA-CZ, CIMA-ES, ERASMUS-

NL) using a majority-voting scheme [25, 77]. The routines assume that each pair of manual

annotations was corrected for automatically detected inconsistencies of two types: (1) a

segmentation mask overlapping with multiple tracking markers or (2) a segmentation mask

without a complete tracking marker.

The ground truth data for tracking include images with markers and a directed acyclic

graph for each image sequence. The markers correspond to the tracked cells. The label of

the marker denotes the track id or cell id. The directed acyclic graph represents the cell

lineage tree. The nodes of the tree correspond to the identified cells, while the links represent

either the track when a cell migrates, or the parent-daughter relationship in the case of cell

division. The acyclic graph is stored in table form, where each row includes the cell track

id, the start frame number, the end frame number, and the parent node id.
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6.2 Tracking Evaluation Approach

The tracking accuracy measure symbolized by TRA aims to evaluate the capability of an au-

tomated algorithm to detect and track cells versus reference tracking data that were described

above [77]. TRA calculates the difference between the acyclic oriented graph produced by

the tested method and the TRA-GT-F reference graph. The idea behind the TRA mea-

sure is to calculate the least number of graph operations needed in order to transform the

test graph produced by the tested method to TRA-GT-F. The allowed operations are node

splitting/deletion/addition, edge deletion/addition, and editing of edge semantics.

The TRA measure is derived from the weighted sum of the above graph operations that

is denoted by TRAP . The manual weights are proportional to the effort of a human who

performs these operations. This weighted sum is defined by:

TRAP = wNSNS + wFNFN + wFPFP + wEDED + wEAEA+ wECEC, (6.1)

where wNS , wFN , wFP , wED, wEA, wEC , are the weights for node splitting, node adding,

node deletion, edge deletion, edge addition, and edge semantics editing.

The TRA measure is then given by

TRA = 1− min (TRAP , TRAE)

TRAE
, (6.2)

where the TRAE is the cost of constructing the reference graph from the beginning and is

given by

TRAE = wFN |M |+ wEA|E|. (6.3)

In this equation, |M | denotes the cardinality of the node set, and |E| denotes the cardinality

of the link set of TRA-GT-F. The division operation in (6.2) normalizes the graph cost, and

the subtraction from 1 defines an evaluation function that increases with better tracking,
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such that TRA ∈ [0, 1].

6.3 Automated Cell Tracking Results

The objective of cell tracking is to identify and follow the segmented cells in a time-lapse

sequence. We performed cell tracking experiments and validated them against reference

tracking results using the TRA measure. We then computed and visualized the cell lineage

trees produced by the automated tracking algorithm. We finally computed morphology,

diffusivity, velocity, and motility measures. In the following paragraphs we report results of

our experiments.

We illustrate in Figures 6.2 - 6.5, the cell lineage trees automatically generated by our

tracking approach using the reference cell identifier maps (segmentation maps). Further-

more, Figures 6.6 - 6.9 display the cell lineage trees produced by our fully automated cell

segmentation and tracking methodology. These trees correspond to the directed acyclic graph

and represent and visualize the tracked cells and the cell events detected by our tracking

methodology. Our automatically constructed trees Ttest(Mtest, Etest) consist of nodes Mtest

that represent the cells that are identified across the sequence, and links Etest that represent

the cell event evolution, namely cell migration, cell appearance and disappearance, and cell

mitosis. More specifically, the dashed links denote cell migration and the continuous links

denote a parent-daughter relationship.

The TRA tracking accuracy measure that was mentioned earlier in (6.2), computes the

similarity between lineage trees identified by our methodology versus reference lineage trees

that were constructed manually by human operators. Table 6.1 lists the tracking accuracy

measure using as input the manual cell segmentation masks. In Table 6.1, we observe that

the tracking method produces very high accuracy rates with an average of 0.992. These

results show that our tracking approach is able to detect cell events very efficiently given a

reference segmentation.
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(a) Example of features of a cell labeled 24 of
N2DH-SIM01 dataset.

(b) Features of cells of N2DH-SIM01 dataset.

Figure 6.1: Examples of feature computation.

Microscopy live cell image sequences may present large time and space distances that

might reduce the tracking accuracy. Computing the displacement field between each two

pairs of frames using the Combined Local Global Optical Flow and Coarse to Fine Strategy

before our bi-frame matching will enable us to successfully overcome the problem of large

time and space discrepancies for a robust and efficient cell tracking algorithm.

In addition, Table 6.2 contains the tracking validation after using ST-Diff-TCV segmen-

tation results as input to our tracking approach, thus testing a fully automated segmentation,

tracking, and quantification system. The tracking accuracy values reported in Table 6.2 are

very promising. We note that the segmentation stage allows for efficient tracking detection.

Overall, our method produces very promising tracking rates with an average tracking rate of

0.891. In specific cases, over- or under- segmentation of a cell may significantly reduce the

tracking accuracy. The lower TRA value for the C2DL-MSC02 sequence is caused by the

very low CNR and SNR characteristics of this sequence and very elongated cell morphology

with high intensity variability inside the cell body. These effects result in over-segmentation,

which creates false positives in cell detection and tracking. Hence, this result indicates that

tracking is very dependent on segmentation. Besides this, in theory, under-segmentation

produces false negatives in cell detection that are propagated to tracking.
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Figure 6.2: Cell lineage tree generated by our method on N2DH-SIM02 dataset. Tree nodes
represent the cell track ids of each cell.

Visualization of Cell Trajectories

As an application of cell tracking, we generated cell trajectories in the 2D+t domain

displayed in Figures 6.10a - 6.22a and in the 2D projected domain displayed in Figures

6.10b - 6.22b. The system produces automatically the cell trajectory graphs using the global

cell indicator functions. In these figures the trajectories are color-coded and each color

represents the biological events during the lifetime of a single cell. The track IDs are also

displayed next to the end of each cell trajectory for reference. We note that in the simulated

sequences we were able to visualize and monitor the events of cell migration, division, and

new cell appearance with varying levels of density. Furthermore, the real datasets display

the previously mentioned cell event types, and in addition we observe very high cell density

with normal and abnormal cell divisions (Hela), and migration of elongated cells at low

contrast (MSC). Therefore, the cell trajectories can effectively provide a visual analysis tool

of a biological experiment. More specifically, they reveal mother and daughter relations, and
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Figure 6.3: Cell lineage tree generated by our method on Fluo-N2DH-SIM05 dataset.

metrics such as symmetry and division times can be extracted from cell lineage. Types of

motion can also be visually inferred from the 2D projections of trajectories. Straightforward

applications include the development of predictive models for stem cell population growth

and design, and optimization of subcultural strategies.

Cell Quantification

Another application is cell quantification and quantitative analysis. Quantification is

the computation of biologically meaningful cell measures that can be divided into morpho-

logical, motility, diffusivity, and velocity measures. Morphological measures include the

area, perimeter, major and minor principal axes, circularity, eccentricity, convexity. More

sophisticated shape features can be computed using Fourier descriptors, Independent Com-

ponent Analysis (ICA), and Principal Component Analysis (PCA). Motility measures are

computed from the trajectories of the tracked cells using piecewise linear approximation.

Typical motility measures include the total distance traveled by each cell, the net distance
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Figure 6.4: Cell lineage tree generated by our method on Fluo-N2DH-SIM06 dataset.

that is the distance between the start and the end points in a trajectory, the total trajectory

time, or cell life time. An advanced measure of diffusivity is the Mean Squared Displacement

(MSD) that is computed by the second-order moment of displacement as a function of time

point difference and is defined as follows

MSD(n) =
1

N − n

N−n∑
i=1

d2 (ωi, ωi+n) , (6.4)

where ωi = (xi, yi) is the centroid of a cell at time point i, N is the total trajectory lifetime,

and n is the interval for computation of MSD. A frequent selection for the distance function

d(·, ·) is the Euclidean distance d (ωi, ωi+n) = ‖ωi − ωi+n‖2. MSD is used for characterizing

the mode of cell motion. We can accomplish this by observing the MSD-time curve. Some

identifiable modes of cell motion are Brownian, anomalous diffusion, region-confined motion,

directed motion, or immobility.

In our method we compute 26 morphological, motility, and diffusivity measures. More
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Figure 6.5: Cell lineage tree generated by our method on the dense dataset Fluo-Hela01.
The number of tracks in ground truth is 265 and our tracking system detects
283 tracks resulting in TRA=0.992.

specifically in Table 6.3 we display computed motility and diffusivity measures for all cells

of the sequence Fluo-C2DL-MSC01 displayed in Figures 6.18a and 6.18b. In Table 6.3 we

can observe the variability of traveled distances and MSD measures. Furthermore Figures

6.19a and 6.19b illustrate the MSD function versus time and the mean MSD value for each

cell for Fluo-C2DL-MSC01, Fluo-C2DL-MSC02, and N2DH-GOWT101. In these plots we

can identify different motion modes including linear and exponential types. A linear MSD

type indicates Brownian motion. A MSD curve approximated by a power law function may

indicate superdiffusion, normal diffusion or, subdiffusion depending on the approximated

power coefficient value. Our system automatically produces the quantification measures and

related plots for all cells and trajectories for an input time-lapse sequence.
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Table 6.1: TRA values obtained from our automated tracking on reference segmentation
masks.

Dataset name TRAGT

N2DH-SIM01 0.999

N2DH-SIM02 0.998

N2DH-SIM03 0.997

N2DH-SIM04 0.999

N2DH-SIM05 0.988

N2DH-SIM06 0.997

C2DL-MSC01 0.999

C2DL-MSC02 0.973

N2DL-HeLa01 0.992

N2DL-HeLa02 0.97

N2DH-GOWT101 0.998

N2DH-GOWT102 0.996

Mean TRAGT 0.992

Figure 6.6: Cell lineage tree generated by our fully automated method on N2DH-SIM02
dataset.
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Figure 6.7: Cell lineage tree generated by our fully automated method on Fluo-N2DH-
SIM05 dataset.

Figure 6.8: Cell lineage tree generated by our fully automated method on Fluo-N2DH-
SIM06 dataset.
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Figure 6.9: Cell lineage tree generated by our fully automated method on the dense dataset
Fluo-Hela01 dataset. This case yields TRA=0.85.

Table 6.2: TRA values obtained from our automated tracking of each sequence on our
segmentation results.

Dataset name Size Number of Frames TRA

N2DH-SIM01 494x534 56 0.963

N2DH-SIM02 569x593 100 0.949

N2DH-SIM03 606x605 100 0.964

N2DH-SIM04 673x743 56 0.964

N2DH-SIM05 597x525 76 0.9399

N2DH-SIM06 655x735 76 0.973

C2DL-MSC01 992x832 48 0.853

C2DL-MSC02 1200x782 48 0.584

N2DL-HeLa01 1100x700 92 0.82

N2DL-HeLa02 1100x700 92 0.85

N2DH-GOWT101 1024x1024 92 0.913

N2DH-GOWT102 1024x1024 92 0.914
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(a)

(b)

Figure 6.10: 2D+t and 2D displays of all cell trajectories of N2DH-SIM01 dataset.
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(a)

(b)

Figure 6.11: 2D+t and 2D displays of all cell trajectories of N2DH-SIM02 dataset.
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(a)

(b)

Figure 6.12: 2D+t and 2D displays of all cell trajectories of N2DH-SIM03 dataset.
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(a)

(b)

Figure 6.13: 2D+t and 2D displays of all cell trajectories of N2DH-SIM04 dataset.
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(a)

(b)

Figure 6.14: 2D+t and 2D displays of all cell trajectories of N2DH-SIM05 dataset.
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(a)

(b)

Figure 6.15: 2D+t and 2D displays of all cell trajectories of N2DH-SIM06 dataset.
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(a)

(b)

Figure 6.16: 2D+t and 2D displays of all cell trajectories of N2DH-GOWT101 dataset.
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(a)

(b)

Figure 6.17: 2D+t and 2D displays of all cell trajectories of N2DH-GOWT102 dataset.
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(a)

(b)

Figure 6.18: 2D+t and 2D displays of all cell trajectories of Fluo-C2DL-MSC01 dataset.
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Cell
La-
bel

Life Time
(min)

Total
Traveled
Distance
(µm)

Net Trav-
eled Dis-
tance
(µm)

Mean
MSD
(µm2)

1 960 247.2 39.6 1077.9
2 960 132.0 45.1 872.5
3 960 338.3 177.2 8709.3
4 960 319.1 96.2 2597.7
5 800 106.7 30.8 363.2
6 540 229.2 12.4 347.8
7 280 53.7 12.3 113.7
8 200 67.5 17.3 533.6
9 60 12.1 4.0 26.3
10 540 175.5 34.7 721.2
11 700 101.3 19.3 308.9
12 60 20.7 20.1 255.5
13 60 32.8 26.6 489.7
14 440 146.6 132.3 6506.4
15 380 45.5 13.4 106.2
16 400 41.4 7.8 26.8
17 260 28.4 16.2 108.1

Table 6.3: Dynamic cell features for Fluo-C2DL-MSC01. This is sample subset of the fea-
tures computed by the proposed methodology over the complete frame sequence.
The listed features are utilized to quantify motility and diffusivity.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.19: MSD function versus time and the MSD mean over time for each cell of
the C2DL-MSC01 in (a) and (b), C2DL-MSC02 in (c) and (d), and N2DH-
GOWT101 datasets in (e) and (f).
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(a)

(b)

Figure 6.20: 2D+t and 2D displays of all cell trajectories of Fluo-C2DL-MSC02 dataset.
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(a)

(b)

Figure 6.21: 2D+t and 2D displays of all cell trajectories of Fluo-N2DL-HeLa01 dataset.
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(a)

(b)

Figure 6.22: 2D+t and 2D displays of all cell trajectories of Fluo-N2DL-HeLa02 dataset.
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Chapter VII: CONCLUSION

This dissertation focuses on the development of mathematical methods and algorithms for

automated cell segmentation and tracking. This topic holds particular significance because

it enables the analysis of large volumes of data and the quantification of biological processes

and the development of novel approaches to observation of biological processes, diagnosis of

diseases, and evaluation of drug performance among others.

In this work we first introduced a level-set and motion analysis co-operative approach

to dynamic cell segmentation. One component of this approach performs nonlinear spatio-

temporal diffusion-based motion analysis, Parzen kernel-based detection of discontinuities,

and watershed-based foreground-background separation. This spatio-temporal analysis gen-

erates a delineation that we use as the initial level-set in a region-based temporally linked

level-set model. The improvement in segmentation accuracy is mainly achieved by using

both the local motion and the global statistical information for segmenting cells with het-

erogeneous intensity levels. We compared the performance of our approach denoted by

ST-Diff-TCV, with two level-set based methods denoted by CV and TCV, and the ST-

Diff method on simulated and real image sequences obtained from the online Cell Tracking

challenge [25]. We validated the performances of all methods against reference manual cell

delineations using the Dice coefficient. Every image sequence in our dataset addresses a

different type of challenge for segmentation.

In comparison to CV and TCV, both ST-Diff and ST-Diff-TCV perform more robust

cell segmentation, especially for cells undergoing mitosis, leaving and entering the field of

view, and cells with lower mean intensity than the background intensity level. ST-Diff-TCV

further improves the segmentation accuracy yielding and average Dice coefficient of 89%

compared to ST-Diff average score of 85% by refining the cell delineation. Still, this method

is dependent on some parameter retuning to optimize segmentation accuracy for different
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types of imaging sequences. Overall, this approach is beneficial for quantification of a wide

range of types of image sequences.

The second focal area of this dissertation was the design, development and validation of

automated cell tracking approaches. We propose a probabilistic bi-frame matching approach

that maximizes the likelihood measure derived from area overlapping between the cells of

each frame and the warped cells of the previous frame. To estimate and predict the cell

positions for cell correspondence analysis, we use a joint local-global optical flow method. In

the next stage we propose to create the cell tracks by backtracking the cell correspondences

from the last frame to the first and creating cell linked lists. Finally, we detect cell divisions

by traversing the created cell linked lists, identifying common ancestors and eliminating

intersections of cell tracks to create a new group of cell tracks. These operations ensure that

the set of cell entities is divided into a formal partition. Then we construct a cell lineage tree

that is used for visualization and validation. Finally, we compute morphological, diffusivity,

motility and velocity cell measures for quantification.

We evaluated the performance of our segmentation and tracking approaches on datasets

obtained from the online Cell Tracking challenge [25] using the TRA measure. Every dataset

includes reference tracking results consisting of cell markers and cell acyclic graphs that we

use to validate our approach. The results are encouraging even for datasets that include

intensity variations, low intensity contrast, and high cell density. Our tracking method

produces an average TRA measure of 99%, while the fully automated segmentation and the

tracking performed at 89%.

In summary, the innovative parts of our work are:

• Intensity Standardization to address variability and differences in SNR and CNR by

incorporating a histogram transformation approach for a robust and less sensitive pa-

rameter selection method and increase generalization capability of this approach that

allows us to track diverse fluorescent cell types
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• The refined cell detection method in the joint spatio-temporal domain instead of the

spatial domain exclusively, can detect and segment cells that are hardly detectable

using previous methods because they are rather detected by their high activity process

• The use of predicted cell motion by means of a Combined Local-Global Optical Flow

technique with coarse to fine solution search strategy in a probabilistic Maximum Like-

lihood Bayesian decision framework to find cell correspondences between consecutive

frames results in a very efficient tracking solution, while overcoming temporal sampling

limitations of the image sequences

• Fully Automated cell tracking and lineage construction system enables the use of very

large volumes of data for analysis.
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