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Thermal Charge Noise of a Near-Surface Nitrogen Vacancy Center Diamond with a 

Protective Layer 

 

Philip Chrostoski 

Thesis Adviser: Dr. Deborah Santamore 

 

ABSTRACT 

 

A nitrogen vacancy center in diamond has become an interesting topic to investigate with 

their applications in magnetic field sensors and quantum computing. A major problem in their 

applications has been the large amounts of noise. Fluctuations in both the electric and magnetic 

fields give rise to this noise. At room temperature, the electric field has shown to be the largest 

factor in the noise. We decided to investigate these thermal fluctuations caused by the electric 

field. The model used is a system consisting of the NV-center with a protective layer on the 

surface. We examined different surface materials such as; D-glycerol, propylene carbonate, and 

others to compare with recent experimental data. The fluctuation dissipation theorem was used to 

obtain the charge noise spectral density. The noise for the liquid protective layers is less than the 

solid protective layers initially. The liquids show better noise reduction due to their faster 

relaxation times for their dipole interactions. Both the real and imaginary parts of the permittivity 

play key roles in effecting the noise of the system.  
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CHAPTER 1 

 

NITROGEN VACANCY DIAMONDS 

 

1.1 Nanodiamonds: 

Diamonds have always been interesting to investigate with their lattice structure formation 

of carbon. The crystal lattice of the diamonds forms a face-centered cubic (Fig. 1) which packs the 

atoms as tightly together as possible. This tight packing makes the diamonds lattice very rigid and 

strong covalent bonding between the atoms. Research had found that with this structure came the 

highest thermal conductivity for any bulk material above 100 Kelvin (K) [1]. Diamonds have two 

different types, with two sub types each. There are type Ia, Ib, IIa, and IIb. The type Ia,b diamonds 

have nitrogen impurities, where the type IIa is highly pure carbon and IIb has boron impurities. 

During the 1960’s, type Ib diamonds were starting to be investigated. Type Ib diamonds make up 

roughly 0.1% of naturally formed diamonds. The type 1b diamond has isolated nitrogen atoms 

throughout the crystalline structure. Amid the study of these type Ib diamonds, soviet scientist 

discovered nanoparticles of diamonds can be formed in nuclear explosions. With this discovery, 

research into more practical synthesis methods of nanodiamonds began [3]. Years of research 

allowed for methods such as, ion bombardment, electrochemical synthesis, and laser bombardment 

to be developed.  
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    Fig 1: Diamond Crystal Lattice (H.K.D.H Bhadeshia et. al.) 

When thinking about a nanodiamond, there are three major aspects to consider for the 

overall structure; the overall shape, the core, and the surface. At the core of nanodiamonds, there 

lies a diamond cage which comprises mainly of the carbon atoms [4]. The overall structure has 

been shown to be both spherical and elliptical. Though the core is very much like bulk diamond, 

the outer portion of the diamond nanoparticles structure is very much like graphite. The similarity 

with graphite makes the nanodiamonds more stable than normal diamond. Studies into these 

nanodiamonds have shown that different defects form within the structure. One very interesting 

defect is the nitrogen vacancy discovered by nitrogen-15 nuclear magnetic resonance research. 

1.2 Nitrogen Vacancy Centers 

The nitrogen vacancy (NV) center in a diamond crystal lattice structure is one of many 

point defects. Defects in diamond are common, arising from irregularities and impurities. These 

defects have many different effects on the diamond, the most prominent being their color and 

electric conductivity. The structure of this defect in the lattice is the interchanging of a nitrogen 

atom with one of the carbon atoms and leaving a vacancy in its nearest neighbor.  
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This leads to two possible overall charge states; an overall neutral charge or an overall negative 

charge. Nitrogen has five valance electrons with three of these electrons covalently bonding to the 

carbon atoms while two remain as lone pairs. The vacancy neighbor will have three unpaired 

valence electrons from the carbon. Two of them will make a quasi-covalent bond, leaving the last 

electron unpaired.  

The overall symmetry of the lattice is axial with the three unpaired valence electrons 

constantly changing roles. The neutral state (N-V0) is paramagnetic and has the one unpaired 

electron. The neutral state avoided electron paramagnetic detection (EPR) for years. It wasn’t until 

2008 that EPR in the neutral state was detected. This state avoided detection as the EPR signals 

are not produced unless there is optical excitation [5]. The N-V0 ground state signals are too broad, 

optically exciting them their spin states change, and a better signal was detected. For the negatively 

charged state (N-V-) there is an extra electron located in the vacancy. This extra electron gives the 

system a spin S = 1 pair with one of the three valence vacancy electrons. 

 

       Fig 2: NV Center Lattice (D. D. Awschalom et. al.) 
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The energy levels (Fig 3) for the NV center have been determined through earlier work in 

optical, electron paramagnetic resonance, and other theoretical results [6-9]. The techniques used 

to gain these energy levels were the linear combination of atomic orbitals (LCAO) and group 

theory. LCAO is a technique which has the electron configuration be represented as 

wavefunctions. Group theory brought in the symmetry of the diamond, which allowed for the 

determining of the symmetry of the NV center itself. The superscripts for the energy levels are the 

resulting allowed ms spin multiplicity, or spin states. These values of the spin multiplicity range 

from -S to S which will give a total of 2S+1 allowable spin multiplicities. For example, if S = 1 

then ms can be -1, 0, or 1. 

In the absence of an external magnetic field, the ground state for the NV is split. This 

splitting is due to the magnetic interaction between two of the unpaired electrons. There will be a 

higher energy when the spins are parallel (ms = ±1) and lower when they are antiparallel (ms = 0). 

The parallel spin states have a higher energy due to quadrupole coupling nuclear mixing of the 

hyperfine states [10]. These hyperfine states, or structures, form due to the change of the nuclear 

electric quadrupole moment due to the electric field gradient and the nuclear magnetic dipole 

moments interaction with the magnetic field generated by the electrons. In the excited state, there 

is a smaller splitting of the energy level due to smaller interaction energy (D ~ 1/r3) from a larger 

separation between the electrons.  

Applying an external magnetic field to the N-V-, will not affect the antiparallel ground state 

but split the parallel ground state. The antiparallel state will not split due to all its electrons being 

paired and its overall spin quantum number is S = 0. A strong interaction when the magnetic field 

is along the defect axis induces a spin-polarization, which will affect the optical absorption and 

luminescence of the NV center in the antiparallel and negative parallel ground states.  
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Since electron interaction is mediated by photon interaction and overall spin cannot be changed, 

optical transitions will have spin conversation and only occur between levels with the same spin. 

The 3E excited state has an orbital degeneracy which gives rise to spin-orbit interactions. These 

interactions split the energy level and can be modulated by applying an external static electric 

field.  

 

Fig 3. Energy Level Diagram (L. J. Rodgers et. al.) 

Modern applications of magnetic field sensors and computing use electric signals to send 

information. For electric signals, a bit of information can have two states 1 or 0. Quantum 

information also have two states of information. These states could be energy and time, or position 

and momentum. These states can be in what are called coherent states. Coherent states are states 

of “minimum uncertainty” wave packets. The minimum coherent state will have one free 

parameter that will have its position and momentum dispersion equal small. With minimum 

uncertainty for our free parameter, we have a very precise knowledge of the free parameter. 

Coherence of states will give the same phase difference, frequency, and waveform.  
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Naturally, these coherent states have a time dependence, and the time of these coherent states have 

been widely investigated [11-13]. These pieces of quantum information are two level quantum 

mechanical systems which are more widely known as qubits [12].  

The difference between the two states of a bit and the two states of a qubit, is a qubit can 

hold more information in its two coherent states. Instead of just having 1 or 0 for the information 

in the qubit, the qubit is in a superposition of these values. Being in a superposition of the two 

states, a correlation between the two states is present unlike with the normal bit. With the qubit 

being a superposition, we can picture the qubit as a sphere on the real and imaginary axis. This 

sphere is known as the Bloch sphere. The Bloch sphere is the geometrical representation of the 

pure state space of these two-level quantum mechanical systems. If you had a few hundred qubits, 

it would take more bits than there are atoms in the universe to fill up that information. 

 Along with interactions with electric and magnetic fields, the NV center also has different 

interactions with stress [14-27]. The NV center has also shown different entanglement effects, 

such as photon-electron and electron-electron making it more interesting to study [28-33]. These 

different interactions have been of important study. Investigations into coherent interactions have 

shown the NV center has very useful applications in magnet field sensors, quantum computing, 

and frequency-modulated radio receiver in extreme conditions. As stated before, coherence is 

when two quantum states have the same phase difference, frequency, and waveform. Having this 

precise knowledge of the system is important as it describes correlations between all physical 

quantities for single waves up to wave packets. Other studies and materials have been used to 

investigate these different types of applications, but what makes the NV center interesting is its 

usefulness at room temperature.  
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Coherent interactions for many materials require temperatures well below room temperature. 

Experiments have shown that the NV center diamond has long coherence times for temperatures 

ranging well above room temperature [34].  Room temperature use has an advantage as it doesn’t 

require large amounts of cooling which can be expensive. This change to quantum information 

would allow for many applications that would make modern computing and information systems 

be obsolete. 

1.3 Thermal Noise 

Working with the NV center quantum coherence, has shown long coherence times when 

moving the defect near the surface. Having the NV center near to the surface, a few microns deep, 

allows for greater manipulation of the coherent states. Even with these long quantum coherence 

times ranging around several milliseconds when near the surface, noise has become a major issue. 

The noise in a near surface NV center system brings decoherence into the system. Decoherence 

loses that correlation between the states which makes them desirable. Along with the decoherence, 

the system has losses of information. Many modern applications have shown that magnetic field 

noise is very prominent in the NV center system. Fluctuations in the magnetic field from the 

environment have been shown to couple all the elements of the density matrix. These fluctuations 

then cause decoherence, dephasing, and dissipation. As temperatures reach room temperature, the 

electric field from thermal interactions cause a much more prominent amount of noise. The thermal 

noise, which causes decoherence, dephasing, and dissipation, also hinders the detection method 

for the NV center. Thermal noise is when charge carriers in a material are agitated by 

thermodynamic fluctuations. Current detection methods use the fluorescence of the NV center. 

The noise from the magnetic and electric fields will cause fluorescent line-broadening.  
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Recently, experiments have coated the NV center with materials as protection from surface 

noise [35-40]. The mechanism that describes this reduction to the surface noise is unknown. We 

investigated the NV center system with a protective coating to give a solution to that question. 

With this type of system, we can consider what the noise of the system will be based off what 

material is being used as the protective coating. This gives a system that depends on two different 

materials, which will change up the overall noise of the system. The method widely used to 

determine the thermal noise of a system, is the fluctuation-dissipation theorem. The medium 

described by the fluctuation-dissipation theorem is characterized by a generalized impedance, or 

in our case, a generalized susceptibility.  

Susceptibility can be described as the change of an extensive property, such as energy, by 

the variation of an intensive property, such as temperature. We are looking at thermal fluctuations 

due to the electric field, so our generalized susceptibility will be the systems electric susceptibility. 

Electric susceptibility is relation how responsive the polarization is to an applied electric field. 

With this relation, we began by looking at the polarization to determine the generalized 

susceptibility. The thermal fluctuations that will be described by the fluctuation-dissipation 

theorem require a correlation between the charges in the system. This required me to use the 

quantum mechanical version of the polarization. Dissipation in a system is inherently a time 

dependent process as it is the change of a systems energy. The fluctuation-dissipation theorem will 

give me the system’s thermal charge noise spectrum. Once we have this, we can begin analyzing 

how different materials will affect the overall noise of the system.  
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Chapter 2 

 

Current Research of NV Center Diamonds 

 

2.1 Nuclear Magnetic Resonance 

 In nature, there is a physical phenomenon where nuclei will absorb energy from a magnetic 

field and re-emit electromagnetic radiation. This re-emission will only occur when the energy is 

at a resonance frequency. This phenomenon has been named nuclear magnetic resonance (NMR). 

Observations of NMR allow for the study of many quantum mechanical properties of atomic 

nuclei. Applications of NMR using a technique known as NMR spectroscopy has allowed for the 

further investigation of many subjects such as, molecular physics and crystals. NMR spectroscopy 

uses NMR to gain the information about reaction state, chemical environment of molecules, 

structure, and dynamics in materials.  

 To have NMR possible in a material, it must have an intrinsic angular momentum and 

magnetic moment. In other words, the material must have a non-zero spin. This requirement makes 

the negative NV center a useful candidate for NMR research. Recent work has investigated NMR 

phenomena with the negative NV center diamond. The research investigated the magnetic 

resonance phenomenon by looking at the magnetic field dependence of an ensemble of negative 

NV center in enriched Carbon-13 (A. Jarmola et al) and by using the negative NV center near 

surface as a small volume NMR spectroscopy sensor (P. Kehayias et al).  
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 The optical excitation of the negatively charged NV center diamond causes a spin transfer.  

This stems from the optical polarization placed on the NV center. This spin transfer is enhanced 

even further when a strong external magnetic field is present. The highly nuclear-polarized system 

would give rise to a more sensitive magnetic resonance device. Varying the degree of enrichment 

of the Carbon-13 system can change its usefulness at room temperature. Understanding the 

magnetic resonance for the different enrichments leads to new applications in diamond based 

rotational sensors and fundamental physics research. 

 To detect the magnetic resonances, confocal microscopy was the technique chosen. The 

enrichment of the samples ranged from 1.1% - 99.9% Carbon-13. For each sample spectrum, their 

individual fluorescence intensity, obtained when the microwave frequency was far from the 

resonance was detuned, were normalized. There data showed a splitting of the ground state energy 

level due to resonances of their spins. Depending on the sample the peaks are different. In figure 

4, the natural abundance of carbon-13 (1.1%) shows a large central peak which is the carbon-13 

around the nuclei of the NV center. As the abundance of the carbon-13 rises, the side peaks get 

larger due to the higher probability of finding the carbon-13 in the first shell. 

 

Fig 4. ODMR spectra for natural abundance of Carbon-13 (1.1%) and enriched Carbon-13 (10% and 99.9%) (Jarmola et. al.) 
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 The peaks correspond to the spins of the shells. The natural abundance has the spin for 

the ground state peak resonate, but the four peaks for the enriched give different spin states of the 

first shell (-3/2, -1/2, 1/2, 3/2). The importance of this is that the NV center is showing clear 

nuclear magnetic resonance. Here the resonance is occurring due to optical excitation creating a 

resonance for different spin states at different frequencies. For this experiment, they also looked 

at different applied magnetic fields to see how the resonances would change.  

 

Fig 5. Resonance of NV center for different applied magnetic fields for simulation and experiment (Jarmola et. al.) 

 Figure 5 shows that as an external magnetic field is applied, the resonance sensitivity is 

dropping proportionally to the strength of the magnetic field. The relationship between the loss 

of sensitivity with the external magnetic field shows that magnetic field noise will be an issue for 

nuclear resonance of the NV center diamond. Solutions for reducing this surface noise have been 

thought up intuitively by other researchers.  
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Experiments using a protective layer (Kehayias et. al.) have shown an increase in sensitivity for 

nuclear magnetic resonance applications of the NV center diamond. 

 Looking at NMR spectroscopy for negatively charged NV center diamonds, the 

sensitivity at room temperature is rather low. When placing a protective layer of liquid or thin-

films, longer measurement times and sensitivity have been seen. Following this protective layer 

system, a picolitre of cesium fluoride (CsF) in glycerol and pure glycerol were used with the 

nanodiamond chip of negatively charged NV center diamonds. Using correlation spectroscopy 

on hydrogen and fluorine – 19 isotope nuclei, the resonance at the Larmor frequency was 

detected for each respectively.  

 

Fig 6. NMR Signal of flourine-19 isotope for CsF in glycerol and pure glycerol (P. Kehayias et. al.) 
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Figure 6 shows that the CsF system is giving a higher sensitivity to that of pure glycerol. 

A clear peak of resonance in the fluorine-19 isotope can be seen for the different magnetic field 

strengths for the CsF solution. The different resonances are from the gyromagnetic properties of 

floruine-19. Though the sensitivity increases with the protective layer, the signal has substantial 

noise. This magnetic field noise has been studied, but researchers were wondering if there is 

more to the room temperature noise than just magnetic noise from external magnetic fields. 

2.2 Decoherence Due to Noise 

 NV center diamonds excel as room temperature quantum sensors, as seen by the previous 

work. They have long coherent spin states and working near the surface allows for manipulation 

of the external degrees of freedom. Having the NV center near the surface, the external degrees 

of freedom can be strongly coupled giving nanoscale spatial resolution in imaging. The major 

problem is the substantial noise being seen. Magnetic field noise has been a big factor, but the 

NV center has a magnetic-dipole-forbidden transition. This forbidden transition, due to selection 

rules, can be used as a probe to other candidates for noise. With the NV center near the surface, 

environmental interactions are unavoidable at room temperature. Research investigating single 

quantum (SQ) and double quantum (DQ) relaxation rates was used to probe where the 

environmental effects were coming from.  

 SQ and DQ relaxation rates are the rates at which decoherence of the quantum states 

takes place. When these rates are fast, that means there is a quicker rate of decoherence in the 

system. Techniques known as SQ and DQ relaxation spectroscopy are used to gain a spectral 

character of the noise sources. When there is a quantum coherence in a material, a chemical shift 

can be observed. The quantum coherent states are excited states, so the longer they can stay in 

these coherent states the longer the chemical shift is observed.  
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Looking at the ground state Hamiltonian for the NV center, we can see the contributions from 

the strain, the electric field, and the magnetic field, 

𝐻𝑁𝑉 = (ℎ𝐷𝑔𝑠 + 𝑑∥Π∥)𝑆𝑧
2 + 𝑔𝜇𝐵𝑩 ∙ 𝑺 −

𝑑⊥Π⊥

2
(𝑆+

2 + 𝑆−
2). (1) 

Here B is the magnetic field, S is the spin-1 operator, 𝑑∥,⊥ are the dipole moment parallel and 

perpendicular to the symmetry axis, 
𝑔𝜇𝐵

ℎ
 is the gyrometric ratio, 𝐷𝑔𝑠 is the crystal-field splitting, 

and Π∥,⊥ are corresponding to the total electric field components (𝚷 = 𝑬 + 𝝈). These fields will 

give sources of noise due to the fluctuations caused by the fields as time progresses while in the 

coherent state.  

 A major piece of coherent states is their simultaneous phases. Fluctuations due to external 

fields cause a dephasing effect in the NV center coherent spin state. By exciting the system with 

CPMG (Carr-Purcell-Meiboom-Gill) pulses at the Larmor frequency (𝜔 = −
𝑔𝜇𝐵

ℎ
𝐵), the systems 

echo time can be observed. The observation of the fluorescence as a function of the precession 

time will give the coherence as a function of the precession time. This was done for both the SQ 

and DQ relaxation systems. 

 

Fig. 7: SQ coherence time at (a) 37.1 MHz and (b) 1376 MHz (B. A. Myers et. al.) 
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Fig. 8: DQ and SQ Relaxation rate as a function of splitting frequency. (B. A. Meyers et. al.) 

 Figure 7 shows that a higher frequency will give a longer coherence time, but there is 

something causing decoherence. Looking at figure 8, the DQ relaxation is highly frequency 

dependent. Comparing the DQ and SQ relaxation rates for the NV center, insights into the noise 

sources are gained. The double-quantum relaxation spectroscopy shows that as the external 

magnetic field tunes the frequency, a 𝑓−𝛼 dependence appears. This is attributed to surface - 

related noise from the electric field. The double quantum relaxation is playing a major role in the 

dephasing of the coherent states no matter the applied magnetic field. The noise spectra gives a 

clearer insight into the decoherence of the near surface NV centers. 
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Fig. 9: Measured noise spectra as a function of coupling power (𝐻𝑧2/Hz) and transverse electric field power (𝑉2𝑚−2/ Hz) (B. A. 

Myers et. al.) 

 Figure 9 shows a prominent effect of the electric field on the noise spectra for the SQ 

(a,c) and DQ (b,d) systems. The two data sets are looking at the samples labeled NVA1, which 

had its NV center at a depth of 150μm, and NVA8 with NV depth of 30μm. Comparing the 

typical magnetic noise and electric noise with the data fitted to the noise function, there is a 

difference in total noise, but a similar trend is seen. For the DQ systems, the noise is highly 

contributed by the electric field noise for both sets of data. The SQ noise fits highly with the 

magnetic noise for the NVA1 data set, but the NVA8 data set still shows a high dependence on 

the electric noise near the surface.  

 The two samples are showing that as the NV center gets nearer to the surface, the 

interactions with the environment are beginning to come mainly from the electric field. As the 

near-surface NV centers are being considered for room temperature applications, it is the thermal 

interactions that the electric field noise is derived. Using a protective layer has shown greater 

sensitivity, so the surface electric field noise is being reduced by using a protective layer. 
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2.3 Electric Field Noise with a Protective Layer 

 With noise a problem for the sensitivity and decoherence for applications of the NV 

center, protective layers have been investigated for reducing the noise. When using a material as 

a protective layer, different material characteristics must be considered. The material must not 

evaporate quickly when in room temperature conditions and any reactions when laying on the 

surface must happen quickly. The reactions also shouldn’t damage the NV center in any way. 

Protective materials such as polymethyl methacrylate, polyvinylidene fluoride, and microscope 

immersion oil have been used. Research into other materials, such as d-glycerol and propylene 

carbonate has been done to see how well they protect the NV center from the surface noise.  

 Glycerol is an alcohol with hydroxyl groups that can donate protons to the environment. 

Glycerol also has a high dielectric constant of 42. Propylene carbonate has tightly bound 

hydrogen atoms giving it an even bigger dielectric constant of 64. The dielectric constant is 

important as it tells us about how the material will interact with an electric field. A way to notice 

if the protective layer is helping, is to look at the echo time of the NV center with and without 

the added material. The echo time is the time for the signal to last after excited by a pulse. When 

looking at the echo time of the NV center with and without the protective layers, a noticeable rise 

in the echo time is seen when a protective layer is present. 
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Fig. 10: Comparison of echo time with and without the protective layers added. (M. Kim et. al.) 

Fig. 10 shows a 4.6-fold increase in the echo time when d-glycerol was placed on the NV center. 

Not far behind is propylene carbonate with a 2.4-fold increase in the echo time. The microscope 

immersion oil, with a dielectric constant of 2.3 showed only a 1.4-fold increase in the echo time. 

This shows a definite correlation between the materials dielectric constant and the increase in 

echo time.  

 Surface electron spins, dark spins, are the usual suspect for surface noise and the loss of 

coherence. The protective materials could be passivating these dark spins from causing the 

decoherence. Hitting the NV center with another pulse part way through its echo time will get 

these dark spins to resonate. Doing this with and without the protective layers can show if the 

protective layer is indeed passivating the dark spins of the NV center surface. 
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Fig. 11: Double electron-electron signal with and without the d-glycerol protective layer (M. Kim et. al) 

Fig. 11 shows no change in the dark spin signal when d-glycerol was added. The dark spins of 

the NV center are playing a negligible part in the surface noise from the NV center. Considering 

the dielectric constants of the materials again, the electric field must be the major source in the 

electric field noise.  

 If we consider a single charge q at the NV center, the NV center Hamiltonian can help 

lead to determining the effects of the electric field on the coherence of the NV center. The NV 

center Hamiltonian will be given by [13], 

𝐻 = (ℎ𝐷 + 𝑑∥𝐸𝑧) [𝑆𝑧
2 −

2

3
] + 𝜇𝐵𝑔𝑁𝑉𝑺 ∙ 𝑩 − 𝑑⊥[𝐸𝑥(𝑆𝑥𝑆𝑦 + 𝑆𝑦𝑆𝑥) + 𝐸𝑦(𝑆𝑥

2 − 𝑆𝑦
2)]. (2) 

Here h is Planck’s constant, B is the applied magnetic field, S is the spin-1 operator, 𝑑∥,⊥ are the 

dipole moment parallel and perpendicular to the symmetry axis, D is the zero-field splitting, 𝜇𝐵 

is the Bohr magnetron, and 𝑔𝑁𝑉 is the NV electron spin g-factor. Assuming the magnetic field to 

be along the z-axis, solving for the energy eigenvalues for the three magnetic sublevels will give 

the electric field effect on the NV spin precession frequency.  
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The precession frequency from the resulting calculation will be [13], 

∆𝜔±

2𝜋
= (

𝑑∥

ℎ
) 𝐸𝑧 ±

1

2

(
𝑑∥

ℎ
)

2

𝐸⊥
2

(
𝛾

2𝜋) 𝐵𝑧

.       (3) 

Here 𝐸⊥
2 = 𝐸𝑥

2 + 𝐸𝑦
2, and 

𝛾

2𝜋
=

𝜇𝐵𝑔𝑁𝑉

ℎ
. The frequency shift is directly related to the magnitude of 

the electric field in the z-direction and to the magnitude squared of the perpendicular directions. 

A large electric field would cause frequency shifts, which in tow would affect the coherence time 

of the NV center. Spin echo measurements were taken on the system with and without the 

application of d-glycerol with different pulse amounts. 

 

Fig. 12: Coherence echo times of NV center with and without the added d-glycerol with different pulse amounts. (M. Kim et. al.) 

The coherence time measurements show an increase with pulse amount. The spectrum from the 

coherence data shows that it will fit an exponential function. Knowing the fit for the coherence 

data will allow the estimation of the frequency fluctuations which cause the decoherence.  
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The spectrum gained from the estimated frequency fluctuations will be the noise spectral density. 

The noise can be extracted using a spectral decomposition from the coherence time data. 

 

Fig. 13: Power spectral density of noise determined from spectral decomposition. (M. Kim et. al.) 

 Glycerol shows a good reduction in noise, but as the frequencies approach 1MHz the 

noise becomes worse than the lone NV center. There is a mechanism that is causing this 

reduction in noise when applying a protective layer. The dielectric constant is playing a role in 

how the noise is reduced. Possibilities for this deviation as frequencies reach 1MHz could be the 

following; the dielectric relaxation of glycerol is reducing at the surface of diamond, a nanometer 

thick layer of reduced mobility may be forming at the connecting interface, or thermal agitations 

of glycerol are becoming dominate. 

 Reduction of the dielectric relaxation of glycerol inherently considers the dielectric 

constant as being a frequency dependent parameter, it no longer acts as some real constant value. 

The dielectric relaxation has to do with the loss of the material. The dielectric loss of a material 

is related to the imaginary part of the frequency dependent dielectric constant. The mechanism 

that is causing this electric field noise for the near-surface NV center is still unknown.  
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There is an increase in coherence time with a protective layer, which leads to a reduction of the 

noise that causes decoherence and loss of sensitivity. A further understanding of this mechanism 

is much needed based off current published research.  

 Considered possibilities for the electric field surface noise never considered thermal noise 

as the major source. As the NV center is interacting with the environment thermal noise could be 

the culprit causing the major electric field noise. Looking at the protective layer system used in 

experimental research, the thermal noise can be modelled by using the fluctuation-dissipation 

theorem. The fluctuation dissipation theorem will allow the calculation of the charge noise 

spectral density due to electric field fluctuations from thermal noise.  
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Chapter 3 

 

Model, Methodology, and Derivation 

 

3.1 Protective Layer Model 

     Our model considers an NV center system near the surface of the crystal structure. In 

experiment these near surface NV centers are created by 15N ion implantation [39,40]. This 

process places the NV center roughly 5nm from the surface. A protective layer is considered to 

be resting on top of the NV center surface. We are considering no chemical reactions take place 

when the protective layer is placed. This is warranted since the materials used are non-reactive 

and non-toxic. In current research, the created NV center diamond is also cleaned to get rid of 

any surface impurities. Also, other than DMSO, the materials are currently being used as 

protective layers in ongoing research. 

 

Fig. 14: NV center at 5nm depth with protective layer on top of certain thickness in an environment at room temperature. 

From Fig. (14) there are two different lengths we need to consider; the depth of the NV 

center and the thickness of the protective layer. The environment is taken to be at constant room 

temperature.  



24 
 

We start our analysis by considering a monolayer system with the length of the protective layer 

being 5nm thick. This is not a practical model for use in experiment, but it allows us to eliminate 

a factor initially for analysis of the mechanisms determining the overall noise. The derivation of 

the thermal charge noise will take into account a monolayer system as well as a system for any 

value of the protective layer system. Throughout the analysis, we keep the depth of the NV the 

same value of 5nm. 

3.2 Generalized Susceptibility 

The energy can be defined by using the Hamiltonian operator. Working with interactions, 

my Hamiltonian will be split into two pieces. One piece will be the thermal equilibrium case 

with no external forces, while the other piece will deal with the interactions. The Hamiltonian is 

represented by, 

𝐻 = 𝐻0 + 𝐻𝐼(𝑡). (4)  

Here 𝐻0 is the thermal equilibrium case, and 𝐻𝐼(𝑡) is the interaction case. We are considering a 

system that only depends on the electric field, so the magnetic field interactions, the zero field 

terms, and the bulk interactions of the Hamiltonian will be the thermal equilibrium piece. We can 

make this assumption due to in experiment, Hahn spin echo eliminates any thermal effect from 

these non-electric field interactions. The fluctuation-dissipation theorem requires my 

susceptibility to be in terms of correlation between charges,  

𝜒"(𝒓, 𝑡) =
〈[𝑝̂(𝒓, 𝑡), 𝑝̂(𝒓′, 𝑡′)]𝑐〉𝑒

2ℏ
.       (5) 
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Here 𝑝̂ is the electric dipole moment operator which is the ensemble of the total number (n) of 

electrons (e) and the total number (m) of nuclei (Z) at different locations (r). The electric dipole 

moment operator can be written in the following form, 

𝑝̂ = −𝑒 ∑ 𝑟𝑖
𝑛
𝑖 + −𝑒 ∑ 𝑍𝑗

𝑚
𝑗 𝑟𝑗.  (6) 

The interaction Hamiltonian can be directly related to the electric field and the electric 

dipole moment operator when considering electric dipolar interactions by, 

𝐻𝐼(𝑡) = −𝑝̂ ∗ 𝐸(𝒓, 𝑡).            (7) 

Here 𝐸(𝒓, 𝑡) is the applied electric field and 𝑝̂ is the same electric dipole operator from before. 

To find the correlation between the electric dipole moment operators for the generalized 

susceptibility, we need to see how the Hamiltonian evolves with time. We begin by looking at 

the equation of motion for the density operator, 

𝑖ℏ
𝑑𝜌(𝑡)

𝑑𝑡
= [𝐻0, 𝜌(𝑡)] + [𝐻𝐼(𝑡), 𝜌(𝑡)].  (8) 

Here ℏ is Planck’s constant. The notion of equation of motion can be pictured as the change of 

the density operator in time, or also put the change in the density of states over time. Looking at 

the thermal equilibrium situation, we just have the first term in the sum, 

𝑖ℏ
𝑑𝜌(𝑡)

𝑑𝑡
= [𝐻0, 𝜌(𝑡)].            (9) 

This differential equation will have the solution, 

𝑑𝜌(𝑡) =
[𝐻0, 𝜌(𝑡)]

𝑖ℏ
𝑑𝑡,           (10) 

𝜌(𝑡) = 𝜌0 = 𝜂𝑒
−𝐻0
𝑘𝐵𝑇 .             (11) 
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Here 𝜂 is a normalization constant, 𝑘𝐵 is Boltzmann’s constant, and T is the temperature. The 

normalization constant (𝜂) is set in such a way to allow for the trace of the density operator to be 

unity.  

Now looking at the interaction piece of the equation of motion, we consider a 

perturbation series to obtain our solution. The perturbations on the density operator will be 

analogous to a mechanical spring oscillator under the influence of an electromagnetic field. The 

density operator is then written as, 

𝜌(𝑡) = 𝜌0(𝑡) + 𝜌1(𝑡)+. . . +𝜌𝑛(𝑡).           (12) 

Here the indices are the order of perturbation from the electric field (𝜌(𝑛)(𝑡)~[𝐸(𝑡)](𝑛)) which 

go from 1 to n. Now to apply the boundary condition that at some time in the past the system was 

absent of external forces we have, 

𝜌(−∞) = 𝜌0.             (13) 

The perturbation series must be valid for all perturbations of the external electric field as time 

evolves. This will give us the boundary condition for our perturbation terms of the density 

operator, 

∑ 𝜌𝑖

𝑛

𝑖=1

(−∞) = 0         𝑖 = 1,2,3, … , 𝑛.            (14) 

We can now insert the perturbation series representation into the equation of motion. Our 

equation of motion then becomes, 

𝑖ℏ
𝑑(𝜌0(𝑡) + 𝜌1(𝑡)+. . . +𝜌𝑛(𝑡))

𝑑𝑡

= [𝐻0, 𝜌0(𝑡) + 𝜌1(𝑡)+. . . +𝜌𝑛(𝑡)] + [𝐻𝐼(𝑡), 𝜌0(𝑡) + 𝜌1(𝑡)+. . . +𝜌𝑛(𝑡)].       (15) 
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Equating the terms with the same power dependence as the applied electric field on both sides, 

the following terms appear, 

𝑖ℏ
𝑑𝜌0(𝑡)

𝑑𝑡
= [𝐻0, 𝜌0],            (16) 

𝑖ℏ
𝑑𝜌1(𝑡)

𝑑𝑡
= [𝐻0, 𝜌1(𝑡)] + [𝐻𝐼 , 𝜌0],            (17) 

𝑖ℏ
𝑑𝜌2(𝑡)

𝑑𝑡
= [𝐻0, 𝜌2(𝑡)] + [𝐻𝐼 , 𝜌1(𝑡)],        (18) 

𝑖ℏ
𝑑𝜌3(𝑡)

𝑑𝑡
= [𝐻0, 𝜌3(𝑡)] + [𝐻𝐼 , 𝜌2(𝑡)],         (19) 

⋮ 

𝑖ℏ
𝑑𝜌𝑛(𝑡)

𝑑𝑡
= [𝐻0, 𝜌𝑛(𝑡)] + [𝐻𝐼 , 𝜌𝑛−1(𝑡)].       (20) 

The first equation is our thermal equilibrium situation. The rest of the perturbation terms will 

then be consecutively solved from i = 1, 2, 3, …, n. To solve these equations, we want to look at 

how they evolve in time. The higher order terms will shrink much faster that the lower order 

terns, so when representing the system, we can just consider the n and n-1 terms.  

To see how the density operator evolves in time, we can use the time evolution operator. 

The time evolution operator will need to work so that if left and right multiplied to the nth terms 

we get, 

𝑈(−𝑡) {𝑖ℏ
𝑑𝜌𝑛(𝑡)

𝑑𝑡
− [𝐻, 𝜌𝑛(𝑡)]} 𝑈(𝑡) = 𝑖ℏ

𝑑

𝑑𝑡
{𝑈(−𝑡)𝜌𝑛(𝑡)𝑈(𝑡)}.         (21) 
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First, we carry out the differentiation on the right-hand side using the chain rule, 

𝑖ℏ
𝑑𝑈(−𝑡)

𝑑𝑡
𝜌𝑛(𝑡)𝑈(𝑡) + 𝑈(−𝑡)𝑖ℏ

𝑑𝜌𝑛(𝑡)

𝑑𝑡
𝑈(𝑡) + 𝑈(−𝑡)𝜌𝑛(𝑡)𝑖ℏ

𝑑𝑈(𝑡)

𝑑𝑡
.          (22) 

Expanding out the commutation on the left-hand side to get, 

𝑈(−𝑡) {𝑖ℏ
𝑑𝜌𝑛(𝑡)

𝑑𝑡
− 𝐻𝜌(𝑡) + 𝜌(𝑡)𝐻} 𝑈(𝑡).              (23) 

Finally, we do some manipulation and rearranging to get, 

(𝑖ℏ
𝑑𝑈(−𝑡)

𝑑𝑡
+ 𝑈(−𝑡)𝐻) 𝜌𝑛(𝑡)𝑈(𝑡) +  𝑈(−𝑡)𝜌𝑛(𝑡) (𝑖ℏ

𝑑𝑈(𝑡)

𝑑𝑡
− 𝐻𝑈(𝑡)) = 0.          (24) 

This statement is true if both bracket pieces are equal to zero. Setting each of them equal to zero, 

𝑖ℏ
𝑑𝑈(−𝑡)

𝑑𝑡
+ 𝑈(−𝑡)𝐻 = 0,           (25) 

𝑖ℏ
𝑑𝑈(𝑡)

𝑑𝑡
− 𝐻𝑈(𝑡) = 0.                 (26) 

These will have the following solutions, 

𝑈(𝑡) = 𝑒
−𝑖

𝐻0
𝑘𝐵𝑇 ,              (27) 

𝑈(−𝑡) = 𝑒
𝑖

𝐻0
𝑘𝐵𝑇 .             (28) 

We obtain the solutions for the time-evolution operator. These solutions can then be used along 

with two of their following properties, 

𝑈(𝑡)𝑈(𝑡′) = 𝑈(𝑡 + 𝑡′),       (30) 

𝑈(𝑡)𝑈(−𝑡) = 𝑈(0) = 𝐼.      (31) 
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The time evolution operator has a two-time correlation and the corollary property which yields 

the identity matrix. Now we take the nth order equation of motion of the density operator and 

operating from the left with 𝑈(−𝑡) while operating from the right with 𝑈(𝑡), 

𝑖ℏ
𝑑

𝑑𝑡
(𝑈(−𝑡)𝜌𝑛(𝑡)𝑈(𝑡)) = 𝑈(−𝑡)[𝐻𝐼 , 𝜌𝑛−1(𝑡)]𝑈(𝑡).          (32) 

Now integrating both sides we get, 

𝑈(−𝑡)𝜌𝑛(𝑡)𝑈(𝑡) =
1

𝑖ℏ
∫ 𝑈(−𝜏)[𝐻𝐼(𝜏), 𝜌𝑛−1(𝜏)]𝑈(𝜏)𝑑𝜏

𝑡

−∞

.       (33) 

The lower limit is fixed to satisfy our initial condition 𝜌𝑛(−∞) = 0. Here 𝜏 is the time it takes to 

go from -∞ to an arbitrary time t. Now expanding the commutation and applying the operators 

and using their properties we obtain, 

𝑈(−𝑡)𝜌𝑛(𝑡)𝑈(𝑡) =
1

𝑖ℏ
∫ 𝑈(−𝜏)[𝐻𝐼(𝜏)𝜌𝑛−1(𝜏) − 𝜌𝑛−1(𝜏)𝐻𝐼(𝜏)]𝑈(𝜏)𝑑𝜏

𝑡

−∞

,           (34) 

" =
1

𝑖ℏ
∫ 𝑈(−𝜏)𝐻𝐼(𝜏)𝑈(𝜏)𝑈(−𝜏)𝜌𝑛−1(𝜏)𝑈(𝜏)

𝑡

−∞

− 𝑈(−𝜏)𝜌𝑛−1(𝜏)𝑈(𝜏)𝑈(−𝜏)𝐻𝐼(𝜏)𝑈(𝜏)𝑑𝜏,                 (35) 

" =  
1

𝑖ℏ
∫[𝑈(−𝜏)𝐻𝐼(𝜏)𝑈(𝜏), 𝑈(−𝜏)𝜌𝑛−1(𝜏)𝑈(𝜏)]

𝑡

−∞

𝑑𝜏,                         (36) 

𝑊ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠, 𝑈(−𝑡)𝐻𝐼(𝑡)𝑈(𝑡) = 𝐻𝐼
′(𝑡) 𝑎𝑛𝑑 𝑈(−𝑡)𝜌𝑛−1(𝑡)𝑈(𝑡) = 𝜌𝑛−1

′ (𝑡).           (37) 

We obtain time evolution transformations for the two equations of motion 𝐻𝐼
′(𝑡) and 𝜌𝑛

′ (𝑡).  
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The inverse transformations are given by, 

𝜌𝑛(𝑡) = 𝑈(𝑡)𝜌𝑛
′ (𝑡)𝑈(−𝑡),         (38) 

𝐻𝐼(𝑡) = 𝑈(𝑡)𝐻𝐼
′(𝑡)𝑈(−𝑡).         (39) 

We use primed notation to denote that these are the time evolution transformations. Now using 

the relation between the interaction Hamiltonian and the electric dipole moment operator along 

with properties of the time-evolution operator, we gain the dynamics of the interaction 

Hamiltonian with respect to both space and time. Our primed notation Hamiltonian will become, 

𝐻𝐼
′(𝒓, 𝑡) = 𝑈′(𝒓, 𝑡)[−𝑝̂ ∗ 𝐸(𝒓, 𝑡)]𝑈(𝒓, 𝑡),           (40) 

𝐻𝐼
′(𝒓, 𝑡) = 𝑈′(𝒓, 𝑡)(−𝑝̂)𝑈(𝒓, 𝑡)𝐸(𝒓, 𝑡),              (41) 

𝑤ℎ𝑒𝑟𝑒 𝑈′(𝒓, 𝑡) = 𝑈(𝒓′, 𝑡′) = 𝑈(−𝒓, −𝑡),          (42) 

𝐻𝐼
′(𝒓, 𝑡) = −𝑝̂(𝒓, 𝑡)𝐸(𝒓, 𝑡).            (43) 

We have the interaction Hamiltonian in terms of the electric dipole operator at a given 

position and time, but we still need to link the electric dipole operator to the generalized 

susceptibility we desire. To do this we can look at the definition of polarization and its relation to 

the electric susceptibility. The polarization density of a system is given by, 

𝑃(𝒓, 𝑡) =
〈𝑝〉𝑒

𝑉
.  (44) 

From quantum mechanics, we can rewrite the expectation value in terms of the quantum 

mechanical trace. The polarization density is then rewritten as, 

𝑃(𝒓, 𝑡) =
𝑇𝑟(𝜌𝑛̂(𝒓,𝑡),𝑝)

𝑉
.  (45) 
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Next, we use the equation of motion for the density operator and use separation of 

variables. We integrate using our boundary condition that at some point in the past there is no 

external field. Our trace then becomes, 

𝑃(𝒓, 𝑡) =  
1

𝑉
𝑇𝑟 [(𝑈(𝒓, 𝑡)

1

𝑖ℏ
∫ [𝐻𝐼

′(𝒓, 𝜏), 𝜌𝑛−1(𝒓, 𝜏)]𝑑𝜏𝑈′(𝒓, 𝑡)
𝑡

−∞
) , 𝑝], (46) 

𝑊ℎ𝑒𝑟𝑒 
1

𝑖ℏ
∫ [𝐻𝐼

′(𝒓, 𝜏), 𝜌𝑛−1(𝒓, 𝜏)]𝑑𝜏
𝑡

−∞
= 𝜌𝑛

′ (𝒓, 𝑡),  (47) 

𝑎𝑛𝑑 (𝑈(𝒓, 𝑡)
1

𝑖ℏ
∫ [𝐻𝐼

′(𝒓, 𝜏), 𝜌𝑛−1(𝒓, 𝜏)]𝑑𝜏𝑈′(𝒓, 𝑡)
𝑡

−∞
) = 𝜌𝑛(𝒓, 𝑡).  (48) 

The interaction Hamiltonian can be rewritten in terms of the electric dipole moment operator and 

the electric field as seen before. The relation in terms of position and time dependence is given 

as, 

[𝐻𝐼
′(𝒓, 𝜏), 𝜌𝑛−1(𝒓, 𝜏)] = [−𝑝̂(𝒓, 𝜏) ∙ 𝐸(𝒓, 𝜏), 𝜌̂𝑛−1(𝒓, 𝜏)] = −𝐸(𝒓, 𝜏) [𝑝̂(𝒓, 𝜏), 𝜌̂𝑛−1(𝒓, 𝜏)].  (49) 

This is then plugged into our polarization density, 

𝑃(𝒓, 𝑡) =
1

𝑉
𝑇𝑟 (𝑈(𝒓, 𝑡)

1

𝑖ℏ
∫ −𝐸(𝒓, 𝜏) [𝑝̂(𝒓, 𝜏), 𝜌̂𝑛−1(𝒓, 𝜏)]𝑑𝜏𝑈′(𝒓, 𝑡)

𝑡

−∞
𝑝̂).  (50) 

Now pulling the electric field and the integral out of the trace gives, 

𝑃(𝒓, 𝑡) = −
1

𝑖ℏ𝑉
∫ 𝐸(𝒓, 𝜏) 𝑇𝑟[𝑈(𝒓, 𝑡)[𝑝̂(𝒓, 𝜏), 𝜌̂𝑛−1(𝒓, 𝜏)]𝑈′(𝒓, 𝑡)𝑝̂]

𝑡

−∞
𝑑𝜏.  (51) 

The goal has been to determine a generalized electric susceptibility. We can now use the 

relationship between the polarization density and the electric susceptibility which is given by, 

𝑃(𝒓, 𝑡) = 𝜀0𝜒(𝒓, 𝑡)𝐸(𝒓, 𝑡).  (52) 
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Plugging this into my polarization density equation and doing some manipulation, we obtain, 

𝜀0𝜒(𝒓, 𝑡)𝐸(𝒓, 𝑡) = −
1

𝑖ℏ𝑉
∫ 𝐸(𝒓, 𝜏) 𝑇𝑟[𝑈(𝒓, 𝑡)[𝑝̂(𝒓, 𝜏), 𝜌̂𝑛−1(𝒓, 𝜏)]𝑈′(𝒓, 𝑡)𝑝̂]

𝑡

−∞
𝑑𝜏,  (53) 

𝜒(𝒓, 𝑡) = −
1

𝑖𝜀0ℏ𝑉
∫  𝑇𝑟[𝑈(𝒓, 𝑡)[𝑝̂(𝒓, 𝜏), 𝜌̂𝑛−1(𝒓, 𝜏)]𝑈′(𝒓, 𝑡)𝑝̂]

𝑡

−∞
𝑑𝜏.  (54) 

Focusing on the commutator and expanding it while applying the time-evolution operators, we 

have, 

𝑈(𝒓, 𝑡)𝑝̂(𝒓, 𝜏)𝑈′(𝒓, 𝑡)𝑈(𝒓, 𝑡)𝜌̂𝑛−1(𝒓, 𝜏)𝑈′(𝒓, 𝑡) −

𝑈(𝒓, 𝑡)𝜌̂𝑛−1(𝒓, 𝜏)𝑈′(𝒓, 𝑡)𝑈(𝒓, 𝑡)𝑝̂(𝒓, 𝜏)𝑈′(𝒓, 𝑡).  (55) 

Using the properties of the time-evolution operator and simplifying to obtain, 

𝑈(𝒓, 𝑡)[𝑝̂(𝒓, 𝜏), 𝜌̂𝑛−1(𝒓, 𝜏)]𝑈′(𝒓, 𝑡) = [𝑝̂(𝒓′ − 𝒓, 𝜏 − 𝑡), 𝜌̂𝑛−1(𝒓, 𝜏)]. (56) 

Plugging this into the equation for the electric susceptibility and using properties of the 

commutator, the equation becomes, 

𝜒(𝒓, 𝑡) = −
1

𝑖𝜀0ℏ𝑉
∫  𝑇𝑟[𝜌̂𝑛−1(𝒓, 𝜏)[𝑝̂, 𝑝̂(𝒓′ − 𝒓, 𝜏 − 𝑡)]]

𝑡

−∞
𝑑𝜏. (57) 

The quantum mechanical trace is equivalent to the expectation value of the ensemble as 

indicated before. Using that definition and normalizing the system, we are able to get the 

generalized susceptibility as a correlation function. When using the fluctuation-dissipation 

theorem, the imaginary part of the susceptibility is what is used which will be explained later. 

That gives us, 

𝜒"(𝒓, 𝑡) =
〈[𝑝(𝒓,𝑡),𝑝(𝒓′,𝑡′)]

𝑐
〉𝑒

2ℏ
.  (58) 
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Here the notation [⋯ ]𝑐 stands for the commutation, and 〈⋯ 〉𝑒 stands for the expectation value of 

the ensemble. The prime notation for r and t are to denote a different independent set of position 

and time. 

3.3 Thermal Charge Noise Density 

 With the generalized electric susceptibility, we can now use techniques to determine the 

thermal charge noise density. We begin by considering the Wiener-Khinchin theorem, which 

states that the autocorrelation function of a wide-sense stationary random process can be 

decomposed into a power spectrum for the process. The noise spectral density will be twice the 

Fourier transform of the correlation function of charge fluctuations [41]. The Wiener-Khinchin 

theorem is given by, 

𝑆(𝒌, 𝜔) = 2 ∫ 𝜒𝑄
"(𝒓, 𝑡; 𝒓′, 𝑡′)

∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡. (59) 

Here the subscript Q is to represent correlation between charges, 𝒌 is the wave vector, and 𝜔 is 

the angular frequency. Doing the Fourier transform for the right-hand side, we obtain, 

𝑆(𝒌, 𝜔) = 2𝜒𝑄
"(𝒌, 𝜔). (60) 

Now we can introduce the fluctuation-dissipation theorem. The fluctuation-dissipation theorem 

predicts the behavior of thermal interactions at room temperature. This technique is a useful tool 

as it can apply to both classical and quantum mechanical systems. Plugging in our equation for 

the noise into the fluctuation-dissipation theorem, we obtain, 

2𝜒𝑄
"(𝒌, 𝜔) =

1−𝑒
−

ℏ𝜔
𝑘𝐵𝑇

ℏ
∫ 𝜒𝑄

"(𝒓, 𝑡; 𝒓′, 𝑡′)
∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡.        (61) 
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Here 𝑘𝐵 is Boltzmann’s constant, and T is the temperature. The Fourier transform on the right-

hand side is simply half of our Weiner-Khinchin theorem. Plugging in that fact gives, 

2𝜒𝑄
"(𝒌, 𝜔) =

1−𝑒
−

ℏ𝜔
𝑘𝐵𝑇

ℏ
(

1

2
𝑆(𝒌, 𝜔)).          (62) 

Doing some manipulation, the charge noise spectral density becomes, 

𝑆(𝒌, 𝜔) =
4ℏ

1−𝑒
−

ℏ𝜔
𝑘𝐵𝑇

𝜒𝑄
"(𝒌, 𝜔).  (63) 

 Now considering the direction of the polarization density, the only major interactions will 

be along the polarization direction. For simplicity, we will set this direction to the z-axis. Only 

considering the polarization density along the interaction axis, we can rewrite the electric 

susceptibility. A direct relation comes out given by, 

𝜒𝑄
"(𝒌, 𝜔) = 𝜀0𝐴2𝜒𝑃𝑧

"(𝒌, 𝜔).  (64) 

Here 𝜀0 is the electric permittivity of free space, A is the area, and 𝜒𝑃𝑧
"(𝒌, 𝜔) is the electric 

susceptibility along the interaction axis. Plugging this back into our noise equation, we obtain the 

following, 

𝑆(𝒌, 𝜔) =
4ℏ

1−𝑒
−

ℏ𝜔
𝑘𝐵𝑇

𝜀0𝐴2𝜒𝑃𝑧
"(𝒌, 𝜔).  (65) 

 The noise equation is now dependent on two frequency dependent parameters, the 

electric permittivity and the electric susceptibility along the interaction axis. To make this 

equation more practical and useful with experimental values, we can rewrite this in terms of the 

dielectric loss tangent.  
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We start by looking at Ampere’s law for matter, 

∇ × 𝑯 = 𝑖𝜔𝑫 + 𝑱𝑐,  (66) 

∇ × 𝑯 = 𝑖𝜔𝜀𝑬 + 𝜎𝑬.  (67) 

Here 𝑫 is the displacement field and 𝑱𝑐 was the current density. Both have direct relations with 

the electric field, 𝑫 = 𝜀𝑬 and 𝑱𝑐 =  𝜎𝑬, where 𝜀 is the total electric permittivity and 𝜎 is the 

conductivity. Splitting the electric permittivity into its real (𝜀′) and imaginary (𝜀") parts and 

doing some manipulation, Ampere’s law becomes, 

∇ × 𝑯 = 𝑖[𝜔𝜀′ − 𝑖(𝜔𝜀" + 𝜎)]𝑬. (68) 

Looking just at the equation inside the brackets, we have the following, 

𝜔𝜀′ − 𝑖(𝜔𝜀" + 𝜎).  (69) 

Factoring out 𝜔 along with realizing (𝜀" +
𝜎

𝜔
) is the total conductivity; we get a new equation for 

the total electric permittivity. This new representation relates the electric permittivity to the 

dielectric loss tangent and is given by, 

𝜀 = 𝜀′(1 − 𝑖𝑡𝑎𝑛𝛿).  (70) 

The electric permittivity can also be written in terms of the relative permittivity (𝜀𝑟) and the 

permittivity of free space (𝜀0), 

𝜀 = 𝜀0𝜀𝑟 , 𝑤ℎ𝑒𝑟𝑒 𝜀𝑟 = 1 + χ.  (71) 

Now plugging these two different definitions my we get the following equation, 

(1 + χ)𝜀0 = 𝜀′(1 − 𝑖𝑡𝑎𝑛𝛿).  (72) 
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The electric susceptibility can be split into its real and imaginary pieces. Making this change and 

doing some manipulation to obtain, 

χ′𝜀0 + 𝜀0 − 𝑖χ"𝜀0 = 𝜀′ − 𝑖𝜀′𝑡𝑎𝑛𝛿.  (73) 

The fluctuation-dissipation considered the imaginary part of the susceptibility. This is due 

to looking at the imaginary pieces of the previous equation, 

𝜀0𝜒𝑃𝑧
"(𝒌, 𝜔) = 𝜀′(𝜔)𝑡𝑎𝑛𝛿(𝜔).  (74) 

Now we use the relation between the real part of the electric permittivity and the capacitance. 

The real permittivity will be directly related to the capacitance in the system, 

𝜀′(𝜔) =
𝐶(𝜔)𝐿

𝐴
.  (75) 

Here 𝐶(𝜔) is the frequency dependent capacitance, L is the thickness of the material, and A is 

the area. Doing some rearranging and manipulation, my electric susceptibility becomes, 

𝜒𝑃𝑧
"(𝒌, 𝜔) =

𝐶(𝜔)𝐿

𝐴𝜀0
𝑡𝑎𝑛𝛿(𝜔).  (76) 

This can now be plugged into the noise equation to give, 

𝑆(𝒌, 𝜔) =
4ℏ

1−𝑒
−

ℏ𝜔
𝑘𝐵𝑇

𝐶(𝜔)𝐿𝐴𝑡𝑎𝑛𝛿(𝜔).  (77) 

There is one problem; the right-hand side only depends of frequency. We can fix this by 

considering the noise over the entire volume( 𝑉0), where the volume will be 𝑉0 = 𝐴𝐿. Taking the 

noise over the entire volume, we obtain the entirely frequency dependent charge noise density, 

𝑆(𝜔) =
𝑆(𝒌,𝜔)

𝑉0
=

4ℏ𝐶(𝜔)

1−𝑒
−

ℏ𝜔
𝑘𝐵𝑇

𝑡𝑎𝑛𝛿(𝜔).  (78) 
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3.4 Protective Layer System 

 The current thermal charge noise density equation is for a single material system without 

any protective layer. To answer the question of what mechanism is causing the reduction in 

noise, we have to consider the protective layer system. This will require me to take into account 

the capacitance and dielectric loss for both materials. First, we will look at the dielectric loss for 

a combined system. When considering the dielectric loss of both systems, they can be thought of 

as a superposition of the two dielectric losses [42-45]. Our relation for the dielectric loss for the 

protective layer system is then given by, 

𝜙𝑐 = 𝑏𝐿𝑑𝐿𝜙𝐿 + 𝑏𝐻𝑑𝐻𝜙𝐻.  (79) 

Here 𝑏𝐿,𝐻 are the materials Young’s modulus coefficients, 𝑑𝐿,𝐻 is the materials thickness, and 

𝜙𝐿,𝐻 is the respective dielectric loss for the materials. The L and H stand for lower and higher 

index. These coefficients are given by, 

𝑏𝐿,𝐻 =
1

√𝜋𝑤
(

𝑌𝐿,𝐻

𝑌𝑠
+

𝑌𝑠

𝑌𝐿,𝐻
).  (80) 

The values 𝑌𝐿,𝐻 are the given materials Young’s modulus, while 𝑌𝑠 is the surface Young’s 

modulus. The value w is the width of the combination. With the new representation for the 

dielectric loss tangent, the thermal charge noise density has the following form, 

𝑆(𝜔) =
4ℏ𝐶(𝜔)

1−𝑒
−

ℏ𝜔
𝑘𝐵𝑇

𝜙𝑐 .  (81) 
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With the dielectric loss brought into the protective layer system, we can now look at the 

systems capacitance. Here capacitance is frequency dependent and we can relate it to the 

frequency dependent electric field as a plate capacitor, 

𝐶(𝜔) =
𝑞

𝐸(𝜔)𝐿
.  (82) 

Here q is the charge, L is the thickness of the material, and 𝐸(𝜔) is the electric field. This 

electric field will simply be the Coulomb field [46], 

𝐸(𝜔) =
𝑘𝑞

𝜀′(𝜔)𝐿2. (83) 

Here k is the Coulomb law proportionality constant (k = 1/4π𝜀0). For the protective layer system, 

we have one layer of material on top of the other. The total capacitance will then be two 

capacitors in series. This will give an inverse addition to gain the overall capacitance and with 

some manipulation the total capacitance is, 

𝐶𝑡𝑜𝑡(𝜔) = (
𝐶𝐻+𝐶𝐿

𝐶𝐻∗𝐶𝐿
)

−1

.  (84) 

Both the capacitance and dielectric loss depend on the electric permittivity and are 

frequency dependent. The capacitance is directly proportional to the real part of the permittivity 

and the dielectric loss of a material is related to the ratio between the real and imaginary parts, 

𝐶(𝜔) ∝ 𝜀′(𝜔), (85) 

𝑡𝑎𝑛𝛿(𝜔) =
𝜀"(𝜔)

𝜀′(𝜔)
. (86) 
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The frequency dependent permittivity that characterizes the capacitance and dielectric loss is a 

relaxation permittivity. The permittivity is given by the Havriliak-Negami relaxation [47]. This is 

a form of Debye permittivity given by, 

𝜀(𝜔) = 𝜀∞ +
∆𝜀

(1+(𝑖𝜔𝜏)𝛼)𝛽. (87) 

Here 𝜀∞ is the high frequency limit permittivity, ∆𝜀 is the difference between the low limit and 

high limit, and τ is the characteristic relaxation time. The characteristic relaxation time is related 

to a materials relaxation frequency by 𝜏 = 1/2𝜋𝑓𝑟, where 𝑓𝑟 is the relaxation frequency. The 

exponents α and β describe the asymmetry (α) and the broadness (β) of the corresponding 

spectral density. The following table shows the material values used. 

 

Table 1: Material properties for use with the Havriliak-Negami relaxation. 

 

 

 

 

 

Material Low Limit Permittivity High Limit Permittivity Relaxation Frequency Young's/Bulk Modulus Relaxation Time Constant Alpha Beta

NV Center Diamond 7.99 5.7 4.03E+05 443 GPa 2.48E-06 0.97 0.89

Glycerol 51.8 3.9 5.03E+07 4.8 GPa 1.99E-08 1 0.67

Propylene Carbonate (PC) 64.9 4.7 2.33E+10 8.0 GPa 4.30E-11 0.985 0.927

Dimethyl Sulfoxide (DMSO) 45.86 6.357 9.08E+09 4.5 GPa 1.10169E-10 1 1

Polymethyl Methacrylate (PMMA) 3.6 2.59 2.00E+05 5 GPa 0.000005 1 1

(microemulsions) Perfluoropolyether (PFPE) 104 10 1.43E+08 34.5 GPa 7.00E-09 0.87 1

Polyvinylidene Flouride (PVDF) 7.5 5 1.00E+04 1.1 GPa 0.0001 1 1
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Chapter 4 

 

Results and Discussions 

 

4.1 Real and Imaginary Permittivity 

Before fully analyzing the noise, some insight can be gained by looking at the graphs of 

the real and the imaginary parts of the permittivity. The imaginary part of the permittivity has a 

nonlinear relation with frequency compared to the real part (Fig. 15,16,17). The real part of the 

permittivity is mostly independent of frequency throughout the range 103 − 107 Hz. Both 

glycerol and PFPE see changes in their real part of the permittivity approaching the high 

frequency region of the range analyzed. This change for glycerol and PFPE is from their 

permittivity beginning to become prominently imaginary. The imaginary part of the permittivity 

is attributed to loss in the system, while the real permittivity is the lossless part of the 

permittivity. 

 

Fig. 15: Imaginary Permittivity vs. Frequency (log-log) of the lone diamond, liquids, and solids. 
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Fig. 16: Imaginary Permittivity vs. Frequency (semilog) of the lone diamond, liquids, and solids. The liquids are 

Glycerol, Propylene Carbonate, Dimethyl Sulfoxide, Perfluoropolyether. The solids are the Polyvinylidene Fluoride 

and Polymethyl Methacrylate. 

 

 

Fig. 17: Real Permittivity vs. Frequency of lone diamond, liquids and solids. The liquids are Glycerol, PC, DMSO, 

PFPE. The solids are the PVDF and PMMA. 
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Figure 17 and the equation for the capacitance (Eq. 82), which depends only on the real 

part of the permittivity, gives us some insight on how the capacitance will affect the noise. The 

capacitance should affect the noise by scaling it as another constant multiple for the system. 

Even with the change in glycerol and PFPE's real permittivity trend, at that point the imaginary 

permittivity will be dominating and shape the systems’ noise. The imaginary part will dominate 

due to it being the loss piece of the permittivity in the system. Next, we graphed the capacitance 

and dielectric loss pieces of the system to see their dependence on frequency. 

4.2 Capacitance and Dielectric Loss 

The graphs of the capacitance and dielectric loss show that the dielectric loss tangent has 

a highly nonlinear trend (Fig. 18 and Fig. 19). Based off a total difference of 1×10⁻⁸ between the 

maximum and minimum of the capacitance for most of the systems, it undergoes negligible 

change and is independent of frequency as predicted. The dielectric loss shows a greater change 

over this range. For each of the systems, there is a steady increase initially. As the frequencies 

rise, the lone diamond, PC, PVDF, PMMA, and DMSO systems reach a peak in their dielectric 

losses then begin to fall. The glycerol and PFPE systems have a slight dip where the other 

systems peak, but they quickly turn back to a steady rising trend.  
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Fig. 18: Capacitance vs. Frequency. The lone diamond follows the single layer capacitance, while the others follow a 

series capacitance system. 

 

Fig. 19: Dielectric Loss vs. Frequency. The lone diamond is the usual ratio dielectric loss while the other systems take 

into account both materials dielectric loss. 

These trends for the frequency dependent parameters show the dielectric loss has a 

greater effect on the noise than the capacitance. The capacitance acts more as a scaling constant. 

After determining the capacitance and the dielectric loss tangent, we analyzed the trend of the 

thermal charge noise spectrum. 

 



44 
 

4.3 Thermal Charge Noise Spectrum 

At the lower frequencies the noise follows a white noise trend with the liquid protective 

layers giving a better reduction of the noise (Fig. 20). As frequencies increase, a power law 

reduction emerges. The lone diamond, PVDF, PMMA, and DMSO systems follow a power law 

ranging from 𝑓−1.9 − 𝑓−2.2. For the propylene carbonate and PFPE systems, this power law is in 

the order of 𝑓−1.6. Glycerol's system follows a much weaker power law compared to the rest on 

the order 𝑓−0.5 which quickly levels out. The power laws for the lone diamond, PVDF, PMMA, 

PFPE, DMSO, and propylene carbonate systems are close to the order for Brownian noise which 

is of the order 𝑓−2.  

We also were able to observe that between 1 and 2 MHz lone diamond and the two solid 

protective layer systems crosses below glycerol. The noise for propylene carbonate and DMSO 

begins to flatten out at the 5 MHz frequency region. Fig. 5 also shows us different turning points 

in each of the noise spectra. For PVDF which gives the overall worse starting noise, its power 

law begins around 103 Hz. Lone diamond, glycerol, propylene carbonate, and PFPE all have a 

turning point at 4 × 104 Hz. All the liquid systems have a secondary turning point as frequencies 

reach the end of the spectrum. 
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Fig. 20: Charge noise density spectrum. The lone diamond and the lone diamond with a solid protective layer start off worse than 

when a liquid protective layer is used. 

To see what was causing these turning points, we took a closer look at the dielectric loss 

for each system. As the frequencies reach 4 × 104 Hz region for the dielectric loss, we see that 

this point corresponds to peaks for most of the systems (Fig 19). For glycerol and PFPE there is a 

small shrink in its rising trend at the same frequency region. The shrink is much less in glycerol 

than in PFPE. This peak for the lone diamond, PC, DMSO and the slight change in the glycerol 

and PFPE system corresponds to the turning point where the noise goes from white noise to the 

respective power laws. The peak of their dielectric losses corresponds to where the dielectric loss 

of the NV center peaks. Not just the protective layer's dielectric loss has a major effect on the 

noise of the system, but the NV centers' dielectric loss also has a prominent contribution. For 

PMMA and PVDF, Fig. 19 shows a different peak for the two systems. For PVDF this peak is at 

103 Hz, where PMMA has a peak at 2 × 104 Hz. 
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Chapter 5 

 

Analysis and Conclusions 

 

5.1 Noise Trends and Dielectric Loss 

The noise spectrum begins by following a white noise trend, but as the frequencies 

increase a power law trend like Brownian noise arises. For glycerol and PFPE, the power law 

trend is short lived compared to the others before they flatten out again. Glycerol also doesn't 

follow that strong its trend only reaching a power law of 𝑓−0.5. For the other systems, their 

power laws are longer lived following power laws of  ≈  𝑓−1.6 −  𝑓−2.2. As the frequencies reach 

0.4 to 1 MHZ, the noise for PVDF, PMMA and lone diamond drop below glycerol’s noise 

respectively. In the region of 5 MHz, the noise for the propylene carbonate and DMSO systems 

begin to flatten out. Like the initial white noise trend of the noise spectrum, the flattening of 

glycerol, propylene carbonate, PFPE, and DMSO arises from their respective dielectric loss 

tangents. 

The white noise trends come from the random interactions between the misaligned 

dipoles in the materials due to thermal noise. As the dielectric loss for a material peaks, a turning 

point arises, like seen with the initial turning point of the noise spectrum for each of the systems 

(Fig. 20).  
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This turning point in the noise for each of the materials happens at the point given by, 

2𝜋

𝜏𝑒𝑓𝑓
, (88) 

𝑤ℎ𝑒𝑟𝑒 𝜏𝑒𝑓𝑓 = (
1

𝜏𝑝𝑟𝑜
+

1

𝜏𝑁𝑉
)

−1

. (89) 

Here 𝜏𝑒𝑓𝑓 is the effective relaxation time and 𝜏𝑝𝑟𝑜 and 𝜏𝑁𝑉 are the relaxation times of the 

protective layer and the NV center respectively. For the liquid systems, the initial turning point is 

due to the first peak of the dielectric loss (Fig. 19). After this dielectric loss peaks, it begins to 

fall as the dipoles for a material have been able to realign and relax. The respective power laws 

for the systems come from the natural Brownian motion in the materials. For the solid systems, 

there is only one turning point which corresponds to their respective dielectric loss peaks (Fig. 

19). 

5.2 The Capacitance 

 The capacitance doesn't have a huge effect on the shape of the noise spectrum. 

Capacitance's contribution comes from how it scales down the noise of the system. Our systems 

are series capacitors, so the total capacitance will be lower than the lowest capacitor. The 

capacitance is directly related to the real permittivity for the material. We see that diamond by 

itself will have the highest capacitance as it has near the lowest real permittivity. Capacitance is 

acting as a constant in the system with its negligible dependence on frequency, but that does not 

mean the lowest capacitance will have the best starting noise. Figure 18 shows that the 

capacitances for the PDVF and PMMA systems are by far the lowest, but as they have a large 

rise in their dielectric loss at the low end of the spectrum their initial noise is much higher than 

the liquid systems. 
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5.3 The Physical Picture 

Physically the system is losing electromagnetic energy due to thermal noise. This thermal 

noise misaligns the dipoles in the system. After being misaligned, the dipoles will start to interact 

with each other, giving off heat or other forms of radiation. Due to this process, a constant 

random noise, white noise, trend spectrum emerges. Eventually, enough time will pass for these 

dipoles to realign and their interactions will cease. This characteristic time constant for which the 

dipoles realign is the materials relaxation time, or in frequency space, their relaxation frequency.  

The relaxation frequency from dipole relaxation will always be at the point where the 

dielectric loss for a given material will be maximum. The turning point in our charge noise 

spectrum is at these peaks for the dielectric loss for each system. The point at 10⁵ Hz 

corresponds with the relaxation frequency of the NV center at room temperature. For the solid 

protective layer systems, the relaxation frequencies are close to the same order, so their peaks 

broaden and combine. This is shown by the PVDF having its peak at 103 Hz and PMMA having 

its peak at 3⋅104 Hz. As the dipoles relax and realign, the noise due to the interactions between 

them dissipates and the power law begins. 

Quantum f⁻¹ noise naturally appears and can be an important factor for overall noise [48]. 

Quantum noise arises from uncertainty in a physical property due to its quantum origin. Our 

system is working at room temperature and any major electric field noise will be due to thermal 

interactions. The quantum f⁻¹ noise does not need to be considered for this system due to the 

strength of the thermal interactions. Thermal noise causing misaligned random dipole 

interactions and Brownian motion after relaxation are the main factors for the overall noise in the 

system. 



49 
 

5.4 Thickness Dependence 

Throughout this we have considered a model with the thickness of the protective layer 

being the same as the depth of the NV center. This is not practical in experimental work as this 

would have the protective layer be 5nm thick. Most research has the liquid protective layer 

placed on with a pipette which will give a thickness on the order of a micron. Looking back at 

the final equation for noise, there are two terms that are dependent on the thickness of the 

materials; the capacitance and the dielectric loss. Plugging the equation for the electric field into 

the capacitance equation, we obtain, 

𝐶(𝜔) =
𝑞

𝑘𝑞

𝜀′𝑑2𝑑
,  (90) 

𝐶(𝜔) =
𝜀′𝑑

𝑘
.  (91) 

Here 𝜀′ is the real permittivity, k is the Coulomb’s law constant, and d is the thickness. The 

system we are studying has the capacitance as a pair of series capacitors. Plugging the single 

material capacitance into the total capacitance equation we will have the following, 

𝐶(𝜔) =
𝜀𝐿

′ 𝑑𝐿
𝑘

+
𝜀𝐻

′ 𝑑𝐻
𝑘

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻

𝑘2

,  (92) 

𝐶(𝜔) =
𝜀𝐿

′ 𝑑𝐿+𝜀𝐻
′ 𝑑𝐻

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻
𝑘.  (93) 

Here we denote the high and low index terms with H and L respectively. We already have the 

dielectric loss in terms of thickness. This allows us to now plug in my representation of the 

capacitance and the protective layer system dielectric loss into my equation for noise. 



50 
 

Encompassing the constants and all terms that do not depend on the thickness into an arbitrary 

function β we obtain, 

𝑆(𝜔) = 𝛽 (
𝜀𝐿

′ 𝑑𝐿+𝜀𝐻
′ 𝑑𝐻

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻
) (𝑏𝐿𝑑𝐿𝜙𝐿 + 𝑏𝐻𝑑𝐻𝜙𝐻). (94) 

At this point the noise equation doesn’t tell us much, but we can do some manipulation to get it 

into a more insightful form, 

𝑆(𝜔) = 𝛽 [
𝜀𝐿

′ 𝑑𝐿
2𝑏𝐿𝜙𝐿+𝜀𝐻

′ 𝑏𝐿𝑑𝐿𝑑𝐻𝜙𝐿

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻
+

𝜀𝐿
′ 𝑏𝐻𝑑𝐿𝑑𝐻𝜙𝐻+𝜀𝐻

′ 𝑏𝐻𝑑𝐻
2 𝜙𝐻

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻
],  (95) 

𝑆(𝜔) = 𝛽 [(
𝜀𝐿

′ 𝑑𝐿
2𝑏𝐿+𝜀𝐻

′ 𝑏𝐿𝑑𝐿𝑑𝐻

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻
) 𝜙𝐿 + (

𝜀𝐿
′ 𝑏𝐻𝑑𝐿𝑑𝐻+𝜀𝐻

′ 𝑏𝐻𝑑𝐻
2

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻
) 𝜙𝐻]. (96) 

The noise is split into two terms, the noise dependent on the loss of the protective layer (𝜙𝐿) and 

the loss of the NV center (𝜙𝐻). The two terms have two pieces, the square of their own given 

thicknesses and the combination term.  

 We are considering now that the protective layer is 1μm (~10−6) and the NV center is at 

a depth of 1nm (~10−9). This allows for the noise to be simplified even further. Looking at the 

term dependent on the protective layer loss, there is a 𝑑𝐿
2 term and a combination 𝑑𝐿𝑑𝐻 term. The 

𝑑𝐿
2 term will be on the order of 10−12, and 𝑑𝐿𝑑𝐻 will be on the order of 10−15. The squared term 

is three orders of magnitude larger than the combination term, allowing the cancelation of the 

combination term as it will be negligible in the sum. Similarly, the 𝑑𝐻
2  and 𝑑𝐿𝑑𝐻 terms in the NV 

center loss dependent term, the 𝑑𝐻
2  term can be cancelled as it will be 4 orders of magnitude 

lower than the combination term.  
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This simplifies the noise equation to, 

𝑆(𝜔) = 𝛽 [(
𝜀𝐿

′ 𝑑𝐿
2𝑏𝐿

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻
) 𝜙𝐿 + (

𝜀𝐿
′ 𝑏𝐻𝑑𝐿𝑑𝐻

𝜀𝐿
′ 𝑑𝐿𝜀𝐻

′ 𝑑𝐻
) 𝜙𝐻],  (97) 

𝑆(𝜔) = 𝛽 [
𝑏𝐿

𝜀𝐻
′

𝑑𝐿

𝑑𝐻
𝜙𝐿 +

𝑏𝐻

𝜀𝐻
′ 𝜙𝐻]. (98) 

The new simplified noise equation shows us that our protective layer term will depend on 

both the frequency and the ratio of the thicknesses. Looking back at our graph of the imaginary 

permittivity and remembering the imaginary part of a materials permittivity is the major part of 

the loss, for solids and glycerol we see peaks and rises along with the NV center. For the liquids 

at the low frequencies, the imaginary part of their permittivity is negligible. Even PFPE doesn't 

really begin to rise until after the NV center has already peaked. 

 

Fig. 20: Charge noise density spectrum with thickness and NV depth equal. 
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Fig. 21: Charge noise density spectrum with protective layer thickness at 1 micron. 

Comparing the difference between the system with 𝑑𝐿= 𝑑𝐻 and the system with 𝑑𝐿= 1μm, we 

can see at low frequencies the thickness of the protective layer will act more as a constant 

multiple, and the shape of the noise will be dominated by the NV center term similar to before. 

At higher frequencies, the NV center term trends to zero, so the protective layer term takes over. 

With higher frequencies, the wavelength gets comparable to the material thickness. The shape of 

the noise at the higher frequencies will now be thickness dependent. 

5.5 The Ideal System 

  The liquid systems have a much better noise throughout due to them having a much 

quicker (picosecond-nanosecond) relaxation time than solids do (microseconds). The quicker 

relaxation time comes from the liquids molecules being much more spread out while solids are 

much more compact. The spreading out of the dipoles allows their dipoles to realign much 

quicker. The solids having much more compact molecules allow the misaligned dipoles to 

interact much easier giving more surface noise. Following this same logic, gases would have the 

overall best reduction in noise, but this would not be a practical. 
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At low frequencies, the thickness of the protective layer does not play a major role on the 

shape of the noise spectrum. When the frequencies get to ranges where the wavelength is 

comparable to the thickness, the ratio between the protective layer system and the depth of the 

NV center becomes crucial. For solid protective layers and the glycerol protective layer, 

thickness is not a major factor in our studied range of frequencies. Both dielectric loss terms are 

rising at a similar rate for the solid protective layer and glycerol systems. Having a thicker solid 

or glycerol protective layer will give a worse starting point for the overall noise as the thickness 

is acting as a constant multiple; raising the capacitance and electric field for the material. With a 

liquid protective layer, at low frequencies the noise shape is dominated by the NV center term of 

the noise. As frequencies rise and the wavelength becomes comparable to the thickness, the loss 

of the liquids begins to peak and the ratio between lengths starts to affect the shape of the noise. 

     The most ideal system to protect the NV center from surface noise would be a material 

with a low real permittivity with a quick (picosecond range) relaxation time. The solid systems 

have a large dielectric loss early on due to both materials relaxation frequencies being near each 

other. With the misalignment of the dipoles in one material and then the beginning misalignment 

of dipoles in the other, the overall reduction in noise is much lower as frequencies increase. The 

dielectric loss is playing a major role in the protection of surface noise for these systems. Having 

a liquid top layer that has a large relaxation frequency for the dipole interactions with a small 

capacitance is the most practical way to protect the NV center from thermal surface noise. 

5.6 Future Work 

 The work presented in this thesis investigated the surface noise due to electric field 

fluctuations from thermal interaction. This is just one piece of the total surface noise, as well as 

just one piece of the total noise.  
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Other surface effects that give rise noise can be studied to give the entire picture of the surface 

noise. Magnetic field surface noise has been known to be present for a while now and further 

study into this noise will add to the picture of the surface noise. The NV center is implanted 5nm 

deep, stress from underneath the NV center placement can also affect the surface noise. The 

surface effects are just part of the overall noise, the study of bulk noise is an important piece to 

understand. 

 The bulk of the material is a big factor is the noise of the system. The mechanisms of 

these bulk effects are not currently understood. The intuition of experimentalists has an idea on 

what bulk properties are causing the noise and decoherence in the NV center system, but a real 

understanding is not yet in place. When considering the bulk of diamond, the structure becomes 

important. The NV center has its own spin and is near a carbon atom which has its own spin. 

These spin-spin interactions can be a possible candidate for bulk noise. No diamond is 100% 

pure of a given isotope of carbon, a mix of carbon-12 and carbon-13 are littered throughout the 

material. The different carbon has different nuclear properties, such as carbon-13 has a higher 

probability of the electron being in the first excited state than in the ground state. This difference 

can cause for different nuclear spin effects, which can be another source of the bulk noise. 

Though stress could be another source of surface noise, it also can play a part in the bulk noise as 

well. The understanding of the bulk noise effects is vital to helping understand ways of reducing 

noise in the NV center system. 

 Bringing together the surface noise and bulk noise for the NV center, a better 

understanding of the system will arise. With this better understanding, ways of reducing the 

noise can be investigated in experiment.  
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After testing these theories of the noise, a clearer image can be seen by both the experimentalists 

and theorists. Refining the theory and experimental work can lead to the overall noise, surface 

and bulk, being solved. 
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