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DELAWARE STATE UNIVERSITY

ABSTRACT

Characterization of Calcium/Calmodulin Dependent Protein Kinase II and its
Necessity in Synaptic Plasticity

By Dwight Higgin

Calcium-Calmodulin dependent protein kinase II (CaMKII) is an enzyme that is functionally involved in
critical stages of synaptic plasticity and memory formation. CaMKII is involved in both the presynaptic
and the postsynaptic strengthening and weakening of synapses. In the presence of CaMKII inhibitors,
synaptic enhancements are impaired and cellular ionic balance is destabilized because of the reduction of
sodium, calcium, and potassium ions due to the lack of CaMKII activity upon membrane receptors thus

reducing ion influx leading to a reduction in synaptic plasticity.
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Chapter 1 - Introduction
Background

The brain is the most complex organ of the body. It is the maestro of the
orchestra that controls an organism in every way. Our passions, feelings, desires,
emotions, and fears are wrapped up into what amounts to an 8 pound mass of
interconnecting cells. The central nervous system, CNS, is made up of the brain
and the spinal cord. The CNS communicates with the peripheral nervous system,
PNS, which sends signals to effector organs like the muscles. While we have a
good idea of the structure of the nervous system, the intricate details of how it
works is still somewhat a mystery. How we learn, and how we store memories are
just a couple of the many questions that have plagued researchers for hundreds of
years. An even more fundamental question is, who am [? It is quite interesting to
note that for ages science has been leading us to answer these questions from a
cellular standpoint and relate that to behavior. Research strategies have suggested
the use of simpler organisms provides insights into the functions of more complex
organisms. These kinds of studies have proved very beneficial for obtaining a
better understanding of the brain, yet one still must look at the cell as an
individual entity that globally governs higher function. For understanding
behavior, the partiéular cells of interest are the neurons. Neurons are the
fundamental signaling unit of the central nervous system. There are billions of
neurons in the brain; each making connections to thousands of other neurons in

the brain. The dendrites of a neuron receive information from neighboring



neurons and transmit the information down its own axon to continue the signal.
The fast transmission characteristic of vertebrate neurons is made possible
because of the protection by the myelin sheath on the axon. The myelin sheath
insulates the axon and allows action potentials to propagate quickly. A synapse is
a connection between two neurons. As a result of these connections, complex
neural networks are formed. The neuron can undergo electrical, structural, and
biochemical changes in response to changes in the environment. All of these
changes can affect synaptic strength and can be accomplished, in some aspect,
because of the role and the function of calcium Calmodulin dependent protein
kinase II, CaMKII. The genetic composition and the structure are unique features
that control the activation and function of this important enzyme. CaMKII is a
necessary molecule in synaptic plasticity and plays a major role in many cellular
processes. However, the protein does not act alone; rather it relies upon elevated
calcium concentration activating Calmodulin. In addition, CaMKII belongs to a
family of calcium Calmodulin protein kinases, all of which are involved in key
cellular function involving phosphorylation. This paper will explore the function
of CaMKII as the critical molecule in synaptic plasticity induced through three
pathways that increase internal calcium in neurons; opening of voltage-gated
calcium channels, activation of inositol 1,4,5-triphosphate receptors and release of

calcium from internal stores, and opening of N-methyl-D-aspartate (NMDA)

receptor channels.

Phosphorylation and dephosphorylation are the two most widely

known and understood methods of covalent modification of proteins.



Interestingly, the pattern of protein phosphorylation leading to activity and
dephosphorylation leading to inactivity is not standard. In some cases, as in the
activation of hormone sensitive lipase, dephosphorylation activates the enzyme
and the enzyme can liberate fatty acids from their triacylglyceride form and
provide fatty acids to supply the body with needed energy. In other cases enzymes
are activated by phosphorylation such as Signal Transducer and Activator of
Transcription, STAT proteins. These proteins are responsible for regulating
activation of transcription, as its name implies, and require phosphorylation to

become activated.

The enzymes that phosphorylate proteins are kinases. The enzymes that
dephosphorylate proteins are called phosphatases. A protein kinase is important
in many cellular functions since it physically adds a phosphate to itself or other
proteins and causes a change in function of the target protein. There are nearly
500 protein kinases in the human genome (Manning, 2002). Many of them are
involved in signal transduction in which stimuli arrive in the periphery and are
converted from mechanical, chemical, or photo energy into electrical energy.
This conversion leads to gene regulation, receptor activation/deactivation,
chemical/hormone release, and many other cellular activities. Kinases can
communicate to a single protein or can generate a cascade of proteins involved in
signal transmission. Therefore, kinases are very important, and can activate

proteins in cascades to alter necessary cellular functions.



Synaptic plasticity

Before embarking on the functional necessity of CaMKII in synaptic
plasticity, it is necessary to give a brief description of what synaptic plasticity is

and provide background information on the topic of plasticity.

Synaptic plasticity refers to enhancement or depression of activity
between two neurons. The changes can last from days to weeks and provide a
basis for memory (Zucker, 1998). Presynaptic stimulation leads to plasticity.
Two stimuli delivered within a short interval can lead to synaptic enhancement
and two stimuli delivered after a long interval can lead to depression of a synapse
(Zucker, 1998). This is referred to as paired pulse stimulation and has been a
consistent research area across many different research backgrounds. One of the
most recognized forms of synaptic plasticity is long term potentiation (LTP).
LTP is marked by protein activations and phosphorylation. This phenomenon has
been extensively studied in the Cornu Ammonis (CA) regions of the
hippocampus. LTP is thought to lead to learning and memory because of synaptic
strengthening of the CA regions of the hippo;:ampus (Zola-Morgan, 1993). The
opposing plasticity to LTP is long term depression (LTD). LTD is marked by
protein dephosphorylation and deactivations and also more recently understood to
be activated in the opposite manner of LTP and are primarily acting on the
Cerebellum Purkinje cells leading to motor learning (Ito, 2001). In both forms of

plasticity, there is a change in protein expression and signal transduction. The
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induction of synaptic LTP requires activation of the NMDA subtype of glutamate
receptors.  Normally, glutamate released from the presynaptic neuron into the
synapse, attaches to NMDA receptors, yet the receptor is not activated. A key
feature of the NMDA receptor is the magnesium which blocks the pore. Only
under circumstances of high glutamate release and depolarization of the post-
synaptic cell is the magnesium block released and calcium and sodium are
allowed to freely pass through the pore. The influx of Na and Ca cause a number
of downstream cascades, one of which includes the up regulation of more AMPA
receptors to the synapse (Hayashi, 2000). Over a prolonged period, this feature of
NMDA activation can be sustained and alterations to the membrane can be long
lasting. Activation of NMDA receptors in a spine result in growth of spines and

filopodia which are precursors of synaptic spines (Engert, 1999). This process

can also be reversed if the activating ions are removed or the receptor is inhibited

(Engert, 1999).

Most studies of synaptic plasticity have implicated CaMKII as a
modulator, and to a greater extent, LTD also involves CaMKII function. CaMKII
is a necessary protein in synaptic plasticity. ~ Synaptic enhancement and
depression is discussed and is possible only by the function of changes in calcium

concentration that underlie the activation of CaMKILI.



Activators of CaMKII

Calmodulin

Calmodulin, abbreviated CAM, stands for calcium modulated protein;

Calmodulin is a ubiquitous protein of approximately 16kD and is necessary for
activation certain protein kinases. Calmodulin acts as a calcium sensor and a
signal transducer to proteins that cannot themselves bind calcium (Hanson 1994).
It mediates inflammation, metabolism, muscle contraction, short-term and long-
term memory, and nerve growth. It is the predominant calcium binding protein in
the cell nucleus (Bachs 1992). As noted before, calcium enters the cell or is
released from internal stores of the endoplasmic reticulum. This calcium elevation
results in the activation of effectors which use the calcium to produce changes
within the cell. The action of Calmodulin becomes apparent when the calcium
concentration is above 10° M. It can bind up to four calcium ions and can
undergo post-translational modifications which include phosphorylation,
acetylation, methylation, and proteolytic cleavage (Deisseroth 1998). Calmodulin
levels can also be modulated. Stimulation of adrenal cortical cells with ACTH
increased the CAM protein (Harper 1980). Also, treatment of cells with various

calcium channel agonists also increased Calmodulin levels (Vendrell 1992).

Figure 1 illustrates the factors required to activate CaMKIL
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Figure 1 - Activation of CaMKII. University of Toronto, Dr. Danton O’Day

Another important feature of Calmodulin is its ability to translocate. In
the presence of elevated calcium in smooth muscles, Calmodulin of the cytoplasm
translocates to the nucleus (Luby-Phelps 1995). Stimulation of neurons and
subsequent elevation of calcium is linked to the nuclear accumulation of

Calmodulin (Deisseroth 1998). Bursts of Calmodulin migrating into the nucleus

have been shown to be linked to the phosphorylation of cyclic AMP response

element binding protein (CREB) and other proteins inside the nucleus giving



further evidence that the calcium bound Calmodulin is a means of communication
to nuclear proteins and is the source of their activation. In particular, two ion
channels are associated with this translocation, the L-type calcium channels and
the NMDA receptors (Deisseroth 1998). The N and P/Q type calcium channels
are not associated with NMDA translocation (K. Deisseroth 1998). The features
of translocation involving these channels support the importance of CaMKII in
synaptic plasticity. The activation of the Ca channels presynaptically results in
the release of neurotransmitter at the synapse, thereby activating postsynaptic
neurons. The stimulation state of the cell can be linked to the translocation and
the concentration of Calmodulin within the nucleus and its downstream effector

proteins.



Lineage of CaMKII

In 1977, a protein in the rat brain was reported to be activated by the
depolarization of a neuron and the activation was mediated by calcium ion influx
(Krueger 1977). Early researchers had no idea that the protein they had stumbled
upon would be so valuable in understanding synaptic transmission and learning
and memory. Notable researchers such as De Camilli, Navone, and Greengard
began to expand upon the discovery of this protein and its involvement in
neuronal maintenance. While CAMKII was known as synapsin kinase originally,
it was later understood that CAMKII actually had more function than that of
phosphorylating synapsin alone. It had many other substrates which included

synapsin as well as upstream modulators of its activity (Menegon 2006).

CaMKII belongs to the multifunctional calcium/Calmodulin dependent
protein kinase family (CAM kinase) and consists of three particular protein
kinases; CAMKI, CAMKII, and CAMKIV. These proteins are activated as a
result of the interaction with calcium bound Calmodulin and activated calcium
Calmodulin kinase-kinase. Each type of CAMK is unique in the sense that their
tissue distribution and substrate differs. They individually vary across eukaryotic
systems and yet are recognizable across species of vertebrate and invertebrates.

The major difference between the CAMK and other dedicated protein kinases is

that the substrate pool they phosphorylate is wider. Dedicated kinases include

phosphorylase kinase myosin light chain kinase, and the eukaryotic elongation

factor 2 kinase (EEF2). The phosphorylase kinase was the first protein kinase to

be identified and is known to activate glycogen phosphorylase. The site of
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importance for this kinase is in the muscle where glycogen breakdown is
necessary to provide glucose as energy to produce muscle contractions. The
dedicated kinase, myosin light chain kinase (MLCK), a serine/threonine kinase,
whose function is to phosphorylate myosin II phosphorylates the regulatory light
chain of myosin. The actions of MLCK are limited to particular tissues and a
particular substrate; in contrast the CAMK family kinases are wide spread

throughout the body and have many substrates (Gallagher 1997).

For example, EEF2 kinase (also known as CAM kinase III) is a very
important kinase that phosphorylates EEF2. EEF2 is a GTPase and is responsible
for the elongation step in protein translation (Taha, 2013). CAMAKI is activated
by calcium/Calmodulin kinase—kinase, CAMKK, after calcium bound Calmodulin
is attached. This activity is regulated by cAMP dependent protein kinase A
(PKA). PKA activates CAMKK, which in turn activates CAMKI (Matsushita
1999). CAMKK controls the activation of CAMKI and CAMKIV, exists in one
of two isoforms and is enriched in the cytoplasm and the nucleus. CAMKIV is
another member of the CAMK family that also requires phosphorylation for
activation. This kinase is found in the brain and the thymus (Kitani 1994).
CAMKI and CAMKIV are monomeric enzymes and share the same activation,
and initiate cascades of phosphorylation for regulatory proteins (Soderling 1999).
Both CAMK I and IV activate transcription factors and DNA binding proteins.
CAMKIV is also referred to as CMKGr indicating its granular cell enriched
feature. It phosphorylates synapsin I and was indicated to have association with

chromatin as well (Jensen 1991). In addition, CAMGr also activates CREB and
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associated CREB proteins. CREB is a transcription factor that has been shown to
bind to DNA upon activation at certain sites called cAMP response elements and
regulates transcription of genes (Purves, 2008). This indicates a role for CAMGr
in calcium regulated gene transcription. CAMK must have access to the nucleus
in order to have an effect on its substrate within. A nuclear localization signal is
the means by which CAMK I and IV localize to the nucleus. Alternative splicing

of the CAM kinase gene produces the signal and targets the kinase to the nucleus

(Srinivasan 1994).



12

Composition of the CaMKII molecule

Genetics

Overall, CAMKII is encoded by four genes; alpha, beta, gamma, and
delta. Each one of the genes can undergo alternative splicing within the
association domain and gives rise to two or more isoforms of the protein. The
alpha and the beta isoforms are found predominately in neuronal tissue, while the
gamma and the delta forms are both have neuronal and non-neuronal tissue
distribution. All isoforms of the protein contain four key domains. The domains
are critical in the activation and the inactivation of the protein along with the
overall function of the protein upon its substrate (for review see Cline et al 2002).
The structure consists of an N-terminal catalytic domain, a regulatory domain that
consists of a Calmodulin binding site, a regulatory autophosphorylation site, and a
C- terminal association domain that initiates the formation of the entire
holoenzyme (Stevens 2001). The C terminal domain forms the central core of
each ring and the N terminal domain projects outward. The amino terminal
domain is the site of ATP binding and the Calmodulin site is more towards the
middle of the protein (Bennett and Kennedy 1987). In this structure, 80-90% of

known CaMKII species have these domains in common (Meyer 1992).

The brain isoform of CAMKII is between 300 and 700 kD in size and

consists of 6-12 subunits individually assembled and stacked as a hexameric ring

(Braun and Schulman 1995). The protein exists as a holoenzyme which consists

of two subunit types; alpha and beta. These two isoforms are restricted to the
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neuron. The alpha subunit was found to be approximately S0 kD and the beta unit
was found to be between 55 and 60 kD (Kennedy 1983). The doublet of alpha
and beta subunits forming the brain isoform of CAMKII was originally stumbled
upon by SDS-PAGE analysis of the protein and was thought to represent the

degradation of the protein purification process (M. Bennett 1983).

Through biochemical and immunochemical analysis of purified CAMKII
from various regions of the brain, it was shown that the composition of subunits
varies among the brain regions (Miller and Kennedy 1985). Areas of interest
include the forebrain, cerebellum, and the hippocampus. The forebrain CAMKII
consists of 9 alpha and 3 beta subunits per holoenzyme. Cerebellar CAMKII is
composed of 2 alpha and 8 beta subunits. In the forebrain, the composition of the
alpha subunit is high in the post synaptic densities (Miller and Kennedy 1985).
The alpha and beta isoforms rﬁake up nearly 2% of total protein in the
hippocampus (Erondu and Kennedy 1985). Beta and alpha isoforms are of great
importance, and have different roles in the neuron. Beta isoforms differ in the
variable region for F-actin binding (Fink, 2002). Both isoforms have different
affinities for Calmodulin. The half maximal level of Calmodulin binding for the
alpha isoform is 130nM and is 15nM for the beta isoform (Fink, 2002).

Phosphorylation of the different isoforms also results in varied translocation

targets Beta subunits translocate to the postsynaptic density when

phosphorylated primarily due to the F-actin target function of beta isoforms

(Abria, 2010). The alpha isoform translocates to the post synaptic density, but in

response only to the NMDA receptor activation (Fink, 2002).
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Anatomical distribution indicates function

The function of CAMK]] is closely related to the brain area in which it is
expressed and its subcellular location. The activity of the protein is not the same
throughout the brain. The highest levels of activity are found in the hippocampus.
The cerebral cortex also has a high level of activity in the hippocampus (Erondu
and Kennedy 1985). CAMKII accounts for 2% of the total protein in the
hippocampus (Dosemeci, 2000) and it stands to reason that the function in the
hippocampus relates to learning and memory as we will see. Other brain regions
that show substantial, but not high, levels of kinase activity include the
cerebellum and the brain stem structures. The amygdala and the striatum also
exhibit an intermediate level of CAMKII activity (Erondu and Kennedy 1985).
The ratio of alpha to beta subunits also corresponds to the areas of high activity in
the brain such as the hippocampus. As the alpha subunit ratio increases, the
activity of CAMKII increases. The hippocampus not only exhibits the highest
level of activity, but also the highest ratio of alpha subunit. In contrast, the

cerebellum with low activity of CAMKII also had the lowest alpha to beta subunit

ratio (Erondu and Kennedy 1985).

The subcellular location of the CAMKII also indicates a function specific
localization of the protein. Originally, CAMKII was known as synapsin I kinase,

which gave an indication for the presynaptic localization as well as involvement

in the release of neurotransmitter. Further studies showed that was a limited

description for the protein since it was also found at high levels in the post

synaptic densities, PSD (Yoshimura 2002). CAMKIL is found in 2% of the PSD
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of the cerebellum and 40% in the forebrain, again indicates a site-specific
localization for function in these different regions (Yoshimura 2002). The alpha

subunit within the cerebellum acts as an anchor for the CAMKII in the PSD of the

cerebellum.
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Functions of activated CaMKII

The specific role of CAMKII in the vertebrate system differs from the
other isoforms of the multifunctional CAMK family of proteins. CAMKII exists
in neuronal and non-neuronal tissue and is dependent on gene splicing for its
structurally distinct isozymes that lead to functional diversity and differential
anatomical distribution (Griffith 2003). The ratio of the subunits of the neuronal
CAMKII type alpha and beta is important because it determines the localization
and function of the activated protein. Upon activation, CAMKII activates cell
regulating proteins such as the Extracellular signal regulated kinase (ERK) /
mitogen activated kinase (MAPK) (Lu 2005), gene transcription proteins such as
CREB (cAMP response element binding protein) (Sun 1994), as well as ion
channels for calcium (Zuhike 1999; Erikson 2001). These protein interactions

modulate cell function and are crucial for the pathway for initiation of LTP

leading to long term memory (Lledo 1995).

When not interacting with calcium bound Calmodulin, the CAMKII is
held in an inactive state. The protein has an autoinhibitory domain (AID) in each
subunit that prevents the enzyme from activation by blocking the binding of
substrate and ATP. CAMKII differs from the other CAM kinases, CAMKI and

CAMKIV because these require only phosphorylation at the activation loop, so

their activation is one step (Ishida 2005). The activation of CAMKII is dependent

on binding of calcium rich Calmodulin to a site overlapping the core of the AID

hich activates the protein by disrupting the interaction of the inhibition site and
which a

the active site (Rosenberg 2005).
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The sensitivity of the activation to Calmodulin depends on the subunit
composition of the enzyme. The alpha and the beta subunits bind Calmodulin in a
calcium dependent manner, they bind ATP, and can also undergo auto-
phosphorylation. Autophosphorylation is an important function of CaMKII;
however it is must be regulated to prevent overactivity and cellular issues of
overactivity (Umemura 2005). A pseudo substrate domain is located on the
amino side of the Calmodulin binding site (Kwaitkowski 1987). The function of
the pseudo substrate is to prevent autophosphorylation as Calmodulin binds and
cause a conformational change which “pulls” the site away from the catalytic site
(Hudmon 2002). The concept of the pseudo substrate has also been shown in
myosin light chain kinase and protein kinase C (Kemp 1987). The activation of
the CAMKII holoenzyme involves phosphorylation of specific resides on the
protein. The kinase autophosphorylates at the threonine 286 residue that lies

within the autoinhibitory domain after Calmodulin binds to CaMKII and changes

its structural configuration.

The active kinase consists of at least two subunits and requires

phosphorylation lnitiated by ATP. The diStinCt SUbunitS differ in their

phosphorylation sites. The subunit delta is phosphorylated at threonine 286, and
gamma and beta are phosphorylated at threonine 287. Autophosphorylation of the

threonine residue of each subunit is made possible when Calmodulin is bound to

both subunits involved. There are six phosphorylation sites on the alpha subunit

and eight sites on the beta subunit. The active protein phosphorylation sites are

not all occupied in the active protein (Giese 1998). The active CaMKII protein
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only requires three phosphates for function.

Only after autophosphorylation does

t rotei & : ) .
he p In lock into the active configuration. Calmodulin has two roles in

activation:  To first activate the subunit and then to present the autoinhibitory

domain of a neighboring subunit for phosphorylation. First, upon activation of

the subunit, the CAMKII is converted from a protein of low Calmodulin affinity
to one with a high Calmodulin affinity. This conversion leads to prolonged
binding of Calmodulin by CAMKII to nearly hundreds of seconds (Meyers 1992).
Without the «calcium enriched Calmodulin, CAMKII is inactive. After
autophosphorylation, CAMKII has no “need” for the Calmodulin and can become
self-functioning as a kinase (Miller and Kennedy 1986). With 12 subunits in the
protein, activation is possible with 1/4 of the sites phosphorylated. The
phosphorylation of the threonine residue 286 is the necessary step in the further
activation of the non-Calmodulin bound protein function. Since CaMKII is a
kinase, its inactivation is also an important feature to discuss. A protein
phosphatase is an enzyme that removes a phosphate from a target protein. Its
function is opposite to a protein kinase. A phosphatase removes a POy that leads
to target protein activation or deactivation, and can regulate signaling pathways of
the cell. Phosphatase Types 1 and 2, found within the lipid bilayer of synaptic

terminals are responsible for dephosphorylating CAMKII and returning it to a

Calmodulin dependent state (Schworer 1986).

CAMK modulates the functionality of many proteins via binding at

serine/threonine sites which exposes sites of phosphate binding. In general,

kinases can both activate or inactivate a protein and this interaction can be
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positive or negative. Modulators may bind to a particular substrate allosterically
and modify the activity of the kinase and phosphatase. Allosteric activation is’
when one ligand binds to a protein and enhances the attraction of binding another
protein or effector. Allosteric inhibition occurs when binding of a ligand
decreases the attraction with the substrate active site. Allosteric binding must be
reversible, non-covalent, and must be different from the catalytic site (Alberts
2002). The specificity of the substrate to the effector molecule is very important.
The affinity of the regulatory enzyme to its substrate can result in allosteric
activation or inhibition. Some notable modulators of CaMKII are KN-93, KN-62,
and autocamtide-2-related inhibitory peptide (AIP) (Blatter 2005). KN93, N-[2-
[[[3-(4-chlorophenyl)-2-propen-1-ylJmethylamino]methyl]phenyl]-N-(2-

hydroxyethyl)-4-methoxy- benzenesulfonamide, inhibits CaMKII and is
associated with reduction of calcium currents in CaV1 and CaV2 (Anderson
1998). KN62 inhibits the phosphorylation of CaMKII and also changes the
intracellular calcium concentration (Okazaki 1994). AIP completely inhibits
CaMKII by non-competitively inhibiting the phosphorylation (Ishida, 1995). The
three inhibitors act on CaMKII and modulate calcium concentration and result in

inhibited calcium induced cellular function (Ademuyiwa 2005).

CAMKII is known to modify many ion channels and proteins leading to

gene regulation and critical cellular function. Among the notable substrates are

AMPA receptors (Tan 1994), CREB (Wu 2001), the NMDA receptor (Omkumar

1996), and tyrosine hydroxylase (Itagaki 1999). There are more than 60 substrate

targets of CAMKII as shown in table 1. CAMKII has been shown to be abundant
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in the synaptosome (Soderling et al, 2000). These areas are isolated terminals of a
neuron that are formed from the phospholipid layer of a cell membrane and
Synaptic proteins. ~Synaptosomes contain the important components for the
uptake, storage, and release of neurotransmitters.  Also associated with
Synaptosomes are tyrosine and tryptophan hydroxylase, enzymes that are the rate
limiting enzymes in the synthesis of monoamine neurotransmitters. Tyrosine
hydroxylase catalyzes the hydroxylation of tyrosine to form DOPA which is then
converted dopamine. Production of norepinephrine and epinephrine (Griffith
1988) relies upon CAMKII function to activate necessary hydroxylase for their
formation. Therefore, CaMKII is known to affect the rate of catecholamine
synthesis and the presynaptic neurotransmitter release. Synapsin (synapsin I), a
vesicular membrane protein, regulates the release of transmitter vesicles following
activation and is phosphorylated by CAMKII. CaMKII also phosphorylates
synapsin along with other key regulatory proteins. The C-terminus auto
regulatory region of CaMKII attaches to synapsin (Valtora 1992). This binding
reduces the interaction of synapsin to the vesicle, thereby allowing docking to

occur. The fact that CAMKII activates proteins associated with the synthesis of

neurotransmitters and regulation of cellular vesicle docking is evidence that

CAMKII is involved in synaptic transmission and cellular communication.

The cellular basis for learning focuses on the presynaptic and post

synaptic modulation of chemical synaptic transmission (Malenka 1999). Nobel

Prize winner Eric Kandel showed that the presynaptic facilitation of synaptic

t .csion that causes the learning phenomenon of sensitization 1s due to an
ransmisslt
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enhancement of Neurotransmitter release from sensory neurons (Kandel 1976) and
provided a link between CaMKII and synaptic plasticity. CAMKII increases
pattern activity and Synaptic strength and contributes to learning (Micheau 1999).
CAMKII regulates firing patterns of neurons and as such, is a very important

functioning protein involved in synaptic function (Peretz 1998).
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Chapter 2 - CaMKII is necessary for synaptic plasticity

Calcium — a crucial cell signaling molecule

In order to understand the role that activation of CAMKII plays in cell
signaling, it is necessary to understand the role that changes in calcium
concentration and phosphorylation play in the modulation of cell activity.
Calcium is a cell signaling molecule that plays a functional role in cellular
motility, enzyme activity, and cytoskeleton maintenance. Calcium can be found
both intra- and extra-cellularly. Because of its tendency to react with
physiological concentrations of phosphate to form insoluble calcium phosphate
intracellularly, its concentration in the cell must be tightly regulated. Calcium
concentration within the cell is between 10 and 100 nM. Excess calcium is
pumped into the endoplasmic reticulum. The intracellular stores of calcium are
stored within the endoplasmic reticulum and when necessary, provide calcium to
the cell. Calcium within the nucleus ranges from approximately 100-300 nM in
the basal state. Following stimulation, the calcium concentration ranges from 350
to 1200 nM in the cell (Badminton 1996). Levels and timing of intracellular

calcium increase determines synaptic plasticity as shown in figure 2.
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Figure 2- Calcium concentration determines synaptic plasticity enhancement or
depression (Kumar & Foster, 2007)

The calcium concentration is directly correlated to increased receptor
density in the postsynaptic neuron. In addition, calcium mediated synaptic
plasticity can be initiated by stimulation. Low frequency synaptic stimulation of
approximately 5 Hz produces LTD and high frequency synaptic stimulation of
between 50 and 100 Hz produces LTP (Bi, 1998). Together, these findings

indicate a prominent role of calcium in synaptic remodeling.

The importance of calcium has been established in many cell types. Of
particular interest is the importance of calcium in neurons, and to an even greater
extent, calcium within the nucleus. Evidence has shown that increases in
cytosolic calcium levels are accompanied by elevation of calcium within the
nucleus. In 1985, Roger Tsien developed a dye molecule that binds molequles of

calcium and provided a basis for understanding the role of calcium in cellular
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processes. Detection of intracellular calcium transients is accomplished with the
fluorescent dye FURA-2 and shows better performance than previous methods.
An excitation spectra measures the calcium concentration with FURA-2 dye in a
wavelength specific range and focuses on calcium binding, affinity, and
selectivity and sheds light on particulaly important plasticity processes
(Grynkiewicz, 1985). Activation of the IP3 ligand gated calcium channel, NMDA
receptor, and voltage gated calcium channels in the membrane generate precise
calcium signals within the cytosol. This provides a basis for activation of calcium
dependent proteins within the cytosol and nucleus, namely Calmodulin, and the

necessary plasticity induction protein CaMKIL
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Learning and Memory requires CaMKII

Aristotle said in his text Metaphysics, “By nature animals are born with

the faculty of sensation and from sensation, memory is produced in some of them,
though not in others. And therefore, the former are more intelligent and apt at
learning than those which cannot remember: those which are incapable of
hearing sounds are intelligent, though they cannot be taught, e.g. the bee, and
other races of animals that may be like it: and those which besides memory have
this sense of hearing can be taught.” (Aristotal 350 B.C.). As far back as
Aristotle, we as humans have been intrigued with memory. This phenomenon is
unrivaled in its complexity and aspects of brain integration. As humans, we rely
upon it each moment, and daily we attempt to strengthen and add to it, and some
of the time, we fail. Memory involves two components; spatial and temporal.
Spatial components of memory refer to the brain structure processing of the
information into a retention form and its location. Temporal aspects of learning
involve stages of learning which are acquisition and integration of perceived
information, storage and retention of information, and retrieval and recollection of
stored information (Squire 1987; Eichenbaum 2001). In many types of learning,
the crucial area of brain involvement is the hippocampus (Abel 2001). Learning

is not an exact process, but is affected by the situation of the presentation and the

timing of the cue. Studies have shown that if aversive stimuli are administered

during crucial stages of the learning, the process will be disrupted (Bohbot 2001).

Memories are created through both long term and short term cellular changes.

Long term memory involves long term changes to cellular structure that exists
ong ter
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even after months and years. Prior to this stage of memory, the initial learning,

undergoes consolidation where the short term cellular changes are converted into
a more stable form of cellular remodeling that leads to long term memory. The
study of an amnesiac patient named Henry Gustav Molaison, HM, opened the
door for understanding the nature of memory consolidation (Scoville 1957). HM
was unable to convert short term memory into long term memory as a result of his
doctor’s treatment to relieve his epilepsy by removing part of his temporal lobe on
both sides which resulted in bilateral lesions in the medial temporal lobe and most
of his hippocampus. Other patients that had similar more specific lesions to the
hippocampus also experienced anterograde amnesia, or deficiencies in the
conversion of short to long term memory as did HM. Since then, studies of
lesions to the hippocampus in rodents showed distinct similarities to human

characteristics of hippocampal damage (Broadbent 2005).

Subcellular areas of the hippocampus are responsible' for spatial aspects of
memory as well as processing and retention of information (temporal). The
entorhinal cortex is a major site of input and output for the hippocampus. There
are three excitatory pathways of the hippocampus: the entorhinal cortex to the
perforant path, the dentate gyrus to mossy ﬁbér path, and the CA3 pyramidal cell
layer to the Schaffer collateral to the CA1 pyramidal cell layer path (Buzsaki
1990). The level of the excitatory synapses within the hippocampus results in the

formation and consolidation of memory. Therefore, the synthesis of proteins and

the strengthening of the postsynaptic neuron within the hippocampus are critical
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for consolidation leading to long-term memory and are accomplished by the

functional role of CAMKII within the neuronal PSD (Buzsaki, 1990).

CAMKII is one of most characterized proteins involved in learning and
memory and is vital for synaptic plasticity (Soderling 2000). Synaptic plasticity
refers to the process of modulating the strength of synaptic connections between
neurons and changes the amount of neurotransmitter released from the
presynaptic cell and the responsiveness of the post-synaptic cell (Gaiarsa 2002).
According to the Hebbian theory, an increase in synaptic efficacy is a result of
repeated and persistent stimulation of the post-synaptic cell (Hebb 1949). Hebb
states, When an axon of cell A is near enough to excite cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A's efficiency, as one of the cells firing B, is
increased. Changes in synaptic strength are very important in the development of
the nervous system. Ramon y Cajal gave neuroscience the first look into the
cellular exploration of memory storage in the brain. He hypothesized that the
cellular “process that underlies a memory may be due to the structural
modifications made on the individual signaling unit, which is the neuron (Jones

1994). This study laid the foundation for synaptic plasticity.

CAMKII has been shown to play an essential role in long term
potentiation (LTP), a synaptic model of memory. The LTP phenomenon was
coined during animal research studies of learning and memory in the early 70’s
(Bliss and Lomo 1973). LTP is initiated by activation of the NMDA receptors on

postsynaptic neurons and it is very important that calcium concentrations rise due
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to calcium entering the neuron from the extracellular or from internal stores
(Cooke 2006). The calcium concentration increases within the post-synaptic
density, and activates Calmodulin, which then activatess CAMKII. CaMKII is
known to play a role in induction of LTP and more recently, maintenance of LTP
(Aslam 2009). The role of CAMKII in LTP has been studied extensively in the
hippocampus which is known to be the foundation for memory and has been
studied experimentally in rat and mouse brain for synaptic changes in CA1 and
CA3 neurons through the Schaffer collateral pathway (Schuman 1994). The long
term changes in the CAl area occurs over hours and weeks, and increasingly
strengthens the synapse. CaMKII plays a role in both presynaptic and
postsynaptic induction of LTP (Bliss 1993). Studies of the effects of CaMKII in
both the presynaptic and the post-synaptic neuron have been a major component
of understanding its necessity. In the presynaptic axon, CaMKII acts to increase
neurotransmitter release, a;ld also to activate other kinases. Postsynaptically,
CaMKII phosphorylates the AMPA receptor, glutamate receptor GluR1 and in so
doing, creates an increase of glutamate receptors in the postsynaptic density as
well as an increase calcium influx through up regulation of NMDA receptors.
The function of CaMKII in these examples will be discussed below and provide
the basis for understanding why CaMKII is the necessary molecule for synaptic
plasticity. CAMKILI is one of the most important proteins that act as a molecular
n cellular changes (Miller 2005). CaMKII is considered to be a

switch to maintai

molecular switch because the interaction of the autophosphorylation site acts as a

switch in turning the enzyme on and as the calcium concentration dissipates; the
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enzyme turns off (Miller 1986). An active and stable conformation that controls
its synapse strengthening properties is the basis for the molecular switch
classification. The state of the switch is based on the autophosphorylation. An
up-state is autophosphorylated and highly phosphorylated with a high

concentration of calcium. This is the ideal scenario for TP induction. When the

LTP is induced, CAMKII is converted from a down-state to a persistent up state

(Miller 2005)
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Mechanisms of calcium concentration increase leading to_CaMKII dependent

Calcium, as discussed earlier, is an activator of CaMKII dependent
Calmodulin and the underlying effects of CaMKII dependent plasticity, involves
the increase of calcium via one of three key mechanisms; through NMDA
receptors, Voltage gated calcium channels, or activation of the IP3 receptor.
Calcium can also enter via the calcium permeable AMPA receptors or the kainite
receptors, yet these don’t account for the bulk increase of calcium associated with

synaptic plasticity.
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N-methyl D-aspartate receptor and LTP

One of the most i
OSt Important aspects of synaptic plasticity involves the

activation
of the NMDA receptor. The receptor acts as a mediator for the

enhancement of synaptic plasticity and hippocampal dependent learning and has
been shown to play a role in synaptic modification and specifically associative,
episodic, and spatial memory (Morris 1986; Rampon 2000). The receptor itself is
an ionotropic glutamate receptor that when activated allows influx of calcium into
the postsynaptic neuron. One of the vital steps in the initiation of LTP, plasticity,
and many other CAMKII induced cellular interactions, is calcium influx.
Presynaptically, the neurotransmitter glutamate is released and binds to the N-
Methyl-D-Aspartic acid receptor, NMDAR, and opens the channel. Additionally,
there is a depolarization of the postsynaptic neuron that causes magnesium in the
channel pore to be removed. In any event of disruption of the calcium
concentration by chelators, or calcium influx by NMDAR antagonists, LTP is not
initiated (Collingridge 1983; Lynch 1983). Figure 3 illustrates the cascade of

calcium influx leading to LTP in an NMDA receptor.
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Figure 3 — Model for signal cascades in LTD and LTP in NMDA receptor cells

(Malenka, 2002).

LTP begins with the release of glutamate from the presynaptic neuron to

bind to the post synaptic AMPAR and NMDAR. AMPAR activation by

glutamate results in the influx of sodium leading to post synaptic depolarization.

This depolarization activates L-Type calcium channels resulting in the influx of

calcium and also, dislodging of magnesium from the glutamate bound NMDAR

resulting in calcium influx through those channels as well. At rest, the CAMKII is

located at the base of the synaptic spine. Following the activation of NMDAR, it

translocates to the PSD and interacts with the NR2B subunit of the NMDAR as

shown in figure 4 (Bayer 2001; Shen and Leonard 2002; Pradeep 2009).
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Figure 4 — Description of NMDA channel activation of CaMKII and the
subsequent translocation of AMPAR to the PSD.

A structural note of the CAMKII holoenzyme is its ability to bind to F-
actin (Shen 1998). Also the translocation of the inactivated CAMKII holoenzyme
from the f-actin correlates with the increase activity of CREB (K. Deisseroth
1998) resulting in increased protein synthesis. Increases in calcium concentration
activate a number of proteins within the PSD that converts the chemical signal
into cellular modifications. CAM, binds calcium, and activates CAMKII. The
CAMKII subunits then autophosphorylate and are activated to phosphorylate
associated substrate molecules. MAP2, a microtubule associated protein that is
responsible for microtubule assembly, is a substrate for CAMKII and is activated

during calcium/Calmodulin activation of CAMKII amongst other cellular function
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and structural maintainj
Ntaining substrate, Ag a result of the increase activity in the

PSD, AMPAR )
and NMDAR are Synthesized and inserted into the membrane,

further strengthening the activity (Shen, 1999; Strack 2000). CAMKII continues

its activity until the protein phosphatase type 1 dephosphorylates it

The role of the NMDA receptor in learning was confirmed by selective
gene knockout experiments where the deletion of the protein was achieved at the
genetic level in mice (Capecchi 1989). The deletion of the NMDA receptor type-
1 subunit of the NMDA receptor, NMDAR, disrupted spatial memories and
resulted in failure to induce NMDAR-dependent LTP (Tsien 1996). Deletion of
the receptor also diminishes performance in learning experiment paradigms
(Shimizu, 2000). Interestingly, enhancement of the NMDAR function by
increasing the expression of NMDARs results in a gain of function in
performance in associated learning tasks (Tang 1999). CAMKII plays a critical
role in activation of the NMDAR, and CAMKII is crucial for plasticity and
memory. The NMDAR is capable of acting as a coincidence detector by

becoming more active in the presence of increased calcium which leads to

increased neurotransmitter release (Nakazawa 2004).

The role of the NMDAR in hippocampal learning has been investigated

for more than twenty years. Throughout this time, the importance of the subunit

NR1 has been well established. Within the CA1 region of the hippocampus, the

deletion of the NR1 subunit of NMDAR resulted in memory deficit when tested

by the Morris water maze (Tsien 1996). The NMDAR is necessary to form new

ion of this point was illustrated when an NMDAR

memory. A demonstrat
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antagonist known as 2-amino-5-phosphopropionic acid (AP5) was infused into
the hippocampus of an intact rat performing a spatial learning task (Morris 1986).
The rat’s learning was impaired and the spatial performance was negatively
affected. This demonstrated that function of the NMDAR was crucial for
memory formation in the brain. Calcium entry through NMDA receptors is
adequate to induce synaptic plasticity on a short term basis, but long term synaptic
changes of plasticity requires both NMDAR and voltage-gated calcium channels
to initiate molecular processes leading to long term plasticity changes (Hugh,
2001). CaMKII is required for NMDA control of synaptic plasticity. According

to Barria et al (2005), CaMKII is necessary for its interaction with the NMDAR in

synaptic plasticity.

Figure 5 shows the initial response that blocking CaMKII has on LTP. In
the slices, there is a lack of LTP when KN93 is introduced to the slices. It is well

understood that KN93 inhibits CaMKII function and as such inhibits LTP in this

case.
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Figure 5 — Inhibition of LTP by blocking CaMKII. Hippocampal slices perfused
with KN93 before whole cell recording from a cell in CA1 region. Control slices
show no potentiation before pairing. Non drug pairing shows potentiation while
KNO93 shows no potentiation (Barria, 2005).

Further experiments, shown in figure 6 on the next page, demonstrate the
need for both NMDAR and CaMKII for mEPSC frequency in CAl pyramidal
neurons. These results contribute to the fact that NMDAR, specifically NR2B, is
necessary for EPSC. By either increasing magnesium or by introducing
ifenprodil, an inhibitor of NMDAR, mEPSC’s are reduced. Binding of CaMKII

to NR2B is necessary and a simple mutation to the NR2B catalytic site that

interacts with CaMKII results in a reduced synaptic plasticity.
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Figure. 6 — Blockage of NR2B and CaMKII by KN93 and ifenprodil shows a
reduction on mEPSC frequency in CA1 pyramidal neurons (Barria, 2005)

Data in Figures 7 and 8 indicate the need for CaMKII to. associate
effectively with NMDAR NR2B to induce potentiation leading to synaptic
plasticity. Mutations to the NR2B receptor lead to prevention of LTP due to the
lack of CaMKII association. To an even further extent, CaMKII must interact
with NR2B in order to modulate synaptic plasticity in vivo and this leads to

behavior dependent learning (Zhou, 2007).
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Figure 8 — NR2B mutant NR2B RS/QD reduces synaptic plasticity. NR2B wt
resembles the non-transfected cells level of EPSC amplitude. Mutant NR2B
RS/QD does not show potentiation (C). Quantification of potentiation shows
potentiation of transfected NR2B and not in mutant NR2B RS/QD (Barria, 2005).

Construction of a transgenic mouse to explore the interactions between
CaMKII and NR2B has been important for demonstrating their role in memory.
One such study illustrates the importance of the interaction between CaMKII and
NR2B and how this interaction results in behavior changes. The transgenic mouse
expresses a ligand-activated NR2B fragment called ¢cNR2B. Fusing this to a
tamoxifen-dependent mutant of the estrogen receptor ligand domain, allows
activation of the protein with the introduction of tamoxifen. The cNR2B
fragment binds to endogenous CaMKII in neurons and interferes with the

interaction of CaMKII and NMDAR at the synapses. This leads to decreased

AMPAR phosphorylation and synaptic plasticity in the form of LTP. Figure 9 on
posi2

ows successful generation of the LB cNR2B mouse. In vivo,

the next page sh

TAM activated LBD®'ZcNR2B  binds to CaMKII and interferes with

CaMKII/NR2B interaction.
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Figure 9 — Generation of LBDY*'2cNR2B transgenic mice. Schematic diagram of
the construct used for transgenic mice (A). RT-PCR showing transgenic
LBD%!2¢cNR2B mRNA in hippocampus (Hip) and cortex (ctx) (B). Immunoblots
for transgenic protein showing the protein exists only in transgenic (tg) mice (C).
Immunoblots of forebrain homogenates against endogenous NR2BC and showing
the presence of LBDY'2cNR2B protein in the forebrain samples of tg mice (D).
Immunoblots of homogenates S1, synaptosomes SS, and PSD enriched fractions
PSD showing the presence of the protein in the synaptosome and PSD (E) (Zhou,

2007).

NR2B binds to PSD95 (Kornau, 1995). To rule out the association of the
PSD95 interaction with the mutant protein Co-IP is done along with immunoblots

and figure 10 shows CaMKII is associated with the LBD%'%cNR2B protein and

that the protein is not precipitated with PSD95.
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Figure 10 - LBD®*2cNR2B binds to CaMKII not PSDOS (Zhou, 2007).

The figures 10, and 11, illustrate the result of the activation of the
LBD%'’cNR2B protein on the effects of LTP. This proves that when tamoxofen
is used against CaMKII, LTP is reduced providing solid evidence that CaMKII

interaction with the NR2B subunit is necessary for synaptic plasticity.
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Figure 11 — Reduction in LTP in c(NR2B .transgenic frlice' A reduction‘ i.n LTP
following 100 Hz stimulation is evident m.tra.nsgemc Famoxofen admm;zter:ld
mice. The other groups displayed no 51g.m.ﬁcant dlffereqce (A). O z
stimulation induced LTP which is reduced again in the transgenic tamoxofen mice

(B) (Zhou, 2007).

The relationship between CaMKII and the NR2B subunit is a necessary
e re

interaction for synaptic plasticity and it is evident that CaMKII must bind in order
interaction
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The voltage gated calcium channels (VGCC’s) are a family of proteins
that are widely expressed throughout the body in a variety of cell types including
neurons, cardiac and skeletal tissue where they control action potential and firing

(Dolphin, 2006). The Cay? family, associated with neurons, consists of three

members; 2.1 (conducts P/q currents), 2.2 (conducts n currents, and 2.3 (conducts
r currents) (Alberts, 2002). Global and local rises in calcium are detected by
calcium binding EF domains in the N terminal and the C terminal respectively.
(Alberts, 2002). Prolonged depolarization results in a global rise in calcium. The
Cav2.1 channels consists of an IQ motif and is the site of CaMKII binding

intracellularly (Guerter, 2008).
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Figure 12 — L type calcium channel (A) at rest no calcium influx. Calmodulin
binds to peptide A. (B) Depolarizing stimulus, calcium binds to Calmodulin and
structural change. EF hand prevents I-II linker from blocking calcium influx.
Depolarization leading to increased calcium causes conformational change and
EF hand permits I-II to rapidly inactivate channel (C). CaMKII enhances the
facilitation of calcium current by phosphorylation of channel (Ilona, 2005).

VGCC’s, are found in the synaptic terminal. During the voltage change

induced by an action potential, these channels are triggered to open allowing

extracellular calcium to flow inward. The vesicles filled with neurotransmitters

fuse to the pre-synaptic membrane as a result of this influx of calcium and

eventually release neurotransmitter into the synapse towards the post synaptic

The accumulation of the protein receptors and enzymes in the
neuron.

¢ tic cell as a response of the release of the neurotransmitter from the
postsynapti
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resynaptic cell is a pr .
P precursor of synaptic plasticity where the number of receptors

it _ N .
indicates a change in plasticity (Liao, 1995). Among the notable receptors

activated during VGCC activation are the NMDA and AMPA receptors which

will be discussed later. In 1973, Bliss and Lomo showed the effect of lasting

changes in hippocampal cells was result of interaction between pre and post
synaptic cells (Bliss and Lomo, 1973). Later studies of the synaptic plasticity

phenomenon were shown in experiments pairing the presynaptic stimulation with

the postsynaptic depolarization.

Presynaptic calcium channels, Cav2.1 and Cav2.2, are associated with
calcium release and are regulated by CaMKII in an activity dependent manner
(Abria, 2010). CaMKII binds to the Cav1.2 L type calcium channel at the beta 1b
or the beta 2a subunits of the channel resulting in phosphorylation of the channel
at threonine 498 leading to enhanced transmission (Greuter, 2006). CaMKII
binds to the 1Q motif of the Cav2.1 channel leading to synaptic facilitation which
provides a mechanism for synaptic plasticity (Greuter, 2006). Cav2.1 type
channels are the primary calcium channels in the glutamatergic nerve terminal
and are associated with activation of NMDA receptors (Pietrobon, 2005). The

critical role of activated Cav2.1 in synaptic plasticity has been identified through

experiments using a giant central synapse called the “calyx of Held” within the

past decade. It is found in the auditory nucleus of the brainstem and has been

valuable for discovery of the channels critical role in synaptic plasticity (Neher,

2007: Haustein, 2008). Projections from this nucleus project to the lateral
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superior olive involved i -
, d in sound Processing, a function which necessitates fast

transmission.

An important note on VGCC activation is that its initial activation is
dependent on the local calcium concentrations. While CaMKII is not required to
activate the channel at low calcium local levels, and to some extent global
calcium levels, CaMKII s required to induce VGCC facilitation which leads to
increase rapid intracellular calcium concentration, increase channel activity, and
leads to increased vesicle fusion resulting in neurotransmitter release (Yuan W
1994; Dzhura, 2000; Guerter, 2008; Abria, 2010). VGCC’s are localized in areas
that that contain CaMKII. CaMKII dependent VGCC facilitation depends on
calcium activation of the Calmodulin/CaMKII complex as illustrated in figure 12.
The facilitation is blocked by a fast calcium chelator BAPTA (Abria, 2010).
CaMKII associates with an important alpha 1 subunit of a VGCC. Mutation of
the motif completely prevents binding and modulation of Cav2.1 type channels
and facilitation. To determine the impact of CaMKII on the regulation of Cav2.1
channels, ion currents can be analyzed in transfected tsA-201 cells using whole
cell patch clamp with intracellular recording solution containing a high

concentration of EGTA, a highly effective chelating agent of calcium, and using

barium as the permeant ion of the extracellular saline (Jiang, 2008). CaMKII is

e , its bindi 1 site of CaV2.1
necessary for facilitation of VGCC’s and its binding to the channel site of Ca

substantially increases the channel activity (Jiang, 2008).

CaMKII is necessary for the modulation of CaV2.1 channels. The
a

activated CaMKII enhances activation of the L type currents. CaMKII binds to an
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Iphal si : .
alphal site at the C terming] domain of the VGCC. Coimmunoprecipitation of
C i :

aMKII with the C terminal expressed alphal domain indicates CaMKII binds

specifically to the channel. The addition of a competing peptide (Cav2.1 1897-

1912) for the same Sequence blocked coimmunoprecipitation (Alberts, 2002). To
determine if CaMKII binding to the site specified in the alphal domain of the C
terminal is necessary for channel regulation, dialysis of competing peptide into

tsA201cells and patch clamp can be used. With the addition of the peptide,

inactivation was enhanced.

CaMKII relies for its activation on the calcium Calmodulin complex.
Inhibition of this activator system leaves endogenous CaMKII relatively inactive.
Figure 13 illustrates the inactivation of the VGCC in the presence of CaMKII
inhibitors. CaMKII can bind to Cav2.1 to enhance calcium modulation. In the
presence of CaMKII inhibitors KN-93 and CaMKIIN, channel inactivation is not
prolonged. While not effective at preventing modulation of Cav2.1 channels,
these inhibitors may play a role in preventing conformational change in the
CaMKII complex which would normally lead to binding to Cav2.1 channels. The
results show the necessity for activated CaMKII to prolong channel openings and

slow the inactivation of the VGCC. Inhibitors or regulators of CaMKII enhance

inactivation of VGCC.



46

A . Cav2.1

C % + KN°92 D d

+ CaM-KIIN

R

Figure 13 - Inhibition of Cav2.1 channels by CaMKII inhibitors KN93 (B), KN92
(C), and CaMKIIN (D).

The results in figure 13 show that CaMKII binding to the channel is
necessary for modulation. KN93 and the competing enzyme function through the
same mechanism. IgG used as a negative control because of its lack of specific
antigen binding. Figure 14 illustrates the need for CaMKII to bind to the specific
alphal site for inhibition of inactivation and modulation of the VGCC. Results

from experiments performed with Cav2.1 myc tagged c terminal construct

showed that in the presence of CamKII inhibitors KN-93 and CaM-KIIN,

CaMKII does not bind to the ¢ terminal sequence of the Cav2.1 channel. Also in

the presence of the competitive inhibitor Cav2.1(1897-1912), CaMKII does not

bind to the ¢ terminal site of Cav2.1. These results indicate CaMKII associates

with the VGCC and modulates the activity of the channel by preventing

inactivation, which leads to facilitation of the synapse.
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Figure 14 — CaMKII binding to alphal domain of C terminal is required for
modulation of the VGCC. Addition of competing peptide CaV2.11897-1912 (A).
Addition of CaMKII inhibitor KN93 (B). Inactivation with the addition of

CaV2.1 competing peptide (C). Effect of competing peptide on voltage
dependence of inactivation (D).

Figure 15 shows results of an experiment in which rat brain samples were
solubilized and analyzed by immunoprecipitation using antibodies against the

alphal domain and CaMKII. To narrow down the effects of CaMKII in the

function of specific currents, toxins can be used to remove non-associated

currents. Incubation of pyramidal neurons with nimodipine and conotoxin omega

removes L and N type currents. Agatoxin removes nearly 85% of the remaining

current shown in Figure 15 (B). The remaining currents are P/Q currents. By

applying KN93, CaMKII’s activity s inhibited and inactivation occurs.



48

CNA5 +

IgG + *%'

5

atA — 2
©

CaMKIH= g
S

Y

L

1.0 -
0.8 —
0.6 —
0.4 —
0.2 —
0.0 —
J J T 1
-80 -60 -40 -20 O
Voltage (mV)

imax O

Figure 15 — Binding and modulation of calcium channels in adult rat hippocampal
pyramidal neurons by CaMKII.  Anti-alphal and CaMKII antibodies (A).
Inhibition of nonspecific calcium channels using toxins, and subsequent removal
of P/Q currents with agatoxin (B). Specific inhibition of CaMKII with KN93
causes a steep inactivation of VGCC (C). KN93 causes a shift in the voltage
dependent inactivation (D).

These data indicate CaMKII is necessary for VGCC channels function in
the facilitation plasticity of CaV2.1 type channels by slowing inactivation of the
channel when activated CaMKII is bound. CaMKII binds to a particular sequence
on the CaV2.1 channel. If the binding site on CaMKII is occupied by a competing

peptide so that it can no longer ‘nteract with the channel, depolarization will lead

to rapid inactivation of the channel. Despite the fact that CaMKII binds to the

alphal site of the channel and can be inhibited by KN93, it must also be noted

that CaMKII must be in its activated form to have an effect on the channel. When



Inositol 1.4.5-triphosphate induced calcjum release, CAMK and their roles in

LTD

Liberation of internal stores of calcium requires two steps; first
metabotropic receptors on the plasma membrane must be activated; then opening
of lonotropic neurotransmitter receptor channels on internal membrane
compartments. Activation of plasma membrane receptors activates phospholipase
C which then hydrolyzes the phospholipid PIP2 into two products; IP3 and DAG.
IP; is a substrate for the IP3 receptor. When bound to ionotropic receptors on the
endoplasmic reticulum, IP3 causes the release of calcium from internal stores
Calcium within the neuron, acts as a second messenger. In addition to the IP3,
calcium, itself can also act as a substrate for the IP3 receptor and cause the release
of calcium. The most effective activation of the IP3 receptor release of calcium is
when calcium and IP3 are presented together. Ryanodine receptors are activated
by intracellular calcium along with cyclic ADP-ribose. Both the Ip3 and

ryanodine receptors are located in the membrane of the ER. These receptor types

are found in neurons of the hippocampus, dentate gyrus, and the neocortex (Mori

et al, 2005). The activation of either Ryanodine the receptor or IP; receptor (or

both in cells that have both) results in a calcium-induced-calcium-release (CICR)
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receptors, further releas;i i
casing calcium (Berridge 1998), Ryanodine receptors of the

brain are the RYR?2
and RYR3. Type 1 RYR exists in muscle and at a low

concentration i i
n in the hippocampus, and types 2 and 3 are found in a high

concentration in i
the cortex, hippocampus, and dentate gyrus (Kuwajima et al

1992, Galeotti et al, 2008). Figure 16 illustrates how CICR works
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Figure 16 — Signal activation by neurotransmitters activates cascades that
release internal calcium into the cytoplasm further activating protein

cascades which depend upon calcium.

The interaction of the inositol triphosphate and ryanodine receptors upon

the endoplasmic reticulum is responsible for releasing calcium from the internal

s are intracellular calcium release

store. Since it is understood that [P; receptor

channels, the regulation of opening is of high importance. Increases in calcium
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th . .
by the IP3 pathway results in an increase in CaMKII clustering at the synapse,
and inhibition of the [p3 pathway failed to show a synaptic clustering indicating
the importance of IP3 elevation of calcium to plastic changes in CaMKII (Gu

2004). Very interestingly, increased CaMKII activity has been shown in disease

models such as schizophrenia, and also in use of addictive drugs such as
amphetamine. It is well understood that drug use leads to addictive plasticity and
therefore provides a link between the function of CaMKII and cell processes that
increase calcium concentration (Wang 2003). Another key aspect of IP3 induced
plasticity through calcium concentration involves the activation of the ryanodine
receptor by CaMKII leading to further calcium concentrétion increase and
CaMKII activity (Macmillan 2005). The IP3 receptor initiates the CICR increase
in calcium, which is a key component of synaptic plasticity (Emptage 2001;

Nagarkatti 2008).

The IP3 receptor is regulated by CaMKII and CaMKII plays a role in
IP3 induced calcium release (IICR). CaMKII’s regulation of the IP3 receptor was
reported to be a necessary component of calcium release from internal stores
leading to cellular homeostasis (Berridge, 1998; Ferris, 1991). Results similar to

these contribute to the understanding that the modulatory role of CaMKII on the

internal calcium receptor is a necessary part of synaptic plasticity. Initial studies

of the interaction of CaMKII with the IP3 receptor showed there were no

interactions between the two (Supattapone, 1988), but this yvas later found to be

incorrect. The detergents used to isolate IP3 were inhibiting the function of not

only CaMKII but also other proteins and because of this mishap; CaMKII was not



Results of experiments with purified and
reconstituted [P3 receptors  demonstrated that they are phosphorylated by

CaMKIIL.  Figures 17 - 19 illustrate the results of experiments showing that

CaMKII phosphorylates the IP3 receptor and it s also noted that the relationship
between CaMKII and the IP3R is more extensive than for other kinases (figure
16). CaMKII has a more rapid phosphorylation rate than the other enzymes since

it has a half maximal phosphorylation at around 10 minutes.

Biochemistry: Ferris e¢ al.
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is, 1991).
Figure 17 — Phosphorylation of purified IP3 receptors bye(r:zl\;ﬂlil){lgli?r:ésperiod,)
CaMKII at a greater extent activates the IP3 recept_or, ov ted in figure 17,
more than the activation of both PKA and PKC as illustrate
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Figure 18 — CaMKII phosphorylates IP3R to a greater extent than PKA and PKC
and all at either serine or threonine phosphorylation sites (Ferris, 1991).

The IP3 receptor also is reduced in the presence of an inhibitor of both

PKA and PKC, but to an even greater extent, removal of calcium and Calmodulin.

Because CaMKII relies upon these factors, removal results in a tenfold reduction

in phosphorylated IP3 receptor concentration as shown in figure 19.

Table 1.
PKC, and CaM kinase [1

Additive phospghorylation of I1P; receptor by PKA

ZpLIPy receplor,

Phaosphorylating condition mol/mol
PKA 1.0
+ Walsh inhibitos <g;
PKRC -<0.1
— Ca?%* 1-25
CaM kinase [1 <0:!l
— Ca?2* o
— Calmodulin o ki . <2:_}
PKA + PKC + C. mnase [l _
sphorylation of purified and re-

Specific and stoichiometric pho )
constituted [P receptor by PKA (e-mlyu;lsm

<

ubunit}, PKC, and CaM
described. The incu-

kinase [1. Phosphorylation was perft xperiment was replicated with
at 30°C.

bation was for 60 min
<10% varialioss.

Figure 19 — Table of phosphorylation of IP3 receptor with inhibiting ag

reducing conditions (Ferris, 1991).

ents and
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Figure 20 — Two dimensional phosphopeptide map of CaMKII phosphorylated
IP3R. (Ferris, 1991).

To date, the actual direct function of CaMKII activation of IP3R has not
been fully elucidated, but there have been recent experiments that explore the
components needed for IP3R activation needed for calcium concentration increase
leading to synaptic plasticity. LTD, long term depression, is a form of synaptic

Dlasticity that can result from weak synaptic stimulation or strong synaptic

stimulation (Massey, 2007). In the case of the hippocampus, LTD is a result of
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weak stimulation and j
In the case of the cerebellum; LTD is the result of str
. . 5 strong
lat i :
stimulation and provides the bagjg for motor learning (Ito 2001). In th f
, . In the case o

the cerebellum, postsynaptic calcium elevation jg necessary (Ito, 2001)
o, .

A protein of n i
ote, Homer 3, js g member of the metabotrophic

glutamate receptor family that interacts with the ryanodine receptor type 1.
Homer 3 is localized to the Purkinje cells and more specifically in the dendritic
spines (Shiraishi, 2007). Homer3 is a substrate for CaMKII that activates IP3R
and contributes to synaptic depression necessary for motor leaming. This
provides further evidence that CaMKII is a required protein for synaptic plasticity
and does not only lead to enhancement of a synapse, but is functionally important

in depression of a synapse especially in the cerebellar Purkinje cells.

Homer 3 is a scaffolding protein that couples mGluR1 to IP3R thereby
mediating intracellular calcium signaling. Its functions also include interactions

with transcription factors that regulate nuclear function. Homer 3 is activated by

CaMKII and leads to synaptic plasticity (Mizutani, 2008).

Sites of CaMKII phosphorylation in Homer3 include three sites containing

serine residues as shown in figure 21. Mutation of the serine sites prevents

CaMKII phosphorylation via the inhibition of group 1 mGluRs (Tu et al, 1998,

Kammermeier et al, 2000). This reduction in calcium signaling decreases
activation of CamKII. The sites of phosphorylation are conserved across species
s. Figure 21 illustrates the specific binding

and can provide a link between specie

n the cerebellar Purkinje cells (Tu, 1998).

of Homer 3 over Homer 1 and 2 i
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Figure 21 — In vitro CaMKII phosphorylation of Homer 3 at serines 120, 159, and
176. Wild type and mutated phosphorylation sites presented to CaMKII (A).
Illustration of the Homer 3 protein (C). Alignment of amino acid sequence
indicates conserved regions across species (D) (Mizutani, 2008).

Homer 3 coprecipitates with IP3 as shown in figure 22. The importance of

this is the link between CaMKII and the purkinje cells responsible for LTD. Asis

evident in the blots, IP3 co precipitates with Homer 3 to a greater extent than the

anding of the importance of

type 1 and 2 homologs and this leads to an underst

CaMKII in the cerebellum.
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Figure 22 — [P3R coprecipitates with Homer 3. Homer 1 and 2 (A). Homer 3 (B)
showing a greater level of IP3R binding (Tu, 1998).

Further evidence for the importanée of CaMKII activation of Homer 3 in
the initiation of LTD is the reduction of phosphorylated sites in the presence of
CaMKII inhibitors. The current understanding is that Homer 3 facilitates the

function of ryanodine receptor. The ryanodine receptor release of calcium in the

purkinje cells leads to long term depression. When a CaMKII inhibitor is

introduced to a purkinje cell, phosphorylated sites on Homer 3 are reduced over a

10 minute period and thus a reduction in Homer 3 activity is shown, as in figure

23.
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Figure 23 — Phosphorylation of Homer 3 at the serine sites 120, 159, and 176 by
CaMKII induced by depolarization in primary cultured Purkinje cells. Time
course shows that after depolarization, serine sites are phosphorylated and the
reduction of phosphorylation following treatment with CaMKII inhibitory KN93
(A). Immunocytochemical analysis of primary cultured Purkinje cells with
specific treatment with and without KN93 (B) (Mizutani, 2008).

Current studies of the CaMKII and IP3R relationship leading to synaptic

plasticity examine the effect of their interactions and function during drug

Repeated exposure to amphetamine increases PKA

addiction and disease models.
Jeading to an increase in NMDAR

induced sensitization of IP3 receptors

CaMKII (Ahn 2010). Amphetamine also

activation of LTP facilitated by
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nereased - CaMK]y induced e Protein - phosphorylation including the

extracellular signaling kinage ERK (Choe 2002). Inhibition of the CaMKII by

KN62 reduced the number of simj)ar Protein phosphorylation (Choe 2002). In

schizophrenia CaM has been shown, to be upregulated (Frankland 2008). n

both of these conditions, the effects of the CaMK]I

conditions of increased calcium,.
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CONCLUSION

CaMKII is necessary for synaptic Plasticity and works through calcium
concentration increase by voltage gated calcium channels, IP3 receptor activation,
or NMDA receptor activation. Experimentally, CaMKII has been shown to be a
key mediator for plasticity using gene knockout models, calcium cheaters,
CaMKII inhibitors, and CaMKII mimic proteins to name a few of the tools. The
work of elucidating CaMKII function completely is still ongoing. A greater
understanding of CaMKII would prove valuable in the field of spinal cord
injuries. Since we now understand that the protein is an essential component of
synaptic plasticity, bridging the gap of information on its role in the spinal cord
and neuromuscular junction, may shed light on the function of spinal cord
processes lost during injury or disease of peripheral nerves. A central topic of

biomechanics and motor control involves the exploration of the nature, function,

and role of the rhythmic networks surrounding the concept of the Central

Generator (CPG). A CPG is an endogenous neural network that, without sensory

' ie th
or central input, can produce rhythmic motor output. The CPG underlie the

thythmic motor patterns that has been studied as specific activated neural

g, scratching, and breathing. The

: in
networks and include behavior such as walk |
r requires a threshold necessary to trigger

basis of the network in each behavio



cascade.
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