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Extracting Fuzzy Rules to Compare Genetic Algorithm-Generated Motoneuron Models

Eric Wilt

Faculty Advisor: Dr. Tomasz Smolinski

ABSTRACT

Spinal motoneurons that have been active for prolonged periods of time exhibit different elec-
trical properties than their less active counterparts, suggesting that prolonged neuronal activity may
change how electrical signals are transmitted through the neuron. Understanding how these spinal
motoneurons integrate their input signals and modulate their output is important, with implications
for rehabilitation, advanced prosthetics, brain-machine interfaces, humanoid robotics, and other
biologically-inspired systems.

To investigate what changes may take place within a spinal motoneuron following prolonged
activity, a genetic algorithm was employed to generate two distinct groups of spinal motoneuron
computational models. The first group (control) simulated less active neurons while the second
group simulated neurons treated with high K*, which mimics persistent activation. The models
had nine variable parameters, each a conductance related to a specific ion channel present in the
motoneuron. To evaluate fitness for each computational model, fuzzy logic was used to assign
membership in fuzzy sets corresponding to two separate objectives: current threshold and input
resistance. To mine rules from the generated data, correlations were looked at between each fuzzy
set and each parameter.

While no rules were successfully mined in this research, some interesting results were produced.
Some relationships that exist between parameters within the control (less active) models, do not
seem to exist in the treated models. Relationships were also found between parameters that exist in

both groups of models, suggesting a possible co-regulation of the genes which express those traits.
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CHAPTER 1: INTRODUCTION

SECTION 1.1: BACKGROUND AND PROBLEM STATEMENT

Spinal motoneurons have a soma (cell body) that originates in the spinal cord and an axon that
extends to provide motor control to some muscle or other organ in the body. Motoneurons that
have been active for prolonged periods of time exhibit different electrical properties than their less
active counterparts, suggesting that prolonged neuronal activity may change how electrical signals
are transmitted through the neuron. Understanding how these spinal motoneurons integrate their
input signals and modulate their output is important, with implications for rehabilitation, advanced
prosthetics, brain-machine interfaces, humanoid robotics, and other biologically-inspired systems
[1]. This work sought to investigate what changes may take place within a spinal motoneuron
following prolonged activity.

Computational modeling of motoneuron activity can provide a bridge between the theoretical
and experimental aspects of neuroscience. It can help alleviate the issue of requiring excessive
quantities of organic laboratory samples while providing a way to perform reproducible, simplified
experiments. Challenges lie in deciding how to model neurons in a way that is both meaningful to
the investigation and also simple. Another challenge lies in tackling what happens when multiple
objectives need to be optimized in order to determine how well a model performs overall.

Expanding on ideas in the thesis work of Parth Patel [2], this thesis combined computational
modeling with techniques from the field of computational intelligence, namely genetic algorithms
[3] and fuzzy logic [4]. Computational models were generated by a genetic algorithm and evaluated
according to membership in fuzzy sets for the purpose of mining rules from the sets of created
models.

Since this work was concerned with the changes that take place in motoneurons after experi-

encing prolonged activation, two experimental groups were needed. The first group was a control



group of computational models representing less active motoneurons. The second group was a
group of computational models representing treated neurons. Laboratory study has shown that
treatment with high K™ (potassium ion) is likely to simulate sustained motor activity [1]. The
treated neurons showed changes in electrical properties. The changes specifically important to this
thesis work were reduced input resistance and increased threshold current, as summarized in Figure
2 of [1]. These two properties, threshold current and input resistance, were the objectives by which

the computational models were evaluated.

SECTION 1.2: PURPOSE

One goal of this work was to create two separate databases of rules, one which applies to models
representing less active spinal motoneurons and one which applies to models representing neurons
treated with high K* (simulating prolonged activity). Contrasting these two rule sets was intended
to provide insight as to what mechanisms are being changed by prolonged activation and how those
mechanisms are changed. An extension of this goal would have been to apply the mined rules to
the system creating the computational models, using fuzzy control, to see if the application of those
rules provided better efficiency in generating good models.

Another goal was to see whether the rules generated change throughout the evolutionary pro-
cess, probing in which generation might a certain rule appear or disappear and why that might have
been the case.

This thesis was intended, in part, to have shed light on the relationship between the rules that
were generated and the parameter search space, looking at whether certain rules only appeared (or
never appeared) in certain areas of the search space. If such relationships existed, then reasons for
those relationships might have been inferred.

Importantly, this work also sought biological relationships between various intrinsic properties
of the motoneurons that the computational models represent. Specifically, this thesis examined the

relationships that may exist between the conductances of different ion channels represented by the



parameters of the computational models.

SECTION 1.3: OVERVIEW

Computational models of spinal motoneurons were generated using a Multi-Objective Genetic
Algorithm (MOGA). Use of a MOGA was deemed appropriate because of its specialization in ex-
ploring a search space to find optimal solutions and maintaining a diverse set of potential solutions
while optimizing for multiple objectives. Models were generated in batches simulating both un-
treated motoneurons (as a control group) and treated motoneurons (treated with high K™ to mimic
persistent activation). Each model was simulated using the Neuron simulation environment [5].
Results of the simulations provided the data used to evaluate the models using fuzzy sets. Correla-
tions were drawn between each batch’s fuzzy sets and the parameters of the computational models
to see if fuzzy rules could be mined. Correlations were also drawn between each parameter of
the computational model and every other parameter to investigate biological relationships of the
conductances of the ion channels that each of the parameters represent. The research design and

method are detailed in Chapter 3.

SECTION 1.4: HYPOTHESIS

Pilot testing in small batches has shown that it is possible to extract fuzzy rules using the method
proposed. An example of a rule discovered in pilot testing is shown in Chapter 3. The prediction
going into this thesis was that the batches of motoneuron models would also produce rules. If
rules could be produced for both the control group and the treated group, those rule sets could be
compared as part of an exploration into how persistent activation affects spinal motoneurons. It
was also expected that, by looking at how rules change throughout the evolutionary process of the

genetic algorithm, patterns may appear.



SECTION 1.5: IMPORTANCE

This thesis work is significant in that it shows a successful application of a genetic algorithm
to generate computational models of spinal motoneurons as well as the application of fuzzy logic
to evaluate those models for fitness. It also provides a framework for the potential extraction of
fuzzy rules based on correlations between objective fuzzy sets and parameters. This thesis also
explores the relationships between the model parameters, which could potentially reveal evidence
of co-regulation of the genes which express the traits that those parameters represent. Findings of

this research are detailed in Chapter 4 and conclusions are discussed in Chapter 5.

SECTION 1.6: SCOPE AND LIMITATIONS

The models generated represent motoneurons; as such, the information learned in this research
may not be applicable to other types of neurons.

The research itself was limited largely by time and computing resources. The simulation and
analysis of each model is expensive in terms of computation time. A single batch of the size used
in this research could take anywhere from two to five days to complete, depending on the resources
of the machine running the simulations. Even with multiple machines running batches simultane-
ously, turnaround time is not ideal for very large production runs. Due to these time and resource
constraints, this research could have benefitted from more generated models to increase the diver-

sity of the samples.



CHAPTER 2: REVIEW OF LITERATURE

The models used in this work have their basis in a model originally developed by Alan Hodgkin
and Andrew Huxley [6], [7], [8], [9], [10]. Hodgkin and Huxley performed experiments on the axon
of a giant squid to develop a conductance-based model of how action potentials are generated and
propagated in neurons. The Hodgkin-Huxley model represents the cell membrane as a capacitance,
ion channels as conductances, gradients of electrochemical potential as voltage sources, and ion
pumps as current sources. Hodgkin and Huxley used several differential equations to describe the
properties and states associated with the model. Each computational model generated and used in
this thesis has these basic components and is used as described by Hodgkin and Huxley.

Studies have been done, which used organic neuronal samples, that investigated factors that can
change the intrinsic electrical properties of neurons. Jonathan Carp, Xiang-Yang Chen, Hesham
Sheikh, and Jonathan Wolpaw studied how operant conditioning affects axonal conduction velocity
and excitability in rat and primate motoneurons [11], [12]. They discovered that the spinal stretch
reflex can be operantly conditioned and that such training changes axonal conduction velocity and
excitability in motoneurons. Similarly, in other studies done on rat motoneurons, [13], [14], and
[15] reveal that either exercise training or inactivity pull the electrical properties of motoneurons
in opposite directions. This type of research is closely related to this thesis’ investigation into how
persistent activation changes the intrinsic electrical properties of motoneurons. The work of this
thesis has the potential to add to the body of research of modeling changes in neuronal activity,
specifically changes in electrical properties.

Computational models have been used to study motoneurons in the past. Gwendal Le Masson,
Serge Przedborski, and L. F. Abbott used models built for the Neuron simulation environment [5]
to study the degeneration of motoneurons [16]. Their research has implications in the study of

amyotrophic lateral sclerosis (ALS). ALS patients experience a loss of motoneurons, which can



lead to muscle wasting and weakness. The work presented in [16] opens an important avenue of
research to explore the link between certain neuronal processes and ALS.

The work in this thesis follows, in some ways, as an extension of the work done by Parth Patel
in his 2013 Master’s Thesis [2]. In his work, Patel explored using a hybrid of multi-objective
evolutionary algorithm and fuzzy control system to generate and evaluate computational models
of neurons. His intention was to provide the evolutionary algorithm with the ability to generate
neuronal models with some expert biological knowledge. That knowledge came in the form of
fuzzy IF-THEN rules applied through a fuzzy controller.

This thesis work attempts to mimic some of the successful aspects of Patel’s work. First, Patel
used the elitist, non-dominated vector-evaluated genetic algorithm (end-VEGA) [17] as the specific
flavor of multi-objective evolutionary algorithm. The choice of this algorithm is important, as it is
not the most computationally efficient option available; however, it does attempt to address some
concerns about generating a diverse population of fit individuals. The elitist and non-dominating
aspects try to ensure, via an archive, that the most fit individuals have a high probability of being
perpetuated into successive generations of the evolutionary process.

Patel also used Pearson correlations between his established fuzzy sets and the parameters of
his neuronal models to mine fuzzy rules. One of the main ideas of Patel’s thesis was to use the
mined rules in a fuzzy controller which worked in concert with the genetic algorithm to produce
computational neuronal models with better overall fitness. It was one of the original intentions
of this thesis work to include a component of fuzzy control, but a lack of rule generation and
implementation issues precluded that from happening. Importantly, a methodology for attempting
to mine rules from generated motoneuron models that was like Patel’s was used in this thesis work.

Another major influence was the work of Joseph Lombardo, Jianli Sun, and Melissa Harrington
[18], whose work directly follows from a proposal by Melissa Harrington and Tomasz Smolinski
[1]. The work of these researchers provided the science which formed the theoretical framework

on which this thesis is based. They employed the use of high K* treatment (to mimic persistent



activation) on real spinal motoneuron samples in a laboratory environment to explore the differ-
ences in less active motoneurons and persistently activated motoneurons. These authors provided
empirical evidence that motoneurons experience an increase in the threshold current which induces
an action potential and a decrease in input resistance following persistent activation. It is this work
that inspired the question as to what changes are being made to the intrinsic electrical properties of
spinal motoneurons after a period of prolonged activity. This is the question that lies at the heart

of the explorations being made in this thesis.



CHAPTER 3: RESEARCH METHODS

SECTION 3.1: COMPUTATIONAL MODELS

The model that served as the basis for all generated models was crafted by students led by Dr.
Tomasz Smolinski. The model is a combination of two previous models: a model of a Neocortex V1
L6 pyramidal corticothalamic cell, implemented by Maarten Kole (ModelDB Accession: 114394;
https://senselab.med.yale.edu/ModelDB) [20] and spinal motoneuron model ok m139 (NeuroMor-
pho.Org ID: NMO 00914) [21], [22], [23]. For this thesis, the axon and ion channels present in
the Kole model were combined with the soma and dendritic structure of ok m139. A graphical
representation of the morphology of the combined computational model is shown in Figure 3.1.
It features nine parameters, each representing an ion channel present in the model. In biological
neurons, ion channels open and close in response to various changing physiological factors in and
around the neuron. Figure 3.2, originally from [19] and used here under license:
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), shows an example of ion channels on
the membrane of a motoneuron. Ion channels play an important role in forming the action potential
generated by the neuron. A change in one or more of the parameter values represents a new model.
The parameters and base conductance values are shown in Table 3.1. These conductance values
were established as part of the Kole model and further hand-tuned by Dr. Smolinski’s students so
that the desired action potential behavior was observed when an appropriate current was injected.

Each of the conductance values shown in Table 3.1 corresponds to an ion channel present in
the model. This specific group of conductances together constitutes the base model parameters
from which all the generated models’ parameters were derived. The model’s ion channels are
designed to replicate biological ion channels. na_segment is a sodium channel on the axon initial
segment. na_soma is a sodium channel on the soma. na node is a sodium channel on the Nodes

of Ranvier. Km_soma and Km_axon are based on muscarinic potassium channels on the soma



Figure 3.1: Graphical representation of the morphology of the motoneuron computational model
that served as the basis for all generated models in this thesis.
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Figure 3.2: Plasmamembrane ion channels and transporters in the Motor Neuron. Scheme repre-
senting the axon structure and the distribution in the motor neuron plasmamembrane of Na*/Ca**
exchanger, Na®, Ca?" and K* channels. This figure is originally from [19] and used here under
license:

CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Model Parameters

Biological Ion Channel Model Parameter | Base Conductance Value
Sodium channel on axon initial segment na_segment 400 pS/um?
Sodium channel on soma na_soma 60 pS/um?
Sodium channel on Nodes of Ranvier na_node 2500 pS/um?
Muscarinic potassium channel on soma Km_ soma 5 pS/um?
Muscarinic potassium channel on axon Km axon 50 pS/um?
Voltage-gated potassium channel on soma Kv_soma 20 pS/pum?
Voltage-gated potassium channel on axon Kv_axon 2000 pS/um?
Potassium channel from Kv1.1 subunits on soma Kvl soma 0.01 S/cm?
Potassium channel from Kv1.1 subunits on axon Kvl axon 0.20 S/cm?

Table 3.1: Model parameters and base conductance values. These conductance values were es-
tablished as part of the Kole model [20] and further hand-tuned by Dr. Smolinski’s students, who
developed the hybrid model used in this thesis, so that the desired action potential behavior was
observed when an appropriate current was injected.
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and axon, respectively. Kv_soma and Kv_axon are voltage-gated potassium channels located on
the soma and axon, respectively. Kvl soma and Kvl axon are implementations of potassium
channels from Kv1.1 subunits located on the soma and axon, respectively.

The model was written to be compatible with the Neuron simulation environment [5]. The sim-
ulation environment introduces a given electric current to the model. It will then track changes in
the electric potentials (voltage trace) of both the soma and the axon of the model. The simulator
can determine whether the injected current induces an action potential and can calculate the input
resistance of the model. Action potentials are how neurons pass signals. Various signals are passed
to the neuron via the dendrites. Those signals and other physiological factors may cause a depolar-
ization of the cell, leading to an action potential being generated at the axon initial segment. The
signal is propagated along the axon and is refreshed at the Nodes of Ranvier. Backpropagation also
occurs causing an action potential spike in the soma. Figure 3.3 shows an example, from Treated
Batch 1, of the voltage trace information that the Neuron simulation environment can collect while
simulating current being introduced to a computational model. Most models began a simulation
with a resting potential of approximately -70 mV; the simulator judges an action potential being
induced when the voltage spikes from both the soma and the axon cross into positive territory. The
-70 mV initial resting potential was chosen specifically by the model designer in order to achieve
a membrane potential of -75 mV at the soma. Input resistance was calculated in accordance with
Ohm’s Law.

Resistance = Voltage/Current

Threshold current (the smallest current which induces an action potential) was one of the ob-
jectives of the genetic algorithm. This was achieved by, for each computational model, running a
simulation with incrementally higher current until an action potential spike was detected. The in-
jection of the current was delayed by 300 ms on each simulation. The incremental current injection
for the control batches began at 0.015 nA and stepped up by 0.015 nA to a maximum of 0.24 nA.

The incremental current injection for the treated batches began at 0.14 nA and stepped up by 0.02

11
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Figure 3.3: An example, from Treated Batch 1, of the voltage trace information Neuron can capture.
This model had the following parameter gene values: na_segment = 160; na_soma =400; na_node
= 124; Km_soma = 454; Km_axon = 237; Kv_soma = 66; Kv_axon = 359; Kvl soma = 303;
Kvl axon = 287.
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Acceptable Objective Value Ranges
Control Treated
Objective Minimum Maximum Objective Minimum Maximum
Threshold Current 0.1 nA 0.15nA | Threshold Current  0.25 nA 0.35nA

Input Resistance 47 MS2 57 MQ Input Resistance 22 MQ) 28 M2

Table 3.2: Objective value ranges for good models, adapted from Figure 2D in [1].

nA to a maximum of 0.44 nA. The relevant values for that model were then recorded. The other
objective to be optimized was input resistance. Ranges for what constituted acceptable values were

adapted from Figure 2D in [1] and can be seen here in Table 3.2.

SECTION 3.2: GENETIC ALGORITHM

Genetic algorithms were first described by John Holland [3]. They are called such because
they have, at their core, Darwinian survival of the fittest and use the language of biological genet-
ics. Each computational model, or individual, is represented by a chromosome. The collection of
chromosomes in a given generation is a population. Each chromosome is comprised of genes; in
this case, the number of genes was set to the number of model parameter values (nine). For the
purpose of this thesis, each gene represented a multiplier for its respective parameter, holding an
integer value between 0 and 500. Therefore, each computational model was represented by nine
integer values. When the model was simulated with Neuron, each gene value was converted to
a percentage by dividing it by 100. This percentage was then multiplied to the appropriate base
parameter value, as shown in Table 3.1, to create the new parameter value to be simulated.

NewParameterValue = BaseParameterV alue * (GeneV alue/100)

In this work, each of the batches had populations of 30 chromosomes and the criterion for
stopping was 50 generations completed. Each group, both untreated (control) and treated, had
three separate and distinct batch runs.

For each batch, a population was randomly initialized at the beginning of the algorithm. There

13



are three main operations used in the standard genetic algorithm: selection, crossover, and mu-
tation. Selection is the way the algorithm decides which chromosomes carry forward to the next
generation based upon some fitness evaluation. How fitness is defined will be specific to the objec-
tive or objectives being optimized; typically, a more desirable outcome for an objective will yield
a higher fitness. The specific method that was used in this thesis is described in the next section.
Generally, each chromosome, has a probability to be selected proportional to its fitness in a process
referred to as roulette wheel selection. Crossover is the exchange of genetic material between two
chromosomes, the chance of which happening is governed by some given probability. Mutation
occurs when a gene randomly changes its value based upon some given probability. Crossover
and mutation help promote genetic diversity and a more expansive search of the parameter space,
increasing diversity and reducing crowding in the search space. A generalized form of a standard

genetic algorithm, adapted from [24], is shown in Algorithm 1.

Algorithm 1: Standard genetic algorithm

begin
initialize population;
evaluate population for fitness;
perform selection on population;
generation <— 1;
while stopping criterion not met do
perform crossover on population;
perform mutation on population;
evaluate population for fitness;
perform selection on population;
generation <— generation + 1;
end
end

Since there were two objectives that needed to be optimized in this work, a multi-objective
genetic algorithm was deemed appropriate. The specific genetic algorithm which was used to gen-
erate the computational models is called elitist, non-dominated vector-evaluated genetic algorithm

(end-VEGA) [17], which is an extension of vector-evaluated genetic algorithm (VEGA), devel-
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oped by J. David Schaffer [25]. Essentially, VEGA split the population into subpopulations and
evaluated fitness as a vector instead of a scalar. Each subpopulation optimized on a different part of
the vector, allowing for multiple objectives to be optimized at once, albeit by different subpopula-
tions. The elitism aspect meant that chromosomes with high fitness in both objectives were stored
in an archive, which became part of the selection process, giving high-fitness models a chance to
pass through into the next generation without being affected by crossover or mutation. end-VEGA
modified the roulette wheel selection such that each model in the population appeared twice on the
wheel, once for each objective. Each appearance’s relative area on the wheel was proportional to

its respective fitness for the given objective.

SECTION 3.3: FITNESS EVALUATION WITH FUZZY LOGIC

After the models were generated by the genetic algorithm and simulated with Neuron, they
were evaluated for fitness. Since the objectives had ranges of values which are acceptable, the use
of fuzzy sets was appropriate. Fuzzy sets were formalized by Lotfi Zadeh [4], expanding on earlier
work by Jan Lukasiewicz and Alfred Tarski. Fuzzy logic allows for an element to have degrees of
membership in one or more sets, instead of a binary ‘yes’ or ‘no.” These membership values take
the range of real numbers between 0 and 1, with 0 meaning not a member of the set and 1 meaning
the element is completely in that set.

For this work, fuzzy membership functions were established for each objective, threshold cur-
rent and input resistance. Each objective had three fuzzy sets associated with it: TOO LOW,
NORMAL, and TOO_HIGH. Values corresponding to these sets are based upon the minimum and
maximum values from Table 3.2. A membership value of greater than 0.749 in the NORMAL
fuzzy set was deemed as having met the objective. The fuzzy sets were established so that each ob-
jective’s minimum and maximum acceptable values evaluate to a membership of 0.75. Figure 3.4
shows an example of how fuzzy memberships are determined using fuzzy membership functions.

Fuzzy membership functions were created for each objective, for both untreated (control) models
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and treated models. Figures 3.5, 3.6, 3.7, and 3.8 show the fuzzy membership functions used to

evaluate the fitness of the computational models.

SECTION 3.4: NERVOLVER

NeRvolver is software, implemented primarily in C++, developed by Dr. Tomasz Smolinski
and his students, and modified for this thesis. NeRvolver tied all the components together. It
coordinated the genetic algorithm to create the computational model parameters, launched Neuron
to simulate the models, calculated fuzzy memberships to evaluate the models, and would have
extracted any rules (as described in the next section). NeRvolver can also be configured for fuzzy
control in subsequent batch runs if rules are successfully extracted. It can also be used to track the

success rates and effectiveness of rules placed in the fuzzy controller.

SECTION 3.5: DATA ANALYSIS

Once the genetic algorithm and all simulations were complete for a batch, the models were
separated into two groups: those that demonstrated the desired action potential behavior and met
both objectives (membership > 0.749 in both objective NORMAL fuzzy sets) and those that did
not. The data were further processed to trim models deemed to be unreliable, models with data
from either extreme of the current injection ranges, for both control and treated models. Data
from the lower extreme of the current injection are unreliable because, in the context of this thesis,
there was no way to know whether the value was the true threshold current or if the threshold
current would have occurred at a lower current. The upper extreme of the current injection was
also unreliable because, if action potential spiking was not detected, then the upper extreme of the
current injection was recorded as the current threshold associated with that model. The control
models with a recorded threshold current of 0.015 nA and 0.24 nA were cut away from the data
set. Likewise, the treated models with recorded threshold currents of 0.14 nA and 0.44 nA were

trimmed. This, along with the rule extraction, was done in NeRvolver as well as checked and
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Fuzzy Membership Example
Fuzzy Input: Untreated Current Threshold
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Figure 3.4: An example of how fuzzy memberships are determined using fuzzy membership func-
tions. The three colored trapezoidal functions are the membership functions corresponding to each
of the fuzzy sets for the untreated current threshold objective. In this example, the untreated mo-
toneuron model resulted in a threshold current of 0.1 nA. This threshold current results in mem-
bership in two of the objective fuzzy sets: TOO LOW and NORMAL. According to the fuzzy
membership functions, TOO LOW membership is calculated to be 0.25 and NORMAL member-
ship is calculated to be 0.75. Since membership in the NORMAL fuzzy set is greater than 0.749,
this model would meet the current threshold objective.
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Fuzzy Input: Untreated Current Threshold
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Figure 3.5: Fuzzy membership functions for the threshold current objective applicable to models
in the Control group. A Control model with membership greater than 0.749 in the NORMAL fuzzy
set was deemed as having met this objective.
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Fuzzy Input: Untreated Input Resistance
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Figure 3.6: Fuzzy membership functions for the input resistance objective applicable to models in
the Control group. A Control model with membership greater than 0.749 in the NORMAL fuzzy
set was deemed as having met this objective.
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Fuzzy Input: Treated Current Threshold
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Figure 3.7: Fuzzy membership functions for the threshold current objective applicable to models
in the Treated group. A Treated model with membership greater than 0.749 in the NORMAL fuzzy
set was deemed as having met this objective.
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Fuzzy Input: Treated Input Resistance
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Figure 3.8: Fuzzy membership functions for the input resistance objective applicable to models in
the Treated group. A Treated model with membership greater than 0.749 in the NORMAL fuzzy
set was deemed as having met this objective.
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verified with MATLAB.

To extract rules, the relationships between each of the objective fuzzy sets, specifically
TOO LOW and TOO HIGH, and each of the parameter gene values of the corresponding models
that had membership in that fuzzy set were examined. To accomplish this, a vector of memberships
was created for each member of a given fuzzy set. The gene value for each corresponding parameter
of members of that fuzzy set was added to its own vector. The Pearson correlation coefficient and
p-value were calculated for each of the fuzzy membership and gene value combinations. If the
absolute value of the correlation coefficient is greater than 0.7 and the p-value is less than 0.05,
that suggests a rule to be extracted.

MATLAB was used to explore the relationships between each parameter and each other param-

eter, in each batch run, and as an entire control group and an entire treated group.

SECTION 3.6: PILOT TESTING

Preliminary testing was done with smaller batch runs for the purpose of identifying best prac-
tices when it came to the full-scale runs. Early batches ran for 10 generations with a population
size of 20. Then, a setup with 20 generations with a population of 20 was tested. Finally, a setup
with 30 generations with a population of 30 was tested before settling on the 50 generations and
population of 30 that were used in the batches that are the subject of this thesis. Important things
learned in the preliminary testing included being able to approximate the time a batch run would
take, that many batches do not produce rules, and that many batches do not even produce models
that meet the objectives.

Figure 3.9 shows an example of a correlation that produced a rule in preliminary testing. In this
example, to reduce the model’s membership in the Current threshold TOO HIGH fuzzy set, one
must increase the gene value of the na segment parameter. So, the rule, put into words, becomes

‘IF Current_threshold is TOO _HIGH, THEN INCREASE na_segment_ par.’
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control_batch1_prelim
Current_threshold_TOO_HIGH v. na_segment_par
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Figure 3.9: Example of a correlation which produced a rule in pilot testing. In this example,
the gene for the sodium channel on the axon initial segment has a strong negative correlation
with Current threshold TOO HIGH fuzzy set membership. The inferred rule would be ‘IF Cur-
rent_threshold is TOO HIGH, THEN INCREASE na segment par’.
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SECTION 3.7: ASSUMPTIONS
In using the Pearson correlation, it is assumed that the relationship between the two variables

1s linear.
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CHAPTER 4: RESEARCH FINDINGS

This chapter displays a per-batch breakdown of the number of models generated by each batch.
The tables are broken down into good (models that exhibited the desired action potential spiking
behavior and met both objectives) and bad (models that did not meet one or both objectives). The
tables are also broken down into before and after trim. The data were trimmed following a batch
run but before the data were analyzed. The trimmed data are unreliable, as described in the Data
Analysis section of Chapter 3. The control models with a recorded threshold current of 0.015 nA
and 0.24 nA were cut away from the data set. Likewise, the treated models with recorded threshold
currents of 0.14 nA and 0.44 nA were trimmed.

Table 4.1 shows the number of models created for the individual Control (Untreated) batches
and the combined Control group numbers.

Table 4.2 shows the number of models created for the individual Treated batches and the com-
bined Treated group numbers.

No correlations between the parameter genes and the objective fuzzy sets were strong enough to
yield any fuzzy rules. A complete enumeration of the correlation data can be found in the Appendix.

Figures in this chapter display relationships with strong correlations between the objectives
and the parameters and within the parameters. Green markers represent models that exhibited
appropriate action potential spiking and met both objectives. Red markers represent models that

did not meet at least one objective.
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Number of Control Models Generated

Control (Untreated) Batch 1

Before Trim After Trim
Good 126 126
Bad 837 258
Total 963 384

Control (Untreated) Batch 2

Before Trim After Trim
Good 272 272
Bad 804 423
Total 1076 695

Control (Untreated) Batch 3

Before Trim After Trim
Good 188 188
Bad 880 376
Total 1068 564

All Control (Untreated) Models
Before Trim After Trim

Good 586 586
Bad 2521 1057
Total 3107 1643

Table 4.1: Numbers of Control models generated, broken down by batch and total Control group
numbers.
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Table 4.2: Numbers of Treated models generated, broken down by batch and total Treated group

numbers.

Number of Treated Models Generated

Treated Batch 1

Before Trim After Trim
Good 436 436
Bad 689 159
Total 1125 595
Treated Batch 2
Before Trim After Trim
Good 341 341
Bad 762 341
Total 1103 682
Treated Batch 3
Before Trim After Trim
Good 366 366
Bad 613 109
Total 979 475
All Treated Models
Before Trim After Trim
Good 1143 1143
Bad 2064 609
Total 3207 1752
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Control Batch 1 Models
Input resistance v. Km_soma_par
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Figure 4.1: A strong correlation between the model parameter gene value of the muscarinic potas-
sium channel on the soma and the value for input resistance in Control Batch 1. Green markers
represent “good” models, which exhibited the desired spiking action potential behavior and met
both objectives. Only “good” models were used to calculate this correlation. Each marker may be
representative of multiple models. This relationship only appears in this batch.
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Control Batch 1 Models
Input resistance v. na_segment_par
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Figure 4.2: A strong correlation between the model parameter gene value of the sodium channel
on the axon initial segment and the value for input resistance in Control Batch 1. Green markers
represent “good” models, which exhibited the desired spiking action potential behavior and met
both objectives. Only “good” models were used to calculate this correlation. Each marker may be
representative of multiple models. This relationship only appears in this batch.
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Control Batch 1 Models
Input resistance v. na_soma_par
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Figure 4.3: A strong correlation between the model parameter gene value of the sodium channel
on the soma and the value for input resistance in Control Batch 1. Green markers represent “good”
models, which exhibited the desired spiking action potential behavior and met both objectives.
Only “good” models were used to calculate this correlation. Each marker may be representative of
multiple models. This relationship only appears in this batch.
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Control Batch 1 Models
Km_soma_par v. na_segment_par
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Figure 4.4: A strong correlation between the model parameter gene value of the sodium channel
on the axon initial segment and the model parameter gene value of the muscarinic potassium chan-
nel on the soma in Control Batch 1. Green markers represent “good” models, which exhibited the
desired spiking action potential behavior and met both objectives. Red markers represent “bad”
models, which did not meet both objectives. Only “good” models were used to calculate this cor-
relation. Each marker may be representative of multiple models. This relationship only appears in
this batch.
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Control Batch 3 Models
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Figure 4.5: A strong correlation between the model parameter gene value of the sodium channel
on the axon initial segment and the model parameter gene value of the sodium channel on the soma
in Control Batch 3. Green markers represent “good” models, which exhibited the desired spiking
action potential behavior and met both objectives. Red markers represent “bad” models, which did
not meet both objectives. Only “good” models were used to calculate this correlation. Each marker
may be representative of multiple models. This relationship only appears in this batch.
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All Control Models
Kv_axon_par v. Km_soma_par
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Figure 4.6: A strong correlation between the model parameter gene value of the muscarinic potas-
sium channel on the soma and the model parameter gene value of the voltage-gated potassium
channel on the axon in the combined Control group. Green markers represent “good” models,
which exhibited the desired spiking action potential behavior and met both objectives. Red mark-
ers represent “bad” models, which did not meet both objectives. Only “good” models were used to
calculate this correlation. Each marker may be representative of multiple models. This relationship
only appears in this experimental group.
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All Control Models
Kv_axon_par v. Kv_soma_par
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Figure 4.7: A strong correlation between the model parameter gene value of the voltage-gated
potassium channel on the soma and the model parameter gene value of the voltage-gated potassium
channel on the axon in the combined Control group. Green markers represent “good” models,
which exhibited the desired spiking action potential behavior and met both objectives. Red markers
represent “bad” models, which did not meet both objectives. Only “good” models were used to
calculate this correlation. Each marker may be representative of multiple models. This relationship
only appears in this experimental group.
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Figure 4.8: A strong correlation between the model parameter gene value of the muscarinic potas-
sium channel on the soma and the model parameter gene value of the voltage-gated potassium
channel on the soma in the combined Control group. Green markers represent “good” models,
which exhibited the desired spiking action potential behavior and met both objectives. Red mark-
ers represent “bad” models, which did not meet both objectives. Only “good” models were used to
calculate this correlation. Each marker may be representative of multiple models. This relationship
only appears in this experimental group.
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Control Batch 1 Models
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Figure 4.9: A strong correlation between the
model parameter gene value of the sodium
channel on the soma and the model param-
eter gene value of the muscarinic potas-
sium channel on the soma in Control Batch
1. Green markers represent “good” models,
which exhibited the desired spiking action
potential behavior and met both objectives.
Red markers represent “bad” models, which
did not meet both objectives. Only “good”
models were used to calculate this correla-
tion. Each marker may be representative of
multiple models. This relationship also ap-
pears in Treated Batch 1 in a different area
of the parameter space.
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Figure 4.10: A strong correlation between
the model parameter gene value of the
sodium channel on the soma and the model
parameter gene value of the muscarinic
potassium channel on the soma in Treated
Batch 1. Green markers represent “good”
models, which exhibited the desired spik-
ing action potential behavior and met both
objectives. Red markers represent “bad”
models, which did not meet both objectives.
Only “good” models were used to calculate
this correlation. Each marker may be repre-
sentative of multiple models. This relation-
ship also appears in Control Batch 1 in a dif-
ferent area of the parameter space.



All Control Models
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Figure 4.11: A strong correlation between
the model parameter gene value of the
sodium channel on the axon initial segment
and the model parameter gene value of the
muscarinic potassium channel on the soma
in the combined Control group. Green mark-
ers represent “good” models, which exhib-
ited the desired spiking action potential be-
havior and met both objectives. Red mark-
ers represent “bad” models, which did not
meet both objectives. Only “good” mod-
els were used to calculate this correlation.
Each marker may be representative of mul-
tiple models. This relationship also appears
in the combined Treated group in a differ-
ent area of the parameter space. With this
strong relationship appearing in both respec-
tive combined experimental groups, it may
suggest a possible co-regulation of the bio-
logical genes that express these ion channels.
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Figure 4.12: A strong correlation between
the model parameter gene value of the
sodium channel on the axon initial segment
and the model parameter gene value of the
muscarinic potassium channel on the soma
in the combined Treated group. Green mark-
ers represent “good” models, which exhib-
ited the desired spiking action potential be-
havior and met both objectives. Red mark-
ers represent “bad” models, which did not
meet both objectives. Only “good” mod-
els were used to calculate this correlation.
Each marker may be representative of mul-
tiple models. This relationship also appears
in the combined Control group in a differ-
ent area of the parameter space. With this
strong relationship appearing in both respec-
tive combined experimental groups, it may
suggest a possible co-regulation of the bio-
logical genes that express these ion channels.



CHAPTER 5: CONCLUSIONS

SECTION 5.1: SUMMARY

This thesis work addressed the challenge of exploring the intrinsic changes that spinal mo-
toneurons undergo following a period of persistent activation, a process which can be mimicked in
a laboratory setting by treating the motoneurons with high K*. Understanding how motoneurons
change under these conditions has implications in fields such as medicine, robotics, and other fields
using biologically-inspired models.

A multi-objective genetic algorithm was used to manipulate a computational model’s ion chan-
nels to generate new computational models. Nine ion channels were identified as the parameters
for the models. The objectives to be optimized were identified as the threshold current (to induce
an action potential) and input resistance. Two experimental groups were established: one of com-
putational models representing dormant (control) motoneurons and one of computational models
representing motoneurons treated with high K™ (mimicking persistent activation). Fuzzy logic was
used to assign memberships in each objective fuzzy set to each generated model and evaluate each
model’s fitness over the two objectives.

Correlations were drawn between the TOO_LOW and TOO_HIGH fuzzy sets of each objective
and each parameter to mine fuzzy rules which could be used to compare the two experimental
groups. Importantly, examination was given to relationships between the objectives and parameters

within and across the two experimental groups.

SECTION 5.2: CONCLUSIONS AND DISCUSSION

Exploring the correlations between the objective fuzzy sets and the model parameters did not
yield any correlations strong enough to imply any fuzzy rules. Small-scale testing was able show
that the method used in this thesis can mine fuzzy rules. One likely explanation for the lack of

results with the fuzzy rules is small sample size. The parameter space is large, nine-dimensional,
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and evaluated over two objectives. The problem becomes a tradeoff of time and computational
resources for an increase in model generation. Simulating and evaluating the models is expensive,
in terms of time and computational resources. Getting larger populations of computational models
would be beneficial.

It is not just a problem of the number of models, but also of the diversity of the models. Once
the genetic algorithm identifies a highly-fit model, it replicates that model with minor variations,
creating distinct models that are not very diverse. Crossover and mutation can only go so far to
combat this. One solution could be to monitor for crowding in the search space and introduce
methods to force models away from crowded areas. Another solution could be to introduce harsher
fitness penalties for models in a crowded area of the search space. A less ideal method would be
to identify clustered models after the batch run has complete and evaluate those models again with
varied parameter values.

Interesting results in this research were found when an examination was made of the relation-
ships between the objective values and parameter gene values of the good models. Figures 4.1, 4.2,
4.3, 4.4, and 4.5 show relationships that only exist in a control batch, but not in the other control
batches or in the treated batches. The suggestion here is that it is possible that some relationships
may only exist within a specific area of the parameter space, but not in other areas.

Figures 4.6, 4.7, and 4.8 show relationships that exist when the three Control batches were
combined, but do not appear when looking at the Treated models. These relationships may provide
clues as to the types of changes that ion channels undergo following persistent activation.

There are two relationships that appear when examining both the Control and Treated models.
The Km_soma channel and the na_soma channel are both positively correlated in Control Batch 1
and Treated Batch 1, as shown in Figures 4.9 and 4.10. Perhaps more interesting is the relationship
between the Km soma channel and the na segment channel. This relationship is seen in both
the combined Control group and the combined Treated group, as shown in Figures 4.11 and 4.12.

These relationships, existing in both experimental groups, may suggest a deep link between these
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ion channels such as a possible co-regulation of the genes that express these ion channels.

SECTION 5.3: SUGGESTIONS FOR FUTURE RESEARCH

Future work should look to using an updated computational model. The model published along
with [18] seems like a likely candidate. The publication and the model are recent and may be easier
to implement in a similar manner as this thesis work.

A third objective may need to be considered, namely, the resting potential of the motoneuron
model. This thesis paid little attention to the resting potential, as it was more concerned with
threshold current and input resistance. Including resting potential as an objective may bring this
method closer to results seen in wet labs with actual motoneuron samples.

Including methods to increase diversity of generated models, like those discussed in the previ-
ous section, would greatly improve the results of examining objective and parameter relationships
and correlations.

It may be interesting to create and include experimental groups representing motoneurons with
acceptable objective values in between the control group and treated group of this thesis. The
purpose would be to investigate the “micro-rules” of these in-between states, when and where
these rules appear and disappear.

One of the original intentions of this thesis work was to include a fuzzy controller to improve
model quality during the evolutionary process. Time and implementation issues prevented that from
happening. Implementing a fuzzy output set like the example shown in Figure 5.1 to improve gene
values during evolution would help with gaining quicker convergence on good models. Known
rules would be given to the fuzzy controller and models that trigger rules may benefit from the
modifier the fuzzy controller applies to the triggered parameter gene. Software libraries such as

FuzzyLite [26] could be utilized for this purpose.
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Figure 5.1: Potential membership functions for fuzzy output sets for use with a fuzzy controller.
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APPENDIX

The tables in this appendix show the per-batch breakdown of the correlations of each objective’s
(current threshold and input resistance) TOO HIGH and TOO LOW fuzzy sets and each of the
parameters. Also shown are tables representing the combined batches of each group: Control
(untreated) and Treated (with high K*). Each row of the table shows the parameter, the objective
fuzzy set, the number of models with membership in that objective fuzzy set, the Pearson correlation

coefficient, and the p-value.
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Control Batch 1 Fuzzy Correlations

parameter objective fuzzy set number of models | correlation coef | p value
na segment par | Current threshold TOO LOW 129 0.2790 0.0014
na soma par | Current threshold TOO LOW 129 -0.0283 0.7504
na node par Current threshold TOO LOW 129 0.0888 0.3170
Km soma par | Current threshold TOO LOW 129 0.0955 0.2818
Km axon par | Current threshold TOO LOW 129 -0.1843 0.0365
Kv soma par | Current threshold TOO LOW 129 -0.0125 0.8880
Kv axon par | Current threshold TOO LOW 129 0.0600 0.4993
Kvl soma par | Current threshold TOO LOW 129 0.0891 0.3153
Kv1 axon par | Current threshold TOO LOW 129 0.1336 0.1312
na segment par | Current threshold TOO HIGH 58 0.2377 0.0724
na soma par | Current threshold TOO HIGH 58 -0.0510 0.7036
na node par | Current threshold TOO HIGH 58 -0.0451 0.7367
Km soma par | Current threshold TOO HIGH 58 0.3344 0.0103
Km axon par | Current threshold TOO HIGH 58 0.0752 0.5747
Kv soma par | Current threshold TOO HIGH 58 -0.1973 0.1377
Kv axon par | Current threshold TOO HIGH 58 -0.2381 0.0719
Kv1 soma par | Current threshold TOO HIGH 58 -0.0320 0.8116
Kvl1 axon par | Current threshold TOO HIGH 58 0.0053 0.9683
na segment par | Input resistance TOO LOW 58 0.2440 0.0650
na soma par Input resistance TOO LOW 58 -0.0779 0.5609
na node par Input resistance TOO LOW 58 -0.0729 0.5868
Km soma par Input resistance TOO LOW 58 0.3004 0.0219
Km axon par Input resistance TOO LOW 58 0.0417 0.7562
Kv soma par Input resistance TOO LOW 58 -0.1930 0.1467
Kv axon par Input resistance TOO LOW 58 -0.1989 0.1344
Kvl soma par | Input resistance TOO LOW 58 -0.0455 0.7347
Kvl axon par | Input resistance TOO LOW 58 0.0386 0.7736
na segment par | Input resistance TOO HIGH 200 0.3091 0.0000
na soma par Input resistance TOO HIGH 200 -0.0959 0.1769
na node par Input resistance TOO HIGH 200 -0.0755 0.2882
Km soma par | Input resistance TOO HIGH 200 0.1204 0.0894
Km axon par | Input resistance TOO HIGH 200 -0.0155 0.8274
Kv soma par Input resistance TOO HIGH 200 -0.4233 0.0000
Kv axon par Input resistance TOO HIGH 200 0.2296 0.0011
Kvl soma par | Input resistance TOO HIGH 200 0.0727 0.3062
Kv1l axon par | Input resistance TOO HIGH 200 0.1238 0.0807

Table A.1: Control Batch 1 fuzzy correlations.
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Control Batch 2 Fuzzy Correlations

parameter objective fuzzy set number of models | correlation coef | p value
na segment par | Current threshold TOO LOW 200 -0.0181 0.7990
na soma par | Current threshold TOO LOW 200 0.0427 0.5485
na node par Current threshold TOO LOW 200 0.1190 0.0933
Km soma par | Current threshold TOO LOW 200 -0.2031 0.0039
Km axon par | Current threshold TOO LOW 200 -0.1755 0.0129
Kv soma par | Current threshold TOO LOW 200 -0.0310 0.6634
Kv axon par | Current threshold TOO LOW 200 -0.0287 0.6867
Kvl soma par | Current threshold TOO LOW 200 0.1010 0.1548
Kv1 axon par | Current threshold TOO LOW 200 -0.1059 0.1355
na segment par | Current threshold TOO HIGH 241 -0.1147 0.0755
na soma par | Current threshold TOO HIGH 241 -0.1802 0.0050
na node par | Current threshold TOO HIGH 241 0.1665 0.0096
Km soma par | Current threshold TOO HIGH 241 0.1207 0.0613
Km axon par | Current threshold TOO HIGH 241 -0.1572 0.0145
Kv soma par | Current threshold TOO HIGH 241 -0.2390 0.0002
Kv axon par | Current threshold TOO HIGH 241 0.3438 0.0000
Kv1 soma par | Current threshold TOO HIGH 241 0.0588 0.3637
Kvl1 axon par | Current threshold TOO HIGH 241 0.0184 0.7767
na segment par | Input resistance TOO LOW 241 -0.1278 0.0476
na soma par Input resistance TOO LOW 241 -0.1676 0.0091
na node par Input resistance TOO LOW 241 0.1747 0.0066
Km soma par Input resistance TOO LOW 241 0.0846 0.1907
Km axon par Input resistance TOO LOW 241 -0.1656 0.0100
Kv soma par Input resistance TOO LOW 241 -0.2337 0.0003
Kv axon par Input resistance TOO LOW 241 0.3439 0.0000
Kvl soma par | Input resistance TOO LOW 241 0.0751 0.2452
Kvl axon par | Input resistance TOO LOW 241 0.0207 0.7489
na segment par | Input resistance TOO HIGH 258 0.1232 0.0481
na soma par Input resistance TOO HIGH 258 0.0558 0.3720
na node par Input resistance TOO HIGH 258 -0.0280 0.6539
Km soma par | Input resistance TOO HIGH 258 -0.0421 0.5013
Km axon par | Input resistance TOO HIGH 258 -0.1005 0.1072
Kv soma par Input resistance TOO HIGH 258 0.0844 0.1767
Kv axon par Input resistance TOO HIGH 258 -0.1508 0.0153
Kvl soma par | Input resistance TOO HIGH 258 -0.0893 0.1526
Kv1l axon par | Input resistance TOO HIGH 258 0.0103 0.8694

Table A.2: Control Batch 2 fuzzy correlations.
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Control Batch 3 Fuzzy Correlations

parameter objective fuzzy set number of models | correlation coef | p value
na segment par | Current threshold TOO LOW 92 0.3194 0.0019
na soma par | Current threshold TOO LOW 92 -0.2188 0.0362
na node par Current threshold TOO LOW 92 -0.1246 0.2365
Km soma par | Current threshold TOO LOW 92 -0.1011 0.3376
Km axon par | Current threshold TOO LOW 92 -0.1127 0.2846
Kv soma par | Current threshold TOO LOW 92 0.1692 0.1068
Kv axon par | Current threshold TOO LOW 92 -0.0131 0.9011
Kvl soma par | Current threshold TOO LOW 92 0.0378 0.7208
Kv1 axon par | Current threshold TOO LOW 92 0.0797 0.4501
na segment par | Current threshold TOO HIGH 231 -0.0198 0.7652
na soma par | Current threshold TOO HIGH 231 -0.2590 0.0001
na node par | Current threshold TOO HIGH 231 -0.0102 0.8771
Km soma par | Current threshold TOO HIGH 231 0.1601 0.0149
Km axon par | Current threshold TOO HIGH 231 -0.0498 0.4517
Kv soma par | Current threshold TOO HIGH 231 0.0066 0.9200
Kv axon par | Current threshold TOO HIGH 231 0.1341 0.0417
Kv1 soma par | Current threshold TOO HIGH 231 -0.0322 0.6265
Kvl1 axon par | Current threshold TOO HIGH 231 -0.0759 0.2508
na segment par | Input resistance TOO LOW 231 -0.0370 0.5758
na soma par Input resistance TOO LOW 231 -0.2232 0.0006
na node par Input resistance TOO LOW 231 -0.0294 0.6562
Km soma par Input resistance TOO LOW 231 0.1156 0.0797
Km axon par Input resistance TOO LOW 231 -0.0552 0.4040
Kv soma par Input resistance TOO LOW 231 0.0337 0.6106
Kv axon par Input resistance TOO LOW 231 0.1502 0.0224
Kvl soma par | Input resistance TOO LOW 231 -0.0355 0.5913
Kvl axon par | Input resistance TOO LOW 231 -0.0657 0.3198
na segment par | Input resistance TOO HIGH 146 0.3122 0.0001
na soma par Input resistance TOO HIGH 146 -0.0997 0.2312
na node par Input resistance TOO HIGH 146 -0.0067 0.9364
Km soma par | Input resistance TOO HIGH 146 -0.2032 0.0139
Km axon par | Input resistance TOO HIGH 146 0.1168 0.1604
Kv soma par Input resistance TOO HIGH 146 0.1131 0.1740
Kv axon par Input resistance TOO HIGH 146 0.1066 0.2005
Kvl soma par | Input resistance TOO HIGH 146 -0.0138 0.8682
Kv1l axon par | Input resistance TOO HIGH 146 -0.0130 0.8767

Table A.3: Control Batch 3 fuzzy correlations.
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All Control Models Fuzzy Correlations

parameter objective fuzzy set number of models | correlation coef | p value
na segment par | Current threshold TOO LOW 421 0.1563 0.0013
na soma par | Current threshold TOO LOW 421 -0.0266 0.5863
na node par Current threshold TOO LOW 421 0.0553 0.2575
Km soma par | Current threshold TOO LOW 421 -0.0496 0.3101
Km axon par | Current threshold TOO LOW 421 -0.1461 0.0027
Kv soma par | Current threshold TOO LOW 421 0.0064 0.8955
Kv axon par | Current threshold TOO LOW 421 -0.0127 0.7947
Kvl soma par | Current threshold TOO LOW 421 0.0847 0.0826
Kv1 axon par | Current threshold TOO LOW 421 0.0024 0.9608
na segment par | Current threshold TOO HIGH 530 0.0464 0.2862
na soma par | Current threshold TOO HIGH 530 -0.1906 0.0000
na node par | Current threshold TOO HIGH 530 0.0552 0.2045
Km soma par | Current threshold TOO HIGH 530 0.1395 0.0013
Km axon par | Current threshold TOO HIGH 530 -0.0049 0.9103
Kv soma par | Current threshold TOO HIGH 530 -0.1265 0.0035
Kv axon par | Current threshold TOO HIGH 530 0.1732 0.0001
Kv1 soma par | Current threshold TOO HIGH 530 -0.0086 0.8441
Kvl1 axon par | Current threshold TOO HIGH 530 -0.0086 0.8433
na segment par | Input resistance TOO LOW 530 -0.0570 0.1900
na soma par Input resistance TOO LOW 530 -0.1348 0.0019
na node par Input resistance TOO LOW 530 0.0485 0.2654
Km soma par Input resistance TOO LOW 530 0.0307 0.4813
Km axon par Input resistance TOO LOW 530 -0.0795 0.0676
Kv soma par Input resistance TOO LOW 530 -0.0803 0.0646
Kv axon par Input resistance TOO LOW 530 0.2238 0.0000
Kvl soma par | Input resistance TOO LOW 530 0.0173 0.6916
Kvl axon par | Input resistance TOO LOW 530 -0.0163 0.7078
na segment par | Input resistance TOO HIGH 604 0.3818 0.0000
na soma par Input resistance TOO HIGH 604 -0.0478 0.2411
na node par Input resistance TOO HIGH 604 0.0573 0.1599
Km soma par | Input resistance TOO HIGH 604 0.2004 0.0000
Km axon par | Input resistance TOO HIGH 604 0.0720 0.0772
Kv soma par Input resistance TOO HIGH 604 -0.2741 0.0000
Kv axon par Input resistance TOO HIGH 604 -0.0867 0.0332
Kvl soma par | Input resistance TOO HIGH 604 0.0209 0.6077
Kv1l axon par | Input resistance TOO HIGH 604 0.0536 0.1879

Table A.4: All Control models, fuzzy correlations.
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Treated Batch 1 Fuzzy Correlations

parameter objective fuzzy set number of models | correlation coef | p value
na segment par | Current threshold TOO LOW 162 0.2901 0.0002
na soma par | Current threshold TOO LOW 162 0.0356 0.6531
na node par Current threshold TOO LOW 162 -0.0614 0.4380
Km soma par | Current threshold TOO LOW 162 -0.0627 0.4278
Km axon par | Current threshold TOO LOW 162 0.0306 0.6996
Kv soma par | Current threshold TOO LOW 162 0.1865 0.0175
Kv axon par | Current threshold TOO LOW 162 0.0540 0.4947
Kvl soma par | Current threshold TOO LOW 162 -0.0589 0.4569
Kv1 axon par | Current threshold TOO LOW 162 -0.1474 0.0612
na segment par | Current threshold TOO HIGH 50 0.0232 0.8729
na soma par | Current threshold TOO HIGH 50 -0.3237 0.0219
na node par | Current threshold TOO HIGH 50 0.1994 0.1650
Km soma par | Current threshold TOO HIGH 50 -0.1653 0.2514
Km axon par | Current threshold TOO HIGH 50 0.0583 0.6875
Kv soma par | Current threshold TOO HIGH 50 0.0676 0.6408
Kv axon par | Current threshold TOO HIGH 50 -0.1394 0.3342
Kv1 soma par | Current threshold TOO HIGH 50 -0.2105 0.1423
Kvl1 axon par | Current threshold TOO HIGH 50 -0.0141 0.9228
na segment par | Input resistance TOO LOW 123 0.2269 0.0116
na soma par Input resistance TOO LOW 123 -0.2937 0.0010
na node par Input resistance TOO LOW 123 0.0187 0.8375
Km soma par Input resistance TOO LOW 123 0.1433 0.1139
Km axon par Input resistance TOO LOW 123 -0.0933 0.3048
Kv soma par Input resistance TOO LOW 123 -0.3023 0.0007
Kv axon par Input resistance TOO LOW 123 0.1240 0.1718
Kvl soma par | Input resistance TOO LOW 123 -0.2134 0.0178
Kvl axon par | Input resistance TOO LOW 123 -0.1685 0.0624
na segment par | Input resistance TOO HIGH 130 0.1791 0.0414
na soma par Input resistance TOO HIGH 130 -0.0870 0.3252
na node par Input resistance TOO HIGH 130 0.0036 0.9680
Km soma par | Input resistance TOO HIGH 130 -0.1820 0.0382
Km axon par | Input resistance TOO HIGH 130 0.0439 0.6202
Kv soma par Input resistance TOO HIGH 130 0.0657 0.4578
Kv axon par Input resistance TOO HIGH 130 0.0566 0.5227
Kvl soma par | Input resistance TOO HIGH 130 -0.0124 0.8890
Kv1l axon par | Input resistance TOO HIGH 130 0.0953 0.2809

Table A.5: Treated Batch 1 fuzzy correlations.
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Treated Batch 2 Fuzzy Correlations

parameter objective fuzzy set number of models | correlation coef | p value
na segment par | Current threshold TOO LOW 278 0.1351 0.0243
na soma par | Current threshold TOO LOW 278 0.0851 0.1571
na node par Current threshold TOO LOW 278 -0.0028 0.9625
Km soma par | Current threshold TOO LOW 278 -0.3211 0.0000
Km axon par | Current threshold TOO LOW 278 0.0546 0.3641
Kv soma par | Current threshold TOO LOW 278 -0.0171 0.7764
Kv axon par | Current threshold TOO LOW 278 -0.1270 0.0342
Kvl soma par | Current threshold TOO LOW 278 0.0190 0.7529
Kv1 axon par | Current threshold TOO LOW 278 0.0308 0.6093
na segment par | Current threshold TOO HIGH 143 -0.1833 0.0284
na soma par | Current threshold TOO HIGH 143 -0.2041 0.0145
na node par | Current threshold TOO HIGH 143 -0.0298 0.7242
Km soma par | Current threshold TOO HIGH 143 -0.0408 0.6281
Km axon par | Current threshold TOO HIGH 143 0.1508 0.0722
Kv soma par | Current threshold TOO HIGH 143 -0.1290 0.1246
Kv axon par | Current threshold TOO HIGH 143 0.0527 0.5317
Kv1 soma par | Current threshold TOO HIGH 143 -0.0257 0.7602
Kvl1 axon par | Current threshold TOO HIGH 143 0.1912 0.0221
na segment par | Input resistance TOO LOW 197 -0.2002 0.0048
na soma par Input resistance TOO LOW 197 -0.1622 0.0227
na node par Input resistance TOO LOW 197 -0.0057 0.9362
Km soma par Input resistance TOO LOW 197 -0.0913 0.2020
Km axon par Input resistance TOO LOW 197 0.1914 0.0070
Kv soma par Input resistance TOO LOW 197 -0.0125 0.8615
Kv axon par Input resistance TOO LOW 197 0.1177 0.0995
Kvl soma par | Input resistance TOO LOW 197 -0.0867 0.2259
Kvl axon par | Input resistance TOO LOW 197 0.0089 0.9014
na segment par | Input resistance TOO HIGH 278 0.0971 0.1060
na soma par Input resistance TOO HIGH 278 0.0820 0.1728
na node par Input resistance TOO HIGH 278 0.0278 0.6448
Km soma par | Input resistance TOO HIGH 278 -0.2697 0.0000
Km axon par | Input resistance TOO HIGH 278 0.0652 0.2787
Kv soma par Input resistance TOO HIGH 278 -0.0385 0.5225
Kv axon par Input resistance TOO HIGH 278 -0.0975 0.1049
Kvl soma par | Input resistance TOO HIGH 278 0.0015 0.9800
Kv1l axon par | Input resistance TOO HIGH 278 0.0007 0.9911

Table A.6: Treated Batch 2 fuzzy correlations.
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Treated Batch 3 Fuzzy Correlations

parameter objective fuzzy set number of models | correlation coef | p value
na segment par | Current threshold TOO LOW 69 0.3912 0.0009
na soma par | Current threshold TOO LOW 69 -0.2209 0.0682
na node par Current threshold TOO LOW 69 -0.1481 0.2246
Km soma par | Current threshold TOO LOW 69 -0.3278 0.0060
Km axon par | Current threshold TOO LOW 69 -0.0606 0.6206
Kv soma par | Current threshold TOO LOW 69 0.1758 0.1486
Kv axon par | Current threshold TOO LOW 69 0.1801 0.1387
Kvl soma par | Current threshold TOO LOW 69 0.0937 0.4436
Kv1 axon par | Current threshold TOO LOW 69 0.2642 0.0283
na segment par | Current threshold TOO HIGH 56 0.1180 0.3865
na soma par | Current threshold TOO HIGH 56 -0.5324 0.0000
na node par | Current threshold TOO HIGH 56 0.0416 0.7607
Km soma par | Current threshold TOO HIGH 56 -0.3135 0.0187
Km axon par | Current threshold TOO HIGH 56 0.0663 0.6273
Kv soma par | Current threshold TOO HIGH 56 -0.2101 0.1200
Kv axon par | Current threshold TOO HIGH 56 -0.0404 0.7673
Kv1 soma par | Current threshold TOO HIGH 56 -0.1653 0.2234
Kv1 axon par | Current threshold TOO HIGH 56 0.0446 0.7442
na segment par | Input resistance TOO LOW 99 0.0759 0.4551
na soma par Input resistance TOO LOW 99 -0.3565 0.0003
na node par Input resistance TOO LOW 99 0.0464 0.6483
Km soma par Input resistance TOO LOW 99 0.0766 0.4511
Km axon par Input resistance TOO LOW 99 -0.2177 0.0304
Kv soma par Input resistance TOO LOW 99 -0.1714 0.0898
Kv axon par Input resistance TOO LOW 99 -0.2093 0.0376
Kvl soma par | Input resistance TOO LOW 99 -0.1088 0.2836
Kvl axon par | Input resistance TOO LOW 99 0.0270 0.7910
na segment par | Input resistance TOO HIGH 69 0.3376 0.0046
na soma par Input resistance TOO HIGH 69 -0.1797 0.1396
na node par Input resistance TOO HIGH 69 -0.1102 0.3675
Km soma par | Input resistance TOO HIGH 69 -0.2933 0.0144
Km axon par | Input resistance TOO HIGH 69 -0.0487 0.6911
Kv soma par Input resistance TOO HIGH 69 0.2031 0.0942
Kv axon par Input resistance TOO HIGH 69 0.1886 0.1207
Kvl soma par | Input resistance TOO HIGH 69 0.0549 0.6539
Kv1l axon par | Input resistance TOO HIGH 69 0.2031 0.0941

Table A.7: Treated Batch 3 fuzzy correlations.
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All Treated Models Fuzzy Correlations

parameter objective fuzzy set number of models | correlation coef | p value
na segment par | Current threshold TOO LOW 509 0.1808 0.0000
na soma par | Current threshold TOO LOW 509 0.0265 0.5511
na node par Current threshold TOO LOW 509 -0.0458 0.3025
Km soma par | Current threshold TOO LOW 509 -0.1686 0.0001
Km axon par | Current threshold TOO LOW 509 0.0288 0.5172
Kv soma par | Current threshold TOO LOW 509 0.0529 0.2339
Kv axon par | Current threshold TOO LOW 509 -0.0179 0.6873
Kvl soma par | Current threshold TOO LOW 509 -0.0019 0.9663
Kv1 axon par | Current threshold TOO LOW 509 0.0012 0.9783
na segment par | Current threshold TOO HIGH 249 -0.0976 0.1244
na soma par | Current threshold TOO HIGH 249 -0.2313 0.0002
na node par | Current threshold TOO HIGH 249 0.0414 0.5153
Km soma par | Current threshold TOO HIGH 249 -0.1765 0.0052
Km axon par | Current threshold TOO HIGH 249 0.0962 0.1299
Kv soma par | Current threshold TOO HIGH 249 -0.1217 0.0551
Kv axon par | Current threshold TOO HIGH 249 -0.0498 0.4339
Kv1 soma par | Current threshold TOO HIGH 249 -0.0835 0.1892
Kvl1 axon par | Current threshold TOO HIGH 249 0.1434 0.0236
na segment par | Input resistance TOO LOW 419 0.1510 0.0019
na soma par Input resistance TOO LOW 419 -0.2706 0.0000
na node par Input resistance TOO LOW 419 -0.0085 0.8626
Km soma par Input resistance TOO LOW 419 0.1485 0.0023
Km axon par Input resistance TOO LOW 419 0.0284 0.5617
Kv soma par Input resistance TOO LOW 419 -0.0595 0.2238
Kv axon par Input resistance TOO LOW 419 0.1112 0.0229
Kvl soma par | Input resistance TOO LOW 419 -0.1208 0.0133
Kvl axon par | Input resistance TOO LOW 419 -0.0408 0.4049
na segment par | Input resistance TOO HIGH 477 0.0777 0.0900
na soma par Input resistance TOO HIGH 477 0.0082 0.8576
na node par Input resistance TOO HIGH 477 0.0019 0.9675
Km soma par | Input resistance TOO HIGH 477 -0.2382 0.0000
Km axon par | Input resistance TOO HIGH 477 0.0474 0.3016
Kv soma par Input resistance TOO HIGH 477 0.0032 0.9452
Kv axon par Input resistance TOO HIGH 477 -0.0229 0.6175
Kvl soma par | Input resistance TOO HIGH 477 0.0133 0.7728
Kv1l axon par | Input resistance TOO HIGH 477 0.0522 0.2551

Table A.8: All Treated models, fuzzy correlations.
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