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ABSTRACT

In this work, we consider the analogue of a real-variable partial differential equation. In com-

parison to what has already been thoroughly investigated, recall the non-linear Schrodinger

equation (NLSE). The NLSE, which is used in determining the wave equation for quantum

particles, is a real-variable PDE with complex coefficients. Instead, we consider equations

where both the function ω and its independent variable z belong to the complex plane. We

approach the complex problem by an intuitive approach of treating a one-complex variable

differential equation as a two-real variable partial differential equation by analyzing the real

and imaginary parts of both ω and z. We investigate thoroughly the first-order complex PDE

case and prove the existence and uniqueness theorem for these types of equations. We also

investigate the analytical solutions by considering the complex-variable Laplace transform,

which can be thought of in parallel as a two-variable Laplace transform with in R2. Upon

completion of the first-order case, we consider the higher order complex-variable PDE. We

discuss both the direct way of solving higher-order equations via systems of real-variable

PDE’s and also via first-order systems of complex-variable PDE’s, in which we implement

the methods of the previous topics. As a direct consequence of the higher-order differen-

tial equation solution method, we also discuss an alternative method of evaluating complex

contour integrals via a real-variable partial differential equation evaluation. To conclude,

we consider the time-dependent complex variable PDE analogues of the advection and wave

equations, we briefly discuss multi-complex variable PDE’s and methods that we plan to

investigate in the near future.
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Chapter 1
LITERATURE REVIEW

1.1 Functions of a Complex Variable

In this first chapter, we lay down the foundations of the topics that we plan to discuss,

define some of the commonly used terminology, and discuss some of the main results that

we use throughout this thesis. Some of the things mentioned here we may not use, but it

will help provide some contexts of what and why we are doing what we are doing, and what

we plan on doing with it.

1.1.1 Complex Numbers

We will be primarily considering the set of complex numbers, denoted C. The set of

complex numbers is defined by:

C := {a+ bi : a, b ∈ R}, (1.1)

where R denotes the set of real numbers and i :=
√
−1. We define the operations of two

complex numbers z1 := a1 + b1i, z2 := a2 + b2i in the standard way:

z1 ± z2 = (a1 ± a2) + (b1 ± b2)i

z1 · z2 = (a1a2 − b1b2) + (a1b2 + a2b1)i

z1 ÷ z2 =
a1a2 + b1b2

a2
2 + b2

2

+
a2b1 − a1b2

a2
2 + b2

2

i

(1.2)

The conjugate of a complex number z = a+ bi, denoted z̄ is defined by:

z̄ := a− bi, (1.3)
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which satisfies the following property:

z · z̄ = a2 + b2. (1.4)

The number a will be referred to as the ‘real part’ of z, and b the ‘imaginary part’ of z, each

of which will be respectively denoted by:

Re(z) := a Im(z) := b (1.5)

The ‘modulus’ of the complex number z is given by:

|z| ≡ r :=
√
a2 + b2 (1.6)

and the ‘argument’ is given by:

arg(z) ≡ θ := arctan

(
b

a

)
(1.7)

These concepts can be represented graphically in Figure 1.1. From Euler’s formula, we can

Figure 1.1: Graphical Representation of Complex Numbers

represent any complex number z in its polar form by:

z = reiθ = r(cos θ + i sin θ). (1.8)

2



1.1.2 Complex-Variable Functions

We now consider a function f : C → C. For real-variable functions, we graphically

represent the input value on the horizontal axis and the output variable on the vertical axis.

Since the input value for a complex-variable function is represented as a two-dimensional

quantity (namely the real and imaginary part), the output is also a two-dimensional quantity,

resulting in a four-dimensional function. One method of visualizing a complex function is

analyzing the real and imaginary part of a complex function. For example, we can rewrite

a complex number as z := x + iy. Therefore the image of z under f must be related to

the variables x, y, where a portion of it is real and the other imaginary. We denote the

Re(f(z)) := u(x, y) and the Im(f(z)) := v(x, y), giving us:

f(z) = f(x+ iy) = u(x, y) + v(x, y)i. (1.9)

Being able to obtain the real and imaginary part of a function will be crucial in the next

chapter to compare our numerical results to the exact results, so we will devote this section

on how to find the real and imaginary parts of the basic functions and give an example on

the composition of such functions.
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As a basic example, consider f(z) = z2. Replacing z with x+ iy, expanding and rearranging,

we can obtain:

f(z) = (x2 − y2) + (2xy)i. (1.10)

From here, we can define the real part u(x, y) := x2 − y2 and the imaginary part v(x, y) :=

2xy. It is beneficial to generalize this to the nth degree polynomial ϕ1(z) = zn, where n ∈ N.

Applying the binomial theorem to x+ iy, we have:

ϕ1(z) = (x+ iy)n

=
n∑
k=0

(
n

k

)
xn−k(iy)k

(1.11)

Since the powers of i form a cyclic group of order 4, and also the following identities hold:

i4k+0 = 1 i4k+2 = −1

i4k+1 = i i4k+3 = −i,
(1.12)

where k ∈ Z, then we can reorder (Eq 1.11) in terms of its real and imaginary parts as:

ϕ1(z) =

(
n∑
k=0

(
n

2k

)
(−1)kxn−2ky2k

)

+

(
n∑
k=0

(
n

2k + 1

)
(−1)kxn−2k−1y2k+1

)
i.

(1.13)

4



For rational functions, consider ϕ2(z) = 1
z
. The representation of this comes as a direct

result of complex division:

ϕ2(z) =
1

z

=
x

x2 − y2
− y

x2 − y2
i.

(1.14)

For the general radical function ϕ3(z) = n
√
z, we begin by writing z in its polar form reiθ

(see Eq 1.6 and 1.7 for definitions of r and θ), apply the properties of radicals and Euler’s

formula (Eq 1.8) to obtain the desired form:

ϕ3(z) = n
√
z

= n
√
r cos

(
θ

n

)
+ n
√
r sin

(
θ

n

)
i.

(1.15)

Note here that n
√
r is multi-valued with n different values; hence one may choose to only

focus on the principal value (branch) of the function. Using Euler’s identity directly for the

exponential function:

ϕ4(z) = ez

= ex · cos(y) + ex · sin(y)i,

(1.16)

one may implement the following identities to obtain representations for sin z and cos z:

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
. (1.17)

5



As an alternative, one can use the definitions of the hyperbolic trigonometric functions:

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
, (1.18)

together with the easily-verifiable identities:

sin(iz) = i sinh(z) cos(iz) = cosh(z), (1.19)

and applying the sum identity for sine (and similarly for cosine) to obtain:

ϕ5(z) = sin(z)

= (sinx cosh y) + (sinh y cosx)i.

(1.20)

For the logarithm ln(z), we can again replace z with its polar representation to obtain:

ϕ6(z) = ln(z)

= ln
√
x2 + y2 + arctan

(y
x

)
i, x 6= y 6= 0.

(1.21)

For the tangent function, we can begin with the quotient identity and use the real and

imaginary representation for sine and cosine to obtain:

ϕ7(z) = tan(z) =
sin(z)

cos(z)

=
(sinx cosh y) + (sinh y cosx)i

(cosx cosh y)− (sinx sinh y)i
.

(1.22)

The denominator of (Eq 1.22) is, for any pair (x, y) a complex number, so we can multiply

top and bottom by its conjugate and use both the circular and hyperbolic Pythagorean

6



identities to simplify in order to obtain the desired representation:

ϕ7(z) = tan(z)

=
(sinx cosx) + (sinh y cosh y)i

cos2 x cosh2 y + sin2 x sinh2 y
.

(1.23)

To find the real and imaginary parts of the function ω := arctan(z), we can first write this

as tan(ω) = z. Using both parts of (Eq 1.17) to rewrite tangent, we can obtain through

algebraic manipulation:

z =
eiω − 1

eiω(
eiω + 1

eiω

)
i
→ e2ωi =

1 + iz

1− iz
. (1.24)

Solving this for ω gives us the identity:

arctan(z) =
i

2
· ln
(

1− iz
1 + iz

)
. (1.25)

Now that we have represented our function in terms of a logarithm, we can implement (Eq

1.21). First note that the interior of the logarithm is equal to (1+y)−(x)i
(1−y)+(x)i

, so we can multiply

top and bottom by the denominator conjugate to express the interior as an (x, y)-dependent

complex number to apply (Eq 1.21) to. This gives us:

arctan(z) =
i

2
· ln
(

1− x2 − y2

(1− y)2 + x2
− 2x

(1− y)2 + x2
i

)
:=

i

2
· ln(α + βi), (1.26)

where α, β are the real- and imaginary- parts of the interior of the logarithm, which are of

course functions of x, y. We then have that the modulus and argument of the logarithmic

interior is given by:

r =
√
α2 + β2, θ = arctan

(
β

α

)
, (1.27)

hence one we apply the properties of logarithms to α + βi = reiθ , applying (Eq 1.21) and

7



rearranging, we obtain our relationship:

ϕ8(z) = arctan(z)

=
1

2
arctan

(
−β
α

)
+

1

4
ln(α2 + β2)i.

(1.28)

As an example (which we will use in the next chapter), suppose that we want the real and

imaginary part of the following constant:

c = arctan(3− 7i)− ln(4− 7i). (1.29)

For the inverse tangent, we have that (x, y) = (3,−7), hence (α, β) =
(−57

73
, −6

73

)
. Since our

(α, β) lies in quadrant III, we will add π
2

for the appropriate branch of the inverse tangent;

hence we obtain:

arctan(3− 7i) =
1

2
arctan

(
6

57

)
+
π

2
+

1

4
ln
(
(57/73)2 + (6/73)2

)
i

≈ 1.5184− 0.1209i.

(1.30)

Similarly for the logarithmic portion, we can directly use (Eq 1.21) to obtain:

ln(4− 7i) =
1

2
ln(42 + (−7)2) + arctan(−7/4)i

≈ 2.0872− 1.0517i.

(1.31)

Combining these results give us the real and imaginary part of (Eq 1.29) to be:

c = arctan(3− 7i)− ln(4− 7i)

≈ −0.5688 + 0.9307i.

(1.32)

Instead of analyzing ϕ in two pieces u, v, we can instead visualize it in one ‘four-dimensional’

graph. We can graph x, y, u as a 3-dimensional plot and then use a color map to describe

the range of v; this approach is known as the Riemann surface representation[20]. For

8



comparison of the two, we have included the real-imaginary decomposition plots as well as

the Riemann surface graph for the function ϕ6 defined above. One may also graph x, y, r as

a 3-dimensional plit and then use a color map to describe the range of θ, sometimes referred

to as an modulus-argument surface. For other representations that use other software, one

may refer to [12].

Figure 1.2: Riemann Surface for the Logarithm

Figure 1.3: Real/Imaginary Parts for the Logarithm

Figure 1.4: Modulus-Argument Surface for the Logarithm

1.1.3 Differential and Integral Calculus

If for any ε > 0 there exists a δ > 0 such that 0 < |z−z0| < δ implies that |f(z)−ω0| < ε,

then we say that the limit of f as z approaches z0 is w0 and write:

lim
z→z0

f(z) = ω0. (1.33)

9



We define continuity in the traditional way by saying that f is continuous at z0 if:

lim
z→z0

f(z) = f(z0). (1.34)

The derivative of f is given by:

d

dz
f(z) ≡ f ′(z) = lim

∆z→0

f(z + ∆z)− f(z)

∆z
. (1.35)

Recall that for the derivative to exist, the aforementioned limit must be unique regardless

of the path that you take for ∆z → 0. If the derivative of f exists at all z ∈ Ω ⊂ C, then

we say that f is ‘analytic’ on Ω. If Ω = C, then we refer to f as being ‘entire’. If there

does not exists a z ∈ C such that f ′(z) exists, we say that f is ’nowhere differentiable’; such

examples include:

g1(z) = Re(z) g2(z) = Im(z) g3(z) = |z| g4(z) = z̄ (1.36)

Verification of these being nowhere differentiable can be shown by letting ∆z approach to 0

from the real and imaginary directions and showing that the limits are not equal; see [7] for

details.

10



A property that we will take full advantage of is the following.

Theorem 1.1.1. (Cauchy-Riemann) If f = u+iv is analytic at a point z0, then the following

system holds:

ux = vy, vx = −uy (1.37)

Proof. Let f = u+ iv be analytic at z0 = x0 + iy0. Taking the derivative in the x-direction,

we obtain:

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (1.38)

Taking the derivative in the y-direction, we obtain:

f ′(z0) = −i∂u
∂y

(x0, y0) +
∂v

∂y
(x0, y0). (1.39)

Equating real and imaginary parts of the preceding two equations gives the desired result.

A necessary and sufficient condition for f to be differentiable at a point z0 is that the Cauchy-

Riemann equations hold, and each of the partial derivatives are continuous at z0; one can

see [21] for other properties. A useful property of differentiable complex functions is the

following.

Theorem 1.1.2. A function f of a complex variable z is differentiable with respect to z if

and only if ∂f
∂z̄

= 0.

Proof. By the chain rule, we have:

df

dz
=
∂f

∂z
+
∂f

∂z̄
· dz̄
dz

Since we know that g(z) = z̄ is a nowhere differentiable function, the derivative df
dz

only

exists if the partial derivative of f with respect to z̄ is identically zero.

11



Theorem 1.1.3. If the total derivative, df
dz

, of a complex-variable function f exists, it is

equal to the partial derivative of f with respect to z.

Proof. Since df
dz

exists, we know that ∂f
∂z̄

= 0. Therefore from the chain-rule, we have that

df
dz

= ∂f
∂z

.

A representation that we will take advantage of is known as the Wirtinger (representation of)

derivatives, which writes the derivative with respect to z in terms of the real and imaginary

parts of z:

∂

∂z
=

1

2
·
(
∂

∂x
− i ∂

∂y

)
∂

∂z̄
=

1

2
·
(
∂

∂x
+ i

∂

∂y

) (1.40)

One can easily verify that these representations (Eq 1.40) satisfy (or fail) simultaneously

with the validity of the Cauchy-Riemann equations. We will also refer to a function as being

‘harmonic’ if the real and imaginary parts of f satisfy Laplace’s equation:

∇2f ≡ ∂2f

∂x2
+
∂2f

∂y2
= 0. (1.41)

One can show that f is analytic at a point z0 if and only if f has a Taylor series about z0

given by:

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k. (1.42)

If we choose z0 = 0, we obtain the MacLaurin series for f :

f(z) =
∞∑
k=0

f (k)(0)

k!
zk. (1.43)

For approximation purposes, we may only want to take the first N + 1 terms of the Taylor
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series. We will call this the N th-order Taylor polynomial of f and is given by:

f(z) ≈ f(z0) + f ′(z0)(z − z0) +
1

2!
f ′′(z0)(z − z0)2 + ...+

1

N !
f (N)(z0)(z − z0)N . (1.44)

For numerical purposes, we tend to want the Taylor series about the point z, which gives us:

f(z + ∆z) = f(z) + ∆z · f ′(z) +
(∆z)2

2!
f ′′(z) + ... (1.45)

We can also generalize this one-dimensional (z) Taylor series to two complex dimensions

z1, z2. Let us assume that it will be centered about (z1, z2) = (0, 0); then:

f(z1 + ∆z1, z2 + ∆z2) = f(z1, z2)

+
1

1!
· (z1 · fz1(z1, z2) + z2 · fz2(z1, z2))

+
1

2!
·
((

2

0

)
z21 · fz1z1(z1, z2) +

(
2

1

)
z1z2 · fz1z2(z1, z2) +

(
2

2

)
z22 · fz2z2(z1, z2)

)
+ ...

(1.46)

For sequences of constants ak and bj, one defines the Laurent series of a function f around

z = z0 by:

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
j=1

bj(z − z0)−j. (1.47)

Here we see that the first summation is precisely the Taylor series, which is sometimes re-

ferred to as the analytic portion of the Laurent series, and the second summation gives

powers on the singular portion of z; the second summation is also sometimes referred to

as the principal part of the Laurent series. A more extensive discussion of convergence of

Taylor series and a most important Laurent series can be found in [7].

We define the coefficient, b1 of the Laurent series to be the residue of f at the point z = z0
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and denote it by:

b1 := Res(f ; z0) (1.48)

One can see that if the principal part of the Laurent series only goes up to j = 1, which we

then say that z = z0 is a simple pole of f , then one can readily find that:

Res(f ; z0) = lim
z→z0

(z − z0)f(z). (1.49)

If the pole has higher order, say n, then one can find, for m ≥ n, that:

Res(f ; z0) =
1

(m− 1)!
· lim
z→z0

dm−1

dzm−1
[(z − z0)m · f(z)] . (1.50)

One can find a summation representation of (Eq 1.50) by applying the Leibniz rule for

derivatives if desired. One important application of residues is the calculation of contour

integrals. Suppose that γ is a positively oriented simple closed contour. Then if ak are the

residues of f that are located within γ, then the Cauchy-Residue theorem (see [7] for the

proof) is given by:

∮
γ

f(z) dz = 2πi
∑
∀k

Res(f ; ak). (1.51)

As an example, consider:

I =

∫ ∞
0

cosx

x2 + 1
dx (1.52)

First the integral I, note that this integral can be rewritten as
∫∞

0
f = 1

2

∫∞
−∞ f due to the

parity of f . We then would like to find a contour integral in the complex plane that is related

to that of I. We know that cosx is the real part of eix, hence we can consider the following
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integral:

∮
γ

eiz

z2 + 1
dz. (1.53)

For our contour γ, we can consider the line segment from x = −R to x = R (which will

constitute our integral as R→∞) and denote as γ1, and the upper half of the circle of radius

R centered at the origin and denote as γ2. Here, we orient our contour counter-clockwise.

Hence:

∮
γ

eiz

z2 + 1
dz =

∫
γ1

eix

x2 + 1
dx+

∫
γ2

eiz

z2 + 1
dz. (1.54)

First note that the integrand f has two singularities, z = ±i, where only z = i lies inside

γ. One can find that Res(f ; i) = e−1

2i
, hence

∮
γ
f = 2πi · e−1

2i
= π

e
. For the semicircle,

we can parametrize the path via z = Reiθ, where 0 ≤ θ ≤ π. Through substitution and

simplification, we can then write (Eq 1.54) as:

π

e
=

∫ R

−R

eix

x2 + 1
dx+

∫ π

0

RieiθeiR cos θe−R sin θ

R2e2iθ + 1
dθ. (1.55)

Note that 0 ≤ θ ≤ π, hence 0 ≤ sin θ ≤ 1, hence as R → ∞, one can find that the integral

over γ2 vanishes to 0. After applying Euler’s formula, we have:

π

e
= lim

R→∞

(∫ R

−R

cosx

x2 + 1
dx+ i

∫ R

−R

sinx

x2 + 1
dx

)
. (1.56)

Equating real parts gives us the result, I = π
2e

.
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1.1.4 The Gamma Function and Integral Transforms

Consider a function f on a domain Ω and let Ω be partitioned into sub-domains Ωk and

let tk ∈ Ωk be tags in each sub-domain. Then we define the Riemann sum Sn by:

Sn =
n∑
k=1

f(tk) · (zk − zk−1). (1.57)

If we take the limit as n→∞, and the corresponding limit exists and is equal to L, we say

that f is ‘integrable’ on Ω and we call the limit the integral of f on Ω, and denote this by:

lim
n→∞

Sn = L :=

∫
Ω

f(z) dz. (1.58)

One of the complex variable functions that is defined by an integral is the gamma function

[28], which is given by:

Γ(z) =

∫ ∞
0

tz−1e−t dt. (1.59)

This is also known as the Mellin transform of e−t, whose properties and applications can be

found in [18]. One of the simplest properties of the gamma function is its connection to the

factorial:

Γ(x) = (x− 1)!, x ∈ N. (1.60)

Substituting x+ iy for z in the definition of Γ(z) gives us:

Γ(z) =

[∫ ∞
0

cos(y ln t)tx−1e−t dt

]
+ i

[∫ ∞
0

sin(y ln t)tx−1e−t dt

]
(1.61)

If one were to plot the real part on the z-axis and the imaginary part via a color contour,

one will obtain a relatively flat plane since the growth of the factorial is extreme compared

to preceding numerical values, but the color bar states that the argument does change

16



depending on the value in question. An alternative to graphing complex functions is to

graph the modulus of the function on the z-axis and graph the argument of the function

via a color contour. There are several other integral-defined functions such as the sine

Figure 1.5: Modulus-Argument Graph of the Gamma Function

integral, error function, Bessel function, and Fresnel integral, to name a few, but we will

only introduce ones and their properties when they arise in our results and analysis. Other

integral-represented functions that have a strong purpose are ones that transform functions

of one variable into a function of another variable; in particular, the Fourier transform maps

a function of time t into a function of frequency ω. One transformation is known as the

Laplace transform, which is defined by:

Lf (ξ) =

∫ ∞
0

f(x)e−xξ dx, (1.62)

which exists provided that f is of exponential order (see [22] for details). The Laplace trans-

form is used in several different applications, one of them stemming from their application

to solve differential equations, say y′(x) = f(x, y) by taking advantage of the property:

L{y′} = ξL{y} − y(0). (1.63)
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One can recursively apply this procedure to solve any order ordinary differential equation

initial value problem using this strategy, to obtain an equation of the form:

L{y} = F (ξ) → y = L−1{F}.

Unless the inverse Laplace transform of F is trivial, it is sometimes difficult to find the

exact elementary representation of y (if it even exists). We will investigate and apply the

2-dimensional analogue of the Laplace transform and denote it accordingly by:

Lf(x,y)(ξ1, ξ2) =

∫ ∞
0

∫ ∞
0

f(x, y) e−xξ1−yξ2 dx dy. (1.64)

We will discuss properties and some identities when the appropriate time arises. Another

important transformations is the Fourier transform:

Ff (ξ) =

∫ ∞
−∞

f(x) · e−2πixξdx = F (ξ). (1.65)

To go in the reverse direction, the inverse Fourier transform is defined similarly (ignoring

the normalization factor):

F−1
F (x) =

∫ ∞
−∞

F (ξ)e2πixξdξ = f(x). (1.66)

Since the Fourier transform maps a real-variable function into the complex domain (tradi-

tionally from the time to frequency domains), it has a real part and imaginary part. The

modulus of the Fourier transform is traditionally referred to as the ‘Fourier spectrum’ of

f , and the argument of the Fourier transform is referred to as the ‘phase angle’ of f , each

of which are defined in the intuitive fashion. More details on the Laplace transform, its

existence and special properties can be found in [22], and another transformation known as

the Mellin transform is described well in [18], which we will leave to the interested reader to
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explore [5].

The Fourier transform satisfies several properties that makes it useful, the first of them

being a linear operator. The second property is the shift theorem, which states that a

horizontal shift in the domain results in a amplitude change of the Fourier transform:

F [f(x− x0)](ξ) = e−2πiξx0 · F (ξ). (1.67)

If f is two-dimensional and f is rotated by some angle φ, then the Fourier transform will

also be rotated by φ. Since the Fourier transform is defined to be a spatial transformation,

it has no effect on time-dependant partial derivatives:

F [ft](ξ) =
∂

∂t
F [f ](ξ) (1.68)

Using integration by parts inductively on the spatial partial derivatives of a function, one

obtains the ever-so-useful identity:

F
[
∂nf

∂xn

]
(ξ) = (iξ)n · F [f ](ξ), (1.69)

which intuitively transforms differential representations into algebraic ones.

1.1.5 Recent Results in Complex Analysis

Aside from the things mentioned above, another field that is highly important is the

theory of contour integration. Many texts discuss this field including [7], [8], and [11]. The

theoretical aspects go as far as the theory of complex manifolds [13] to theory of functions

of several complex variables [14]. We will investigate the several-variable portion of complex

analysis, but only from the numerical perspective.
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1.2 Numerical Analysis of Functions

Since the calculus required to solve some problems may be intensive, it is highly use-

ful to analyze the numerical methods to solve mathematical problems. Take for example

(Eq 1.61); these improper integrals can not be evaluated analytically, requiring numerical

approximations of the integrals (say, by Riemann sums).

1.2.1 Algebraic Equations

Due to the highly complex nature of the world we live in (note the multiple interpreta-

tions of the word ‘complex’ in this sentence), there are many equations in which the exact

solution is not easily or even possibly obtainable. Take for example the equation:

3−x = 4x.

We know that this equation has exactly one solution since the graphs of y = 3−x and y = 4x

intersect exactly once, but the solution of this equation does not exist in terms of elementary

functions. To solve, consider an equation of the form ϕ(x) = 0, and let ϕ have properties

that allow ϕ to have a Taylor series. Then the first-order Taylor polynomial approximation

is given by:

ϕ(x) ≈ ϕ(x0) + (x− x0)ϕ′(x0). (1.70)

Since we desire ϕ(x) ≡ 0, solving for x gives us:

x ≈ x0 −
ϕ(x0)

ϕ′(x0)
:= x1. (1.71)

This then motivates an iterative process; for some initial guess x0, for k > 0 we have:

xk+1 ≈ xk −
ϕ(xk)

ϕ′(xk)
, (1.72)
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which we will refer to as the Newton-Raphson (N. R.) method. Since ϕ is known through-

out its domain, we can approximate its derivative with a second-order central-difference

approximation (or higher if desired):

ϕ′(xk) ≈
ϕ(xk + h)− ϕ(xk − h)

2h
, (1.73)

where h is sufficiently small. It is clear to see that if x0 ∈ R, then the approximated solution

xk will also be real. On the other hand, if the initial guess is complex, then the N.R. method

should converge to a complex value. As an example, consider the following second-degree

polynomial equation:

5z3 − (18− 33i)z2 − (17 + 60i)z + (6 + 43i) = 0. (1.74)

By the Fundamental Theorem of Algebra, there exists 3 complex solutions to this equation.

Since all of the coefficients of the polynomial are algebraic, it is safe to choose a transcendental

intial guess, say x0 = π · i. This assumption is easily verifiable since the coefficients of f are

algebraic, the roots of f ′ (which is where N.R. fails) are also algebraic. Applying Newton-

Raphson, we obtain the first solution to be z1 = 3
5

+ 2
5
i. Since this is a polynomial, we can

use synthetic division of z1 into ϕ(z) to obtain our remainder polynomial. Applying Horner’s

method (sometimes referred to simply as synthetic division), we obtain Figure 1.6. Applying

Figure 1.6: Horner’s Method - Step 1

N.R. on the second-degree quotient, we obtain the second solution to be z2 = 1−2i. Applying
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Horner’s method again, we obtain Figure 1.7. Applying N.R. on the linear quotient (which

Figure 1.7: Horner’s Method - Step 2

can be by-passed to save computation time if necessary since the closed form is unique), we

obtain the third solution to be z3 = (2 − 5i). Let pc = [5,−18 + 33i,−17 − 60i, 6 + 43i]

and qc represent the vectors of the coefficients of the original polynomial p and the obtained

polynomial q(z) =
∏n−1

k=1(x − zk). We can measure the accuracy of a factorization via the

following norm:

||p− q|| :=

√√√√n−1∑
k=1

(pck − qck)2. (1.75)

Our example gives us the exact factorization, hence the norm is trivially 0 in our case.

Consider a function f(x) and a point p ∈ dom(f). Then we say that p is a fixed point for f if

f(p) = p. We mention this because it gives rise to a method of being able to solve equations

for a variable x that can be written in the form x = f(x), where f is an algebraic function.

For the function at the beginning of the section we know that for the equation:

x =
1

4
· 3−x := f(x), (1.76)

we know that whatever solution x makes this true, is a fixed point for the function f . One can

show, using the mean value theorem, that if f exists on some interval (a, b) and the derivative

f ′ exists on this interval and satisfies the property that |f ′(x)| ≤ k < 1, ∀x ∈ (a, b) (this is

sometimes referred to as Lipshitz continuous), then the fixed point p exists in (a, b) and it
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is also unique.

We know that our function f has the property that |f ′(0)| = ln(3)
4

and the function |f ′|

is always decreasing for (0,∞), therefore there is a unique fixed point for f , and hence

x = f(x) has a unique solution p ∈ (0,∞). Once you find the interval (a, b) for which the

fixed point x = p exists, we must then find p. Suppose we give an initial guess x0 ∈ (a, b)

and consider the sequence defined by:

xk+1 = f(xk), x0 is initial guess,

and define the error term ek+1 to the exact solution p by:

ek+1 := |xk+1 − p|

≡ |f(xk)− f(p)|.

Using the mean value theorem, we have:

ek+1 = |f ′(p)| · |xk − p|

= k · ek.

If the point p is unique, then k < 1, hence ek+1 is a decreasing Cauchy sequence in which

converges to p. This method of solving equations is known as the fixed-point iteration

method.

1.2.2 Ordinary Differential Equations

The field of ordinary differential equations (ODE’s) have several methods that solve

initial value problems. To name a few:

• Euler, Mid-Point, Taylor
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• Backward Euler, Adams-Moulton, Backward Differentiation Formulas (BDF).

The first set is referred to as ‘explicit’ (being able to calculate the unknown directly), and the

second set ‘implicit’ (having to solve an equation for the unknown). Each method has their

set of advantages, disadvatanges, and convergence criterion which is developed beautifully

in [10] and [19]. A class of methods that tend to be occasionally preferred are ‘adaptive

methods’, in which the interval size ∆x changes depending on the behavior of the solution;

that is, if the solution changes rapidly, go back and make your ∆x smaller (and vice versa).

We will avoid the use of such methods due to the computational cost they have for arbitrarily

large N . For the solutions of initial value problems

dy

dx
= f(x, y), y(x0) = α, (1.77)

we will use the standard Runge-Kutta of Order 4 method (RK4) due to its simplicity in

implementation and high order of accuracy; the algorithm is given below:

w1 = α

k1 = h · f(xk, wk)

k2 = h · f
(
xk +

h

2
, wk +

1

2
k1

)
k3 = h · f

(
xk +

h

2
, wk +

1

2
k2

)
k4 = h · f(xk+1, wk + k3)

wk+1 = wk +
1

6
(k1 + 2k2 + 2k3 + k4), k = 1, 2, ..., N + 1

(1.78)

If such a case may arise where the RK4 method yields high error (which occurs in the study

of stiff equations), we may switch to adaptive methods or BDF’s temporarily [27], but will

mention so if that switch is made. For the first-order system of initial value problems, one can

vectorize the Runge-Kutta method. and for the nth order ODE, one can use the substitutions

u1 = y, ..., uk = y(k−1), differentiate each u and re-substitute to obtain a system of first-order
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IVP’s of u, which can then be solved for y.

1.2.3 Partial Differential Equations

For partial differential equations, we will focus on (at least) two approaches. The first

will be finite-difference methods, where the partial derivatives are approximated using finite

differences. We will represent the solution value u(xn, tk) by ukn. To analyze the stability of

finite-difference methods we will use Von-Neumann analysis [17], which begins by replacing

ukn by λkein∆x∆t, where ∆x and ∆t are the spatial- and time-step length and λ the eigenvalue

of the finite-difference method. Once replacement is made, we obtain an expression of λ in

terms of ∆t and ∆x (and other constants of the PDE) and determine values for which

|λ| ≤ 1, which produces stability. Typically the forward-difference in time is unstable,

backward-difference is unconditionally stable, and central-difference is conditionally stable.

Since we will be considering complex-variable PDE’s, we will prove stability to verify whether

these conditions carry over to the complex case. As an example of solving PDE’s, consider

the wave equation in one spatial dimension:

ut = κuxx. (1.79)

Approximating ut with forward-difference (for simplicity) and uxx with central, we obtain:

uk+1
n = un + κ

∆t

(∆x)2
(ukn+1 − 2ukn + ukn−1). (1.80)

Applying Von-Neumann analysis and simplifying gives us the equation:

λ = 1 + κ
∆t

(∆x)2
[2 cos(∆t∆x)− 2]. (1.81)

If we define r := 2κ ∆t
(∆x)2

and assume that κ > 0, then r > 0 as well. For stability λ ≤ 1,

hence r[cos(∆x∆x)− 1] < 0. Since cos(∆x∆t) ≤ 1 for any ∆x,∆t, we have that this finite-
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difference scheme will be stable for any parameter values.

The second method that we will generalize to complex PDE’s is spectral methods. Since we

know that the derivative operator is linear, we can represent the heat equation in operator

form:

ut = κD2(u), (1.82)

where D2 = D(D) = ∂
∂x

(
∂
∂x

)
. Discretizing u into a vector, it remains to obtain a matrix rep-

resentation of D. One discretization of D is known as the Chebyshev-spectral differentation

matrix, which has the structure shown in Figure 1.7. The motivation and derivation of this

Figure 1.8: Spectral Differentiation Matrix

matrix can be found in [26]. Applying a forward difference approximation to ut, we obtain:

uk+1
n = ukn + κ∆t ·D2(u). (1.83)

This approach is very easy to implement compared to finite-difference methods and gives

beautiful results as well. Stability for the spectral method can easily be determined by

ensuring that the eigenvalues lie within the unit circle [15]. The difficulty of spectral methods
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for extension to our case will be the derivation of the spectral representation of the complex

derivative (as we will discuss later).

1.2.4 Recent Results in Numerical Analysis

A concise and well-organized summary of numerical methods, both new and old, can

be found in [1]. This source covers the discussion of stiff- and mild stiff- ODE’s, single

step, multi-step, implicit, explicit, pseudo Runge-Kutta, Fehlberg, and implicit Runge-Kutta

methods; discussion of their stability is also included. The use of spectral methods has been

famous for decades [4]. The highlight of spectral methods is primarily in the solution of

non-linear partial differential equations, such as the Navier-Stokes (N.S.) equation [2] and

the Fokker-Planck-Landau (FPL) equation [16], which is used in plasma physics. Due to

its complexity, the field of complex partial differential equations is a thin field, but some

theoretical analysis has been established [9] [3]. Some partial differential equations have

complex parameters, such as the non-linear Schrodinger-equation [6]; this equation has seen

vast applications in optics and quantum physics. Since the analytical and theoretical nature

of complex PDE’s has proven to be vastly complex, we investigate the numerical nature of

those equations and their solutions.
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Chapter 2

COMPLEX-VARIABLE FIRST-ORDER DIFFERENTIAL EQUATIONS

In this chapter, we begin the study of complex-variable differential equations. We will

begin with the standard sequence of differential equations of two different types: ω′ = f(z)

and ω′ = f(z, ω). Our methodology will be based on the theoretical method presented. The

results will be based and discussed on accuracy to exact solution (when available). The

results in (2.1) and (2.2) will be based on the geometric nature of the surface for qualitative

analysis, and also give error-based measures for a quantitative analysis. The results in (2.3)

will discuss the problems in (2.1) and (2.2) in a qualitative approach. Section (2.4) will

follow up to (2.1) in regards to the theoretical aspects.

2.1 One-Dimensional Complex Spatial IVP’s, where f = f(z)

The first problem that we will be interested in is the following initial value problem

(IVP):

dω

dz
= f(z), ω(z0) = ω0. (2.1)

Here, z = x + iy is the standard complex number with x, y ∈ R and ω = u + iv with

u, v being real valued functions of the variables x, y. Since we are considering the initial

value problem of ω with respect to z, it is necessary for ω to be analytic in the domain of

definition. Hence for the solution of the first-order initial value problem to exist, it follows

as an immediate result that u, v satisfy the Cauchy-Riemann equations. By properties of

the differential operator (discussed in section 1.1.3), we know that the existence of solution

to our initial value problem exists and is explicitly given by:

ω(z) = ω0 +

∫ z

z0

f(t) dt; (2.2)
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therefore the problem is well-posed. This does not imply that the solution is unique, as we

will discuss at the end of this chapter. From Theorem 1.1.3, the initial value problem is

equivalent to the following complex partial differential equation:

∂ω

∂z
= f(z). (2.3)

For any function f = f(z), we can always obtain the real and imaginary parts of f since it is

a function of z only. For the time being, we define Re(f) = a(x, y) and Im(f) = b(x, y). If

we decompose our unknown function ω into its corresponding unknown real and imaginary

parts u, v, we obtain the following partial differential equation:

(
∂u

∂z
+ i

∂v

∂z

)
= a+ bi. (2.4)

From (Eq. 1.23), we can rewrite the complex differential operator ∂ω
∂z

in terms of u, v, x, y to

give us the following system:

ux + vy = 2a

vx − uy = 2b

(2.5)

Since u, v satisfy the C.R. equations, in equation (2.5) replace vy with ux and vx with −uy

to obtain a partial-system for u:

ux = a(x, y) uy = −b(x, y) (2.6)

Similarly, in equation (2.5) replace ux with vy and uy with −vx to obtain a partial-system

for v:

vx = b(x, y) vy = a(x, y) (2.7)
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As a demonstration, so solve for the real-part of our solution, u, we can use the system given

in (Eq 2.6) to solve in each direction. To solve numerically, we apply a first-order finite

difference to (Eq 2.6) to obtain:

u(x+ h, y) = u(x, y) + h · a(x, y)

u(x, y + h) = u(x, y)− h · b(x, y)

(2.8)

Our initial condition is ω(z0) = ω0, where z0 = x0 + iy0 and ω0 = u0 + iv0. Since we are given

these initial conditions, one can obtain the solution of u along the solution plane y = y0 by:

u(x0 + h, y0) = u(x0, y0) + h · a(x0, y0)

u(x0 + 2h, y0) = u(x0 + h, y0) + h · a(x0 + h, y0)

...

u(xf , y0) = u(xf − h, y0) + h · a(xf − h, y0).

(2.9)

Here, xf represents a user-defined end of the computational domain of x. We can then obtain

the solution along y = y0 + h := y1 from (Eq 2.8.2) to be:

u(x0, yk+1) = u(x0, yk)− h · b(x0, yk), k = 1, 2, ... (2.10)

We can iterate this process for all y until y = yf , where yf is the user-defined end of the

computational domain of y. Using the system in (Eq 2.7), we can use this same procedure

to find the solution v on x ∈ [x0, xf ], y ∈ [y0, yf ]. At this point, we will have the solution

of u, v ∈ D(x, y) and hence we have the solution ω ∈ D(z). In this process, we initialized

through the y direction and solved through the x direction; we will refer to this as the “Left-

to-Right” method (or simply LR). A diagram illustrating the LR method and a similar and

equivalently computational method - initialize through x, solve through y, which I will refer

to as the “Bottom-to-Top” (BT) method - is shown in Figure 2.1. The two methods are

theoretically the same, but we will aim to verify that the produce the same numerical results.

30



Figure 2.1: Solution Strategies for One Complex Spatial Dimension
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To demonstrate the aforementioned method(s) of solving ω′ = f(z), we will choose the

following examples for which the solution is easily accessible for verification. Consider:

dω

dz
= 2z, ω(2 + i) = −3 + 7i (2.11)

Since z0 = 2 + 1i, we will choose our computational domain to be D = [2, 7] × [1, 6]. We

also will use a step size of h = 0.05 in both the x and y directions (this can be changed

based on user preference). Implementing the method described in this section, we obtain

the following results.

Figure 2.2: Real/Imaginary Parts for Solution of ω′ = 2z via LR-Method
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To determine the accuracy of these numerical results, one can find that the exact solution

to Eq. (2.11) is given by

ω(z) = z2 − 6 + 3i → u(x, y) = Re(ω) = x2 − y2 − 6

→ v(x, y) = Im(ω) = 2xy + 3

(2.12)

We can graph the exact solutions on on computational domain D and obtain the geometry of

the solution that our numerical solution should resemble. Before implementation on another

Figure 2.3: Real/Imaginary Parts for Exact Solution of ω′ = 2z

example, it is to wonder whether the BT method gives the same result (it should) as the LR

method. Before (Eq 2.6-7), we initialized y with the equations uy = −b and vy = a, for the

BT method, we will now initialize x with the equations ux = a and vx = b.
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Once initialization is complete, we can use the alternate set of equations to solve through

the y direction. Performing this sequence gives the following results.

Figure 2.4: Real/Imaginary Parts for Solution of ω′ = 2z via BT-Method

Based on the surfaces obtained from our numerical solution, it qualitatively seems that the

LR and BT methods give us the same solutions. To determine if they are actually equal, we

can consider the following difference surfaces:

Du := |uLR − uBT |

Dv := |vLR − vBT |
(2.13)

If these methods give the same solution, then we know that Du = Dv = 0, ∀ (x, y). In Figure

2.5, the graphs for Du and Dv are presented.
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Figure 2.5: Difference Surfaces for the LR and BT Solutions of u and v (Ex. 1)

In terms of quantitative differences, we see that the LR and BT methods for computing the

solution of Re(ω) = u both give the same the same solution. This can be seen by noting that

the maximum of |uLR − uBT | ≈ 10−14 ≡= 0. As for the numerical solution to Im(ω) = v,

we see that the maximum of |vLR − vBT | ≈ 0.5. It would be careless to say that this is

approximately equal to 0 in the same sense as the approximation to u, but one can at least

claim that since the actual solution of v tends to about 80 whereas u tends to about 40,

then the differences in the approximation may tend to be a bit higher. Another interesting

observation is the symmetric absolute-value plane of Dv. To better understand this, consider

the three non-initial vertices of D and the exact and numerical values (Figure 2.6).

Figure 2.6: Error Analysis for Domain Corners (Ex. 1)
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As mentioned before, the approximations for u from both LR and BT give the same results;

but for v we see something interesting. Keep in mind that our domain of definition is

D = [2, 7] × [1, 6]. The LR method begins by initializing the y, hence obtains an accurate

value for (2, 6). The BT method begins by initializing the x, hence obtains an accurate

value for (7, 1). As we see the methods give approximately correct answers for the opposing

corners and a relatively accurate approximation to the terminal corner of D. We will take

advantage of these observations at a later time, and instead will improve the accuracy of

these methods in the next section. As a secondary demonstration of this method, consider:

dω

dz
=

1

z
, ω(1) = 2− 5i (2.14)

whose solution (as shown in Eq. (1.15)) is given by:

ω(z) = ln(z) + 2− 5i → u(x, y) = Re(ω) = ln
√
x2 + y2 + 2

→ v(x, y) = Im(ω) = arctan
(y
x

)
− 5.

(2.15)

We will consider the computational domain D = [1, 4]× [0, 3].

Figure 2.7: Real/Imaginary Parts for Exact Solution of ω′ = 1
z
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As was the first example, the following solutions will be calculated with the same exact

method as was described with h = 0.05.

Figure 2.8: Real/Imaginary Parts for Solution of ω′ = 1
z

via LR-Method

Figure 2.9: Real/Imaginary Parts for Solution of ω′ = 1
z

via BT-Method

As was the first example, the LR and BT methods qualitatively give the same solution

surface; but as Figure 2.10 shows, the solutions are (to the fraction of a decimal) different

from one another.
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Figure 2.10: Difference Surfaces for the LR and BT Solutions of u and v (Ex. 2)

Since the difference surfaces for u and v are not-exactly zero (maximum of approximately

0.045 for u and 0.035 for v), then it becomes of interest which method is closer to the exact

solution. Since the curvature of the exact surfaces are not quite constant, we will choose

both the corners of D and the mid-points of the boundary of D as well for comparison (see

Figure 2.11).

Figure 2.11: Error Analysis for Domain Corners and Boundary Mid-points (Ex. 2)
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As we see, the LR and BT methods take turns throughout the domain as to which is the

better approximation. Again, we will take advantage of these observations at a later time.
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2.2 Accuracy Improvements via Step Size and Finite-Difference Methods

So far in this dialogue, we have been focused on solving the equation:

dω

dz
= f(z), ω(z0) = ω0.

By using the properties of analytic functions, we realized that solving this problem for

ω = u+ iv was equivalent to solving the system:

ux = Re(f) uy = −Im(f)

vx = Im(f) vy = Re(f)

(2.16)

To solve these first-order PDE’s, we used a first-order difference approximation for the partial

derivatives, where:

ux ≈
u(x+ h, y)− u(x, y)

h
uy ≈

u(x, y + h)− u(x, y)

h
, (2.17)

and similar for vx and vy. As we know, these approximations for the partial derivatives are

first-order and can easily be derived from the Taylor series.

Regardless that we only used a first-order approximation for the derivative, we realized

that the solutions that we obtained for u and v were almost identical to that of the exact

solutions, up to a small amount of error, for both the LR and BT methods of solving through

the computational domain D. This section is devoted to the improvement of the solutions

and the measurement and reduction of the error.
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We will use the same two examples as were mentioned in the previous section and refer to

them as “Example 1” (Eq 2.11) and “Example 2” (Eq 2.14), respectively. For the differential

equations ω′ = f , we will refer to the real/imaginary part of the exact solutions simply as

u and v, we will refer to the real/imaginary parts of the numerical LR solution as uLR and

vLR, and the real/imaginary parts of the numerical BT solution will be denoted as uBT and

vBT . We will measure the quantify the measure of error, E, using two different measures.

The first measure will be defined by taking the L2 norm of the difference of the numerical

solution and the exact solution. For example:

EL2
uLR := ||u− uLR||2 ≡

√∑∑
|u− uLR|2 (2.18)

The second measure will be defined by taking the relative percent difference (RPD) between

the numerical solution and the exact solution. For example:

ERPD
uLR := 2 · u− uLR

|u|+ |uLR|
. (2.19)

Here, we define ERPD = 0 if the denominator of this expression is equal to 0. Also note

that the RPD measure of error takes into account whether or not the numerical solution

is dominantly greater than the exact solution or dominantly less solution, where the value

always lies between −2 ≤ RPD ≤ 2.

To begin, let us consider the numerical solution of both Example 1 and Example 2 with

h = 0.1. The value of h may be desired to be “large” compared to standard methods due

to memory constraints, but as technology improves this concern will vanish. Computing

both the L2 and RPD error measures for both examples with h = 0.1 gives us the following

results.

In terms of understanding, we desire both of these errors to be close to 0 as possible. The

value of the L2 norm is not bounded above, so the interpretation of it depends solely on the
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Figure 2.12: L2 and RPD Error Measures for LR and BT Methods w/ h = 0.1

surface behavior; whereas the RPB measure is bounded above and below. We see that the

RPD value is less than 1% for Example 1 and approximately 1% for Example 2. To make

our approximations more accurate, we can simply make h closer to 0. The results for both

h = 0.01 and h = 0.001 are shown in the following figures.

Figure 2.13: L2 and RPD Error Measures for LR and BT Methods w/ h = 0.01

Figure 2.14: L2 and RPD Error Measures for LR and BT Methods w/ h = 0.001
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The question now remains is how we can improve the accuracy of our solution even more.

As previously mentioned, the partial derivatives in (Eq 2.16) were approximated with a

first-order forward-difference approximation, as shown in (Eq 2.17). It is intuitive that if

we increase the order of accuracy for our approximation, then the accuracy of our methods

should improve.

To begin, it should be necessary to convince that the methods discussed before are ac-

tually first-order. Recall that for an analytic function f of two variables x, y, its first-order

Taylor series is given by:

f(x+ hx, y + hy) = f(x, y) + fx(x, y) · hx + fy(x, y) · hy +O(h2
x + h2

y). (2.20)

To obtain an approximation for fx, we set hy = 0 and will define h := hx. This gives:

f(x+ h, y) = f(x, y) + fx(x, y) +O(h2). (2.21)

Rearranging gives us:

fx(x, y) =
f(x+ h, y)− f(x)

h
+O(h) (2.22)

An analogous relationship can be developed for fy, which supports that (Eq 2.8) and all

immediate equations from it are first-order approximations. We will now take more terms

of the Taylor series in hopes for better accuracy.
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Now consider the second-order Taylor series:

f(x+ hx, y + hy) = f(x, y) + fx(x, y) · hx + fy(x, y) · hy+
1

2

[
fxx(x, y) · h2

x + 2 · fxy(x, y) · hxhy + fyy(x, y) · h2
y

]
+O(h3

x + h3
y).

(2.23)

Similar to before, we set hy = 0 and define h := hx in hopes to obtain an approximation to

fx.

f(x+ h, y) = f(x, y) + fx(x, y) · h+
1

2
fxx(x, y) · h2 +O(h3). (2.24)

Replacing h with −h in (Eq 2.24), one can get:

f(x− h, y) = f(x, y)− fx(x, y) · h+
1

2
fxx(x, y) · h2 −O(h3). (2.25)

Subtracting (Eq 2.25) from (Eq 2.24) we get:

f(x+ h, y)− f(x− h, y) = 2 · fx(x, y) · h+ 2O(h3). (2.26)

Rearranging gives us:

fx(x, y) =
f(x+ h, y)− f(x− h, y)

2h
+O(h2). (2.27)

An analogous relationship can be developed can be developed for fy. As we began to develop

the method in the previous section through (Eq 2.8), we will explain the process of the

second-order method through the solution of u via (Eq 2.6), and a similar process will be

developed for the solution of v.
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Using the second-order method developed in (Eq 2.27), once can approximate the solution

u via the equations:

u(x+ h, y) = u(x− h, y) + 2h · a(x, y)

u(x, y + h) = u(x, y − h)− 2h · b(x, y)

(2.28)

Knowing the point at x = x0 will allow for us to get the solution at x = x2. We will use a

first-order forward difference to obtain x = x1, which will then allow us to obtain x = x3, and

hence all values in that corresponding direction. Applying the first-order forward difference

method for the first step and continuing on with the second-order central difference method

gives us the following results. As we see, the “second-order” method does not gain us that

Figure 2.15: Error Measures for Central-Difference-v1 LR/BT w/ h = 0.001

much accuracy. As we see, the accuracy is not necessarily better. As we know from the real-

valued functions with one independent variable, say x, the accuracy of the method depends

(sometimes) on the nature of the exact solution in the direction of dx. Since we are solving

throughout two independent variables x, y, the surface may be not be ideal throughout the

planes x = 0 (which is what we solve uy and vy through) or y = 0 (the plane we solve ux and

vx through). We see that the methods still produce adequate results provided that h is suf-

ficiently small, so it is not necessarily a “useless” method, rather an alternative. In regards

to the numerical results, it sometimes gives us results that are better than the first-order

forward difference method, and sometimes give us worse; but overall they are comparably

equal. Future discussions and methods will investigate methods that are more sophisticate

than the LR and BT approach.
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Another issue that may be leading to the issue of “this isn’t better than the first method”

is the parallelism of the solution that the leap-frog method obtains. Notice that in the x

direction, the solution in the vector x = x2k is independent of the solution x = x2k+1, k ∈ Z.

Therefore, one or possibly both of these solutions could be divergent from the actual solu-

tion, and hence may lead to error accumulation in the result.

A slight improvement can be made on this method in regards to the first step. First note

that u(x0 + h, y0) = u(x0, y0) + h · a(x0, y0) is a first-order approximation. We can obtain

this by using two half-steps from the origin point.

u(x0 + 0.5h, y0) = u(x0, y0) +
h

2
· a(x0, y0)

u(x0 + h, y0) = u(x0 + 0.5h, y0) +
h

2
· a(x0 + 0.5h, y0)

(2.29)

Combining these gives us:

u(x0 + h, y0) = u(x0, y0) +
h

2
· (a(x0, y0) + a(x0 + 0.5h, y0)) (2.30)

This is the well-known mid-point method, which we also know to have order-2 accuracy.

One can arrive at analogous equations for the remaining three differential equations. The

results shown in Figure 2.16 are obtained from this slight modification. In comparison to

Figure 2.16: Error Measures for Central-Difference-v2 LR/BT w/ h = 0.001

the results shown in Figure 2.15, there is not a large difference in the results, but the the
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difference is still in the positive direction.
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This difference may be small due to the well-behaved nature of u and v and may be more

beneficial of these solutions are more chaotic in space.

2.3 One-Dimensional Complex Spatial IVP’s, where f = f(z, ω)

The previous sections were devoted to the problem ω′ = f , where f is a function of z

only. We now focus on the more general problem, where f is a function of both z and the

unknown function ω; that is:

dω

dz
= f(z, ω), ω(z0) = ω0. (2.31)

To guide us on the intuition behind the method of discussion, we will begin with one of the

most fundamental, but also important, examples:

dω

dz
= λω, ω(0) = 1. (2.32)

We will refer to this example as “Example 3”. We can decompose the left-hand side of (Eq

2.32) the same way as in (Eq 2.4) to give us:

(
∂u

∂z
+ i

∂v

∂z

)
= λu+ λvi. (2.33)

Again using (Eq 1.23), we have the system:

ux + vy = 2 · (λu)

vx − uy = 2 · (λv).

(2.34)
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Since the functions u, v satisfy C.R., we have the following set of equations that can allow

for us to obtain our solution:

ux = λu uy = −λv

vx = λv vy = λu.

(2.35)

In terms of numerical implementation, one must solve both u and v in a point-wise fashion

simultaneously, whereas the before approach had the option of doing them independently.

To compare our solution we will consider the computational domain D = [0, 5]× [0, 5], with

λ = −1. We then have the exact solution of (Eq 2.32) to be:

ω(z) = eλz → u(x, y) = Re(ω) = eλx cos(λy)

→ v(x, y) = Im(ω) = eλx sin(λy)

(2.36)

For the implementation, we will use the first-order difference method described in section

2.1 due to its simplicity and reliability that was discussed in 2.2. By comparison of Figures

2.17 with 2.18, we see that this method produces the correct result. As a note, these graphs

were constructed with h = 0.1.
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Figure 2.17: Real/Imaginary Parts for Exact Solution of ω′ = λω

Figure 2.18: Real/Imaginary Parts Numerical Solutions of ω′ = λω

We can numerically calculate the error as we had done before. As a note, the results are

calculated for h = 0.005 and not h = 0.001 due to memory constraints; which again reminds

why we leave a more accurate method in the future to consider.

Figure 2.19: Error Measures for Numerical Solutions w/ h = 0.1 and h = 0.005
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Up to whatever level of algebraic tools, functions, cleverness and overall patience one may

have at their disposal, the real and imaginary parts of f for (Eq 2.31) are always able to

be obtained manually. For swiftness, we would like to develop a method that obtains the

real and imaginary parts of f (which we will denote as a and b respectively) in an implicit

and/or point-wise fashion.

Rewriting (Eq 2.31) into its corresponding real and imaginary components together with

the Wirtinger representation of ∂
∂z

, we obtain:

(
∂

∂x
− i ∂

∂y

)
(u+ iv) = 2 · f(x, y, u, v) (2.37)

Applying our differential operator and equating real and imaginary parts of the equation,

we obtain:

ux + vy = 2 ·Re(f) := 2 · a(x, y, u, v)

vx − uy = 2 · Im(f) := 2 · b(x, y, u, v).

(2.38)

This will work in the intuitive fashion. To demonstrate, consider the equation ux = a. Using

a first-order scheme, starting with the initial condition, we have:

u(x0 + h, y) = u(x0, y0) + h ·Re{f(x0, y0, u(x0, y0), v(x0, y0))} (2.39)

Since the Re{f} and Im{f} are always known at values (x, y) that fall behind our left-hand

side (x, y) location, the solution method is easy to generalize.
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To demonstrate, consider our fourth example given by:

dω

dz
= z − ω, ω(0) = 1 + 3i. (2.40)

The exact solution can be found to be:

ω(z) = (2 + 3i) · e−z + z − 1 →


u(x, y) = Re(ω) = e−x(2 cos(y) + 3 sin(y)) + x− 1

v(x, y) = Im(ω) = e−x(−2 sin(y) + 3 cos(y)) + y

(2.41)

Computing on D = [0, 3]× [0, 3] gives us the following results.

Figure 2.20: Real/Imaginary Parts for Exact Solution of ω′ = z − ω

Figure 2.21: Error Measures for Numerical Solutions w/ h = 0.1 and h = 0.001
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For the last example, consider the non-linear IVP given by:

dω

dz
=

1 + ω2

1 + z
, ω(−7− 7i) = 3− 7i. (2.42)

One can find that the exact solution is given by:

ω(z) = tan (c+ ln(1 + z)) ,

c = arctan(ω0)− ln(1 + z0).

(2.43)

For all points (x, y), we can calculate the real and imaginary parts of ω in a point-wise

fashion since we do not have the explicit representation. Computing the solution on D =

[−7,−1.5]× [−7,−1.5] gives us the following results.

Figure 2.22: Real/Imaginary Parts for Exact Solution of ω′ = 1+ω2

1+z

Figure 2.23: Error Measures for Numerical Solutions w/ h = 0.1 and h = 0.001
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Now that we have a method that solves the general first-order initial value problem ω′ =

f(z, ω) in which gives us adequate results for u and v, this implies that we can get an

understanding of the actual complex surface which we can view as a Riemann Surface.

One can see that fourth numerical Riemann surfaces are practically equal, whereas the LR

Riemann surface of example five is closer to the exact. Intuitively, the differences between

the exact Riemann surface and numerical surfaces converge to 0 as h gets closer to 0.

Figure 2.24: Numerical LR/BT and Exact Riemann Surface for ω′ = z − ω

Figure 2.25: Numerical LR/BT and Exact Riemann Surface for ω′ = 1+ω2

1+z

2.4 Laplace Transformation Solutions to Complex BVP’s

One of the methods that I, throughout my individual development, personally found to

be the most interesting is the application of using Laplace transforms to solve differential
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equations. This approach is guided by the fact that the Laplace transform transforms a dif-

ferential equation into an algebraic equation for which we can solve for the Laplace transform

of our unknown solution, and then invert the Laplace transform to obtain the solution to

the original differential equation. To guide our motivation into the complex realm, consider

the basic real-variable IVP:

y′(x) = 2x, y(0) = 3.

Taking the 1-dimensional Laplace transform of both sides gives us:

∫ ∞
0

y′(x)e−xξ dx =

∫ ∞
0

(2x)e−xξ dx → ξ · L{y} − y(0) = 2 · 1

ξ2

→ L{y} =

(
2

ξ3

)
+ 3 ·

(
1

ξ

)
.

One can verify, from the definition of the transform, that:

y = L−1

{
2

ξ3

}
+ 3L−1

{
1

ξ

}
= x2 + 3.

Instead of solving the initial value problem, we will instead solve a related boundary value

problem (reasons to be discussed in the upcoming paragraphs).

ω′(z) = 2z,

u(0, y) = −y2 + 3, u(x, 0) = x2 + 3, v(0, y) = v(x, 0) = 0.

(2.44)

It is again important to recall that we are not simply replacing function names and renaming

variable names, rather we are solving an equation of an arbitrary complex input, z, with

an unknown complex output, ω. We will approach this problem in a similar manner to the

numerical approach; we will assume both ω and z in their two-dimensional partitions (u, v)
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and (x, y), respectively. Therefore, we when taking the Laplace transform of a complex

variable function, we will define it as the two-dimensional real-variable Laplace transform

in terms of x and y. For our particular problem, we desire the Laplace transform of z (the

constant is trivially approached). We can decompose this into the traditional way to give

us:

L{z} = L{x}+ i · L{y}. (2.45)

Focusing on the real part only (since the imaginary part can be constructed in parallel), we

have:

L{x} =

∫ ∞
0

∫ ∞
0

(x) · e−xξ1−yξ2 dxdy

=

∫ ∞
0

e−yξ2
(∫ ∞

0

x · e−xξ1 dx
)
dy

=
1

ξ2
1

·
∫ ∞

0

e−yξ2dy

=
1

ξ2
1 · ξ2

.

(2.46)

Multiplying both sides of (Eq 2.45) by 2 and applying (Eq 2.46) (and its analogue) to the

real and imaginary parts of (Eq 2.45), we obtain the Laplace transform of the right-hand

side of (Eq 2.44) to be:

L{2z} =
2

ξ2
1ξ2

+
2i

ξ1ξ2
2

. (2.47)

The portion of interest is, of course, the left-hand side of the original equation, since it

applies to every initial-value problem in question. We start with the guiding identity:

dω

dz
=
∂u

∂z
+ i

∂v

∂z
=

1

2

(
∂u

∂x
− i∂u

∂y

)
+
i

2

(
∂v

∂x
− i∂v

∂y

)
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Upon simplification and applying the Cauchy-Riemann equations, we obtain the parallel

equations:

w′ = ux − iuy

w′ = vy + ivx.

(2.48)

We only take these two equations into consideration, because taking the Laplace transform

of each will give us an equation containing only the Laplace transform of the real and imagi-

nary parts of the exact solution ω, which then only requires knowledge of the inverse Laplace

transform.

To derive a representation for L{ω′}, we will first analyze the Laplace transform of ux and

take the other three as analogous, and similarly derivable, identities. Using the definition of

the Laplace transform, Fubini’s theorem, and integration by parts, we have:

L{ux} =

∫ ∞
0

∫ ∞
0

ux(x, y)e−xξ1−yξ2 dxdy

=

∫ ∞
0

e−yξ2
(∫ ∞

0

ux(x, y)e−xξ1 dx

)
dy

=

∫ ∞
0

e−yξ2
((
u(x, y)e−xξ1

∣∣x→∞
x→0

−
∫ ∞

0

(−ξ1)u(x, y)e−xξ1 dx

)
dy

= −
∫ ∞

0

u(0, y)e−yξ2 dy + ξ1

∫ ∞
0

∫ ∞
0

u(x, y)e−xξ1−yξ2 dxdy.

(2.49)

Rewriting this result in a more condensed manner, we have the identity:

L{ux} = ξ1 · L{u(x, y)} − L{u(0, y)}. (2.50)

Similarly, we have the following identity (and similar for v):

L{uy} = ξ2 · L{u(x, y)} − L{u(x, 0)}. (2.51)
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To understand how these equations are implemented, let us continue our solution of (Eq

2.44). Using the u representation of ω′ (Eq 2.48) and then taking the Laplace transform of

both sides of (Eq 2.44), we have:

ξ1L{u} − L{u(0, y)} − iξ2L{u}+ iL{u(x, 0)} =
2

ξ2
1ξ2

+
2i

ξ1ξ2
2

. (2.52)

Equating real and imaginary parts, we obtain the Laplace-transform system:

L{u} =
1

ξ1

L{u(0, y)}+
2

ξ3
1ξ2

L{u} =
1

ξ2

L{u(x, 0)} − 2

ξ1ξ3
2

.

(2.53)

Here one can see why I chose to inscribe boundary conditions instead of an initial-value

point, as the problems difficulty then increases, which we approach in the following section.

One may note that we have two equations (from Eq 2.53) that will allow us to obtain the

solution of u, therefore for the boundary-value problem to be well defined, we only need

one of the boundary conditions. Since the existence and uniqueness theorem guarantees

uniqueness, we will illustrate that both of these equations (Eq 2.53) give us the same solution.

Since the Laplace transforms of the boundary conditions are one-dimensional, we can use

the traditional Laplace-transform identities used in earlier differential equations courses;

therefore:

L{u(0, y)} = L{−y2 + 3}

= − 2

ξ3
2

+
3

ξ2

.

L{u(x, 0)} = L{x2 + 3}

=
2

ξ3
1

+
3

ξ1

.

(2.54)
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Substituting the Laplace-transform of the boundary conditions into our Laplace system, one

obtains the equation (for both) to be:

L{u} =
2

ξ3
1ξ2

− 2

ξ1ξ3
2

+
3

ξ1ξ2

. (2.55)

Note here that (Eq 2.55) is symmetric with respect to both variables (aside from signs that

are due to the i term); this allows us to see that it doesn’t matter which variable we focus

on. Taking the two-dimensional inverse Laplace transform of both sides of (Eq 2.55), we

have:

u(x, y) = L−1

{
2

ξ3
1ξ2

}
− L−1

{
2

ξ1ξ3
2

}
+ L−1

{
3

ξ1ξ2

}
= x2 − y2 + 3.

(2.56)

To find the imaginary part of ω, we will take the v representation of (Eq 2.48) apply the

Laplace transform and proceed similarly. We will then have:

L{ω′} = L{vy + ivx}

= ξ2L{v} − L{v(x, 0)}+ iξ1L{v} − iL{v(0, y)}

≡ 2

ξ2
1ξ2

+
2i

ξ1ξ2
2

.

(2.57)

Isolating and equating real and imaginary parts will give rise to a corresponding Laplace

system for v.

L{v} =
1

ξ2

L{v(x, 0)}+
2

ξ2
1ξ

2
2

L{v} =
1

ξ1

L{v(0, y)}+
2

ξ2
1ξ

2
2

.

(2.58)

It is given that the boundary conditions for v are both 0, hence it is a trivial calculation that

the Laplace transform of the boundary conditions will vanish as well. Hence we can see that

59



this results in the single equation:

L{v} =
2

ξ2
1ξ

2
2

. (2.59)

One can easily verify using Fubinis theorem that:

v(x, y) = 2 · L−1

(
1

ξ2
1ξ

2
2

)
= 2xy.

(2.60)

This gives us the exact solution to be:

ω(x+ iy) = (x2 − y2 + 3) + i(2xy),

which we have already verified. It is useful to know an identity that discusses the complex

transform of a complex-variable polynomial; that is, an analogous version of the real-variable

identity:

L{xn} =
n!

ξn+1
.

We begin first by recalling the binomial theorem, i.e.:

(x+ iy)n =
n∑
k=0

(
n

k

)
xn−k(iy)k. (2.61)
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Implementing the definition of the Laplace transform and performing the necessary manip-

ulations and using (Eq 2.61), we get:

L{zn} =

∫ ∞
0

∫ ∞
0

(
n∑
k=0

(
n

k

)
xn−k(iy)k

)
· e−xξ1−yξ2 dx dy

=
n∑
k=0

[(
n

k

)
ik
(∫ ∞

0

xn−ke−xξ1
(∫ ∞

0

yke−yξ2dy

)
dx

)]
=

n∑
k=0

[(
n

k

)
ik
(∫ ∞

0

xn−k · e−xξ1dx
)
· k!

ξk+1
2

]
=

n∑
k=0

(
n

k

)
ik · k! · (n− k)!

ξn−k+1
1 ξk+1

2

.

(2.62)

We can simplify the combinatorial with the numerator constants to obtain the simplified

identity for the Laplace transform of complex polynomials:

L{zn} = n! ·
n∑
k=0

ik

ξn−k+1
1 ξk+1

2

. (2.63)

Another useful two-dimensional identity that can be proven almost identically as was demon-

strated in (Eq 2.62) is the following:

L{xp · yq} =
p!q!

ξp+1
1 ξq+1

2

. (2.64)

To reiterate the process of solving complex differential equations with the Laplace trans-

form and also introduce a new topic of discussion, consider the following general differential

equation:

ω′ = f(z, ω). (2.65)

To avoid a lack of motivation for the process, I intentionally will not state a boundary/initial

condition. To solve, we first take the two dimensional Laplace transform of both sides in
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order to obtain the decomposition functions u and v by using (Eq 2.48).

L{ux − iuy} = ξ1L{u} − L{u(0, y)}+ i(−ξ2L{u}+ L{u(x, 0)} = L{f}

L{vy + ivx} = ξ2L{v} − L{v(x, 0)}+ i(ξ1L{v} − L{v(0, y)} = L{f}
(2.66)

Equating real and imaginary parts gives the following two pairs of systems:

L{u} =
1

ξ1

[L{u(0, y)}+Re{L{f}}]

L{u} =
1

ξ2

[L{u(x, 0)} − Im{L{f}}]
(2.67)

L{v} =
1

ξ2

[L{v(x, 0)}+Re{L{f}}]

L{v} =
1

ξ1

[L{v(0, y)}+ Im{L{f}}]
(2.68)

The first observation that one could make is that in order to obtain u and v, you only

need to know either the real OR imaginary part of the Laplace transform of f . This could

be beneficial for calculations or numerical consistency measures. The second observation is

that the solution is uniquely determined from only one boundary of R, and not both. For

instances, you can solve (Eq 1.67.1) and (Eq 1.68.1) and only need the y boundary in order

to calculate both u and v. We will discuss this in the conclusion remarks of this chapter in

more detail, but for now we just take it as an observation.

With that being mentioned, it is important to note that one cannot just randomly assign

different boundary conditions in the x and y directions, as the resulting solutions may be

completely different. To guide us in this investigation, consider the following differential

equation:

ω′ = z2 − 2z + 5.
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I will leave out the prescribed boundary conditions for the time being. Before implementing

(Eq 2.67) and (Eq 2.68), we first calculate the Laplace transform of f . Implementing (Eq

2.63):

L{z2 − 2z + 5} = 2!

(
i0

ξ3
1ξ

1
2

+
i1

ξ2
1ξ

2
2

+
i2

ξ1
1ξ

3
2

)
− 1!

(
i0

ξ2
1ξ

1
2

+
i1

ξ1
1ξ

2
2

)
· 2 + 0!

(
i0

ξ1
1ξ

1
2

)
· 5

=

(
2

ξ3
1ξ2

− 2

ξ1ξ3
2

− 2

ξ2
1ξ2

+
5

ξ1ξ2

)
+ i

(
2

ξ2
1ξ

2
2

− 2

ξ1ξ2
2

)
.

(2.69)

Now let us assume that the boundary conditions for the equation of interest to be:

ω′ = z2 − 2z + 5

u(0, y) = y2 + 2,

u(x, 0) =
1

3
x3 − x2 + 5x+ 2

v(0, y) = −1

3
y3 + 5y,

v(x, 0) = 0.

(2.70)

If the premise equation is (Eq 2.70) then the (one-dimensional) Laplace transform of the

boundary conditions are:

L{u(0, y)} =
2

ξ3
2

+
2

ξ2

,

L{u(x, 0)} =
2

ξ4
1

− 2

ξ3
1

+
5

ξ2
1

+
2

ξ1

,

L{v(0, y)} = − 2

ξ4
2

+
5

ξ2
2

,

L{v(x, 0)} = 0.

(2.71)
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Substituting into (both pairs of) (Eq 2.67) and (Eq 2.68) to obtain (equivalent) expressions

for L{u} and L{v}, we get:

L{u} =
2

ξ4
1ξ2

− 2

ξ3
1ξ2

+
5

ξ2
1ξ2

+
2

ξ1ξ2

− 2

ξ2
1ξ

3
2

+
2

ξ1ξ3
2

,

→ u(x, y) =
1

3
x3 + y2 − xy2 − x2 + 5x+ 2.

(2.72)

L{v} = − 2

ξ1ξ4
2

+
5

ξ1ξ2
2

+
2

ξ3
1ξ

2
2

− 2

ξ2
1ξ

2
2

,

→ v(x, y) = −1

3
y3 + 5y + x2y − 2xy.

(2.73)

Directly separating the complex solution of ω(z) = 1
3
z3 − z2 + 5z + 2 into its real and imag-

inary parts, we can verify that these are indeed correct.

It is important to mention that the process to solve an boundary value problem of the

form ω′ = f(z) can be solved by the following sequence of steps:

• Find the 2-dimensional Laplace transform of f(z).

• Find the 1-dimensional Laplace transform of the boundary conditions, which can then

be used in the 2-D transform.

• (Optional) Verify that the paired systems of (Eq 2.67) and (Eq 2.68) are equal.

• Solve equations (2.67) and (2.68) by inverting the Laplace transform.

Note that (Eq 2.67) and (Eq 2.68) can only be used directly if f = f(z), otherwise some

modifications need to be made. As an example, consider:

ω′ = z + ω. (2.74)
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Since the real-variable analogue of this equation involves an exponential, it is possible that

the complex-variable version also does. For the 2-dimensional Laplace transform f(z) = ez,

we have:

L{ex · eiy} =

∫ ∞
0

∫ ∞
0

(
exeiy

)
· e−xξ1−yξ2dxdy

=

∫ ∞
0

exe−xξ1
(∫ ∞

0

eiye−yξ2dy

)
dx

=

∫ ∞
0

exe−xξ1
(
i+ ξ2

1 + ξ2
2

)
dx

=
1

ξ1 − 1
· i+ ξ2

1 + ξ2
2

.

(2.75)

One can verify this using Euler’s identity if they desire:

L{ex · eiy} = L{ex cos(y)}+ i · L{ex sin(y)}

=

∫ ∞
0

exe−xξ1
(∫ ∞

0

cos(y)e−yξ2dy

)
dx+ i ·

∫ ∞
0

exe−xξ1
(∫ ∞

0

sin(y)e−yξ2dy

)
dx

=

∫ ∞
0

exe−xξ1
(

ξ2

1 + ξ2
2

)
dx+ i

∫ ∞
0

exe−xξ1
(

1

1 + ξ2
2

)
dx

=
1

ξ1 − 1
· i+ ξ2

1 + ξ2
2

.

.
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Starting by taking the Laplace transform of both sides of (Eq 2.74) and splitting versions

via (Eq 2.48), we obtain the system:

L{ux − iuy} =
1

ξ2
1ξ2

+
i

ξ1ξ2
2

+ L{u}+ iL{v}

L{vy + ivx} =
1

ξ2
1ξ2

+
i

ξ1ξ2
2

+ L{u}+ iL{v}
. (2.76)

Implementing (Eq 2.50) and (Eq 2.51) and equating real and imaginary parts gives:

ξ1L{u} − L{u(0, y)} =
1

ξ2
1ξ2

+ L{u},

−ξ2L{u}+ L{u(x, 0)} =
1

ξ1ξ2
2

+ L{v}.
(2.77)

ξ2L{v} − L{v(x, 0)} =
1

ξ2
1ξ2

+ L{u},

ξ1L{v} − L{v(0, y)} =
1

ξ1ξ2
2

+ L{v}.
(2.78)

One should notice that (Eq 2.77.2) and (Eq 2.78.1) require knowledge of both u and the

unknown v (or vice versa). Due to the uniqueness of Laplace transforms, we can instead

just focus on (Eq 2.77.1) and (Eq 2.78.2). To solve these equations, we only need to know

the boundary conditions u(0, y) and v(0, y). Let us now re-assume that the given boundary

value problem was given to be:

ω′ = z + ω,

u(0, y) = 3 cos(y)− 3 sin(y)− 1,

v(0, y) = 3 cos(y) + 3 sin(y)− y.

(2.79)
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Taking the Laplace transform of the boundary condition gives:

L{u(0, y)} =
3ξ2

1 + ξ2
2

− 3

1 + ξ2
2

− 1

ξ2

,

L{v(0, y)} =
3ξ2

1 + ξ2
2

+
3

1 + ξ2
2

− 1

ξ2
2

.

Substituting into (Eq 2.77.1) and (Eq 2.78.2) and using algebraic rearrangements when

necessary (namely to the last two fractions in sequence), we obtain:

(ξ1 − 1) · L{u} =
3ξ2

1 + ξ2
2

− 3

1 + ξ2
2

− 1

ξ2

+
1

ξ2
1ξ2

→ L{u} =
3ξ2

(ξ1 − 1)(1 + ξ2
2)
− 3

(ξ1 − 1)(1 + ξ2
2)
− 1

ξ2
1ξ2

− 1

ξ1ξ2

→ u(x, y) = 3ex cos(y)− 3ex sin(y)− x− 1,

(2.80)

(ξ1 − 1) · L{v} =
3ξ2

1 + ξ2
2

+
3

1 + ξ2
2

− 1

ξ2
2

+
1

ξ1ξ2
2

→ L{v} =
3ξ2

(ξ1 − 1)(1 + ξ2
2)

+
3

(ξ1 − 1)(1 + ξ2
2)
− 1

ξ1ξ2
2

→ v(x, y) = 3ex cos(y) + 3ex sin(y)− y,

(2.81)

which one can verify to be the real and imaginary parts of:

ω(z) = (3 + 3i)ez − z − 1.

67



2.5 The Connection Between Boundaries and Initial Conditions

As discussed in the previous section, in order to implement Laplace transforms to solve

complex-variable (or even two-dimensional real-variable) differential equations, the bound-

ary conditions for u and v must be, at least partially, known.

For example, from (Eq 2.67-68), we can see that we can find the solution ω by knowing

one of the u boundaries or the v boundaries, such as u(0, y) and v(x, 0). One may obtain

preference to have a particular pair of boundary conditions that make computations easier

as we saw in (Eq 2.77-78), for which we chose to have u(0, y) and v(0, y). Therefore, we will

quickly discuss the connection between the pairings. As a guiding example, suppose that we

have the differential equation:

ω′ = λω,

u(x, 0) = eλx,

v(x, 0) = 0.

(2.82)

Let us assume that we desire, or maybe even require, the boundary conditions u(0, y) and

v(0, y); let us target u(0, y) first to demonstrate. Using (Eq 2.67.1), we can get:

L{u} =
1

ξ1

[L{u(0, y)}+ λL{u}]

→ L{u} =
1

ξ1 − λ
· L{u(0, y)}.

(2.83)

Using (Eq 2.68.1), we can get:

L{v} =
1

ξ2

[0 + λL{u}]

→ L{v} =
λ

ξ2

· L{u}.
(2.84)
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Using (Eq 2.67.2), we can get:

L{u} =
1

ξ2

[
1

ξ1 − λ
− λL{v}

]
→ L{u} =

1

ξ2

[
1

ξ1 − λ
− λ2

ξ2

L{u}
]

→ L{u} =
ξ2

ξ2
2 + λ2

· 1

ξ1 − λ
.

(2.85)

Equating (Eq 2.83) and (Eq 2.85), we obtain:

L{u(0, y)} =
ξ2

ξ2
2 + λ2

→ u(0, y) = cos(λy).

(2.86)

Similiarly, one can obtain that v(0, y) = sin(λy), which complete the set of boundary con-

ditions for the exact solution of (Eq 2.82) that is ω = eλz. Therefore, using (Eq 2.67) and

(Eq 2.68) as basic equations, one can obtain all 4 boundary conditions given two, without

having to actually know or find what u and v are equal to.

We can find that if we are given the boundary conditions (two of them at least), then

we can find the corresponding initial condition for which we can use the methods described

in sections 2.2 and 2.3. For example, suppose that for some ω′ = f(z, ω), we have:

u(x, 3) = x2 − sin(x)

v(1, y) = cos(y)− 4y.
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Setting x = 1 and y = 3 can give us the initial condition:

z0 = 1 + 3i → u0 = 1− sin(1)

z0 = 1 + 3i → v0 = cos(3)− 12

∴ ω(1 + 3i) = (1− sin(1)) + i(cos(3)− 12).

Suppose we are given an initial condition (z0, ω0) and desire the boundary conditions. This

problem has already been addressed numerically, in sections 2.2 and 2.3. One can use the

LR-method to obtain u(x, y0) and v(x, y0) and the BT-method to obtain u(x0, y) and v(x0, y)

from the initial point (x0, y0). Yes, this then forces your solution to be numerical since the

Laplace transform cannot analytically be used. One can investigate the numerical Laplace

transform, but we will leave this for the future work on this idea.

For sake of completion, it is necessary (depending on the audience) to mention the case

when the boundary conditions are not prescribed on the axes. For example, the boundary

value problem:

ω′ = f(z, ω), u(x0, y) = ϕ(y), v(x, y0) = ψ(x) (2.87)

can be transformed via y∗ := y − y0 and x∗ := x− x0, thus giving a parallel boundary value

problem to solve:

η′ = f(z∗, η), µ(0, y∗) = ϕ(y + y0), ν(x, 0) = ψ(x∗ + x0). (2.88)
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2.6 Existence and Uniqueness Theorem for Complex IVP’s

For most of the problems discussed in this chapter, we have been using differential

equations with solutions that we already know something about to verify our solutions.

Our method converged to the exact solutions and if we were to generate a new arbitrary

differential equation with an arbitrary initial condition, then our method will converge to

some “solution”. The questions that one must answer at that time would be:

• Does the differential equation actually have a solution? If it doesn’t, any numerical

solution obtained is extraneous.

• If the solution, ω1, exists and the numerical solution converged to ω1, does there exist

a solution ω2 that satisfies the IVP that our numerical method does not consider?

We discuss both of these questions and the answers, and also provide a demonstration of it

in this section.

Before formally introducing and proving the theorem, let us describe some background ter-

minology. The complex function ω maps the set C to C, which we write as:

ω : C→ C.

One may be familiar with an “open ball” Bε(z0) to be:

Bε(z0) := {z : |z − z0| < ε}

Here, Bε(z0) ⊂ C. Similarly, one can define the open ball Bε(z0, ω0) to be:

Bε(z0, ω0) := {z, ω : |z − z0| < ε, |ω − ω0| < ε}. (2.89)
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One can see that Bε(z0, ω0) ⊂ C2. With that being said, the decision to use z and ω as my

variables is by no chance a coincidence. Recall that for the differential equation:

ω′(z) = f(z, ω(z)), ω(z0) = ω0),

the function f satisfies the property:

f : Bε(z0, ω0)→ C. (2.90)

Assume that for some κ ∈ R+ that the following property holds:

|f(z, ω1)− f(z, ω2)| ≤ κ|ω1 − ω2|,

∀ (z, ω1), (z, ω2) ∈ Bε(z0, ω0).

(2.91)

If (Eq 2.91) satisfies for some f as described in (Eq 2.90), then we call f “Lipshitz continu-

ous.” In this section, it will be desired that f is Lipshitz continuous with respect to ω, where

ω is uniformly continuous with respect to z. This property will come as a direct result due

to the analytic properties of ω, so we take (Eq 2.91) to imply such continuity for this section.

We will be interested in the sequence of functions:

{ωk}nk=0 ⊂ C. (2.92)

If this sequence of functions satisfies (Eq 2.91) with the Lipshitz constant κ satisfying κ < 1,

then we will refer to the sequence (Eq 2.92) as a “contractive sequence” under f . By Banach’s

fixed point theorem (see section 1.2.1 for a basic real-variable version), the sequence {ωk}nk=0

converges to a unique ‘point’ in the same metric space; i.e.:

lim
k→∞

(ωk) := ω ∈ C. (2.93)
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With those points being stated, we now state and prove the existence and uniqueness theo-

rem.

Theorem 2.6.1. (Existence and Uniqueness Theorem for Complex IVPs)

Let B(z0, ω0) be the open ball located in C2 and suppose f : B(z0, ω0) → C is Lipshitz

continuous with respect to z, independent of ω, with Lipshitz constant κ. Then there exists

an open ball O(z0) ⊂ C such that the complex differential equation:

ω′(z) = f(z, ω(z)), ω(z0) = ω0

has a unique solution in O(z0).

Proof. Consider an r ∈ R+ and define the closed ball of size r centered at z0 to be:

Or(z0) := {z : |z − z0| ≤ r}.

Since B(z0, ω0) is open, we can find numbers a, b ∈ R+ such that the ball:

B(z0, ω0) := {z, ω : |z − z0| ≤ a, |ω − ω0| ≤ b|},

satisfies the property:

B(z0, ω0) ⊂ B(z0, ω0).

For each real number r with r ≤ a, define Xr to be the subspace of C(Or) that consists of

all continuous functions ω : Or → C such that:

|ω(z)− ω0| ≤ b ∀z ∈ Or.

For such functions ω ∈ Xr, define the function (which can be viewed as a transformation)
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T (ω) ∈ C(Or) by:

T (ω(z)) := ω0 +

∫
γ

f(z, ω(z)) dz, ∀z ∈ Or.

Since f is assumed to be (Lipshitz) continuous in B(z0, ω0), the path γ(z) that connects the

point z0 to the variable point z and the value of the complex integral are independent of one

another, hence we can take
∫
γ

to simply be a line integral. Hence the transformation T can

be written as:

T (ω(z)) = ω0 +

∫ z

z0

f(z, ω(z)) dz. (2.94)

As a side note, (Eq 2.94) is not a “magical” equation, it is just the associated implicit in-

tegral equation that is equivalent to that of the differential equation of interest (aside from

the transformation T ).

Since B(z0, ω0) ⊂ C2 is a closed compact set and also since f is a continuous function,

then there exists a K ∈ R+ such that:

|f(z, ω(z))| ≤ K, ∀(z, ω) ∈ B(z0, ω0).

Therefore, for ω ∈ Xr and z ∈ Or, we have that:

|T (ω(z))− ω0| =
∣∣∣∣∫ z

z0

f(z, ω(z)) dz

∣∣∣∣
≤
∫ z

z0

|f(z, ω(z))|dz

≤ K ·
∫ z

z0

dz

≤ K · r,

(2.95)

which implies that T (Xr) ⊂ Xr if K ·r ≤ b. In the assumption of the theorem g has Lipshitz

74



constant κ, therefore for ω1, ω2 ∈ Xr and z ∈ Or, we have that:

|f(z, ω1(z))− f(z, ω2(z))| ≤ κ · ||ω1 − ω2||. (2.96)

By the properties of line integrals, we have:

|T (ω1(z))− T (ω2(z))| =
∣∣∣∣∫ z

z0

[f(z, ω1(z))− f(z, ω2(z))]dz

∣∣∣∣
≤ r · κ · ||ω1 − ω2||.

(2.97)

Given (Eq 2.97) and the implications of (Eq 2.95) gives us that T : Xr → Xr is a contraction,

provided that rK ≤ b and rκ < 1. Define:

r := min{b/K, 1/(2κ)}. (2.98)

Thus by Banachs fixed point theorem, T : Xr → Xr has a unique fixed point.
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To illustrate this idea, consider the following differential equation:

ω′(z) = −iω, ω(0) = i (2.99)

It is obvious to see that f is continuous on all of C, so the choose of contour γ can be

chosen to just be the line from 0 to z, hence there exists a unique solution to this differential

equation. We now define the sequence {ϕk}nk=0 to be:

ϕ0 := ω0

→ ϕ0 = i

ϕk+1 := ω0 +

∫ z

z0

f(t, ϕk) dt

→ ϕk+1 = i+

∫ z

0

(−i · ϕk) dt.

(2.100)

This then gives us:

ϕ1 = i− i ·
∫ z

0

(i)dz

= i+ z.

The second iteration will give us:

ϕ2 = i− i ·
∫ z

0

(i+ z)dz

= i+ z +
i

2
z2.

The third iteration will give us:

ϕ3 = i− i ·
∫ z

0

(i+ z +
i

2
z2)dz

= i+ z − i

2!
z2 +

1

3!
z3,
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and so on. As with power-series methods for solving differential equations, the difficulty

usually arises with obtaining a closed form for ϕk to take the limit of. Keep in mind, that

just because the solution exists, the closed form of ϕk may not necessarily exist (currently).

For this case, one can easily verify (add 1, subtract 1) by induction that:

ϕk =
k∑
l=0

(
z2l

(2l)!

)
− i ·

k∑
l=0

(
z2l−1

(2l − 1)!

)
. (2.101)

Therefore the solution of the differential equation is given by:

lim
k→∞

ϕk := ω = cos(z)− i sin(z)

≡ e−iz.

(2.102)

This method is not practical by hand, but may give rise to another way to solve complex

differential equations once a numerical complex integration method has been developed (this

is already a work in progress).
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Chapter 3
DIFFERENTIAL EQUATIONS OF HIGHER ORDER

In Chapter 2, we discussed the first-order complex-variable differential equation. We

discussed both an analytical method to solve it via Laplace transforms, and also discussed

a numerical method that solves it in two different directions. In this chapter, we discuss the

extensions of those concepts to higher orders, modifications that can be performed on them

and the consequences thereof.

3.1 The Higher-Order Complex Differential Operator

One can view a derivative of a function as a linear operator or mapping. Through this

perspective, we can think of higher-order derivatives as compositions of that operator. For

example, the function f(z) = z2 gets sent to the function f ′(z) = 2z under the action of the

operation d
dz

, for which is defined as the limit of the difference quotient in the traditional

sense. From here on, we will simply denote the operator d
dz

as:

D : =
d

dz
. (3.1)

Here, we assume that the domain of D is the set, Ω, of differential functions ω ∈ Ω of complex

variable z = x+ iy, where x, y ∈ R.
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In Chapter 1 and Chapter 2, we discussed and took advantage of the fact that the operator

D can be written in terms of the real- and imaginary-parts of the functions which are then

function of the two real variables x, y. That is, for some ϕ ∈ R2:

D(ϕ) =
1

2
· (ϕx − iϕy). (3.2)

The next natural question to ask is ‘what would a similar representation for the second

derivative be?’. Composing the operator D with itself, we can obtain:

D2(ϕ) : = D(D(ϕ))

=
1

2
· D(ϕx − iϕy)

=
1

22
· (ϕxx − 2iϕxy − ϕyy).

(3.3)

Keep in mind, that ϕ will take place of the functions u(x, y) and v(x, y) of our function

ω. For ϕxy and ϕyx to be equal, the function ϕ ∈ L2(x, y). This is guaranteed since ω is

analytic. Continuing in the same fashion, we have:

D3(ϕ) =
1

22
· [D(ϕxx)− 2iD(ϕxy)−D(ϕyy)]

=
1

23
· (ϕxxx − 3iϕxxy − 3ϕxyy + iϕyyy).

(3.4)

For notation purposes, let us denote:

∂α

∂xα

(
∂β

∂yβ
(ϕ(x, y))

)
:= ϕ(α,β)(x, y). (3.5)
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From (Eq 3.2-4), one can show by mathematical induction that the following identity holds

for k ∈ N:

Dk(ϕ) =

(
1

2

)k
·

k∑
l=0

(
k

l

)
(−i)l · ϕ(k−l,l). (3.6)

One may recall the generalized Cauchy integral formula:

ω(k)(z) =
k!

2πi
·
∫
γ

ω(ζ)

(ζ − z)k+1
dζ, (3.7)

which holds true if ω is analytic on and inside of the closed contour γ for all z ∈ γ, and

one may question the connection, if any, there is to (Eq 2.6). Rewriting ω as u + iv and

implementing (Eq 3.6), we have the following identity:

ω(k)(z) =

(
1

2

)k
·

k∑
l=0

[(
k

l

)
(−i)l

(
u(k−l,l) + iv(k−l,l))] . (3.8)

Equating (Eq 3.7) and (Eq 3.8), after rearranging we obtain:

∫
γ

ω(ζ)

(ζ − z)k+1
dζ =

πi

2k−1
·

k∑
l=0

(−i)l

l!(k − l)!
(
u(k−l,l) + iv(k−l,l)) , k ∈ N. (3.9)

This section provides two useful things which we will discuss in the upcoming sections:

• A real two-variable partial differential equation that is associated to a complex-variable

equation (Eq 3.6). We will discuss this equation from the numerical perspective and

also the theoretical perspective via Laplace transforms.

• A new method to calculate contour integrals (Eq 3.9).
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3.2 Numerical Solutions to Higher Order Equations

In the last section, we derived a general form for the kth-order complex-variable differ-

ential operator:

ω(k)(z) =

(
1

2

)k
·

k∑
l=0

[(
k

l

)
(−i)l

(
u(k−l,l) + iv(k−l,l))] .

In this section, we will make use of this method as part of a numerical scheme for solving

higher order differential equations. As a demonstration, we will first consider the general

second-order linear inhomogeneous differential:

ω′′ + α(z) · ω′ + β(z) · ω = γ(z). (3.10)

We will assume that the functions α, β, γ ∈ L2(C) are known and they have corresponding

real and complex parts αr, βr, γr, αc, βc, γc ∈ L2(R2), respectively. Recall that from (Eq 3.2)

and (Eq 3.3), we have after rearranging:

ω = u+ iv

ω′ =
1

2
(ux + vy) +

i

2
(vx − uy)

ω′′ =
1

4
(uxx − uyy + 2vxy) +

i

4
(vxx − vyy − 2uxy).

(3.11)

Multiplying (Eq 3.11.2) by α(z) = αr(x, y) + iαc(x, y) and (Eq 3.11.1) by β(z) = βr(x, y) +

iβc(x, y), we have after rearranging (Eq 3.12).

β(z) · ω = (βru− βcv) + i(βcu+ βrv)

α(z) · ω′ = 1

2
[αr(ux + vy) + αc(uy − vx)] +

i

2
[αr(vx − uy) + αc(ux + vy)]

ω′′ =
1

4
(uxx − uyy + 2vxy) +

i

4
(vxx − vyy − 2uxy).

(3.12)
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Summing up the real- and imaginary-parts of (Eq 3.12), setting equal to γ(z) = γr(x, y)+iγc(x, y),

multiplying both sides by 4 and equating real and imaginary parts gives us the system:

(uxx − uyy + 2vxy) + 2αr(ux + vy) + 2αc(uy − vx) + 4βru− 4βcv = 4γr

(vxx − vyy − 2uxy) + 2αr(vx − uy) + 2αc(ux + vy) + 4βcu+ 4βrv = 4γc.

(3.13)

Since ω is an analytic function, its real and imaginary parts u and v have continuous partial

derivatives of all orders. Since this is true, we can interchange the order of partial derivatives for

each of them; i.e. ϕxy = ϕyx. With this in mind, we will choose (Eq 3.13.1) to be an equation

dominantly focused on u and (Eq 3.13.2) to be an equation dominantly focused on v. One can

verify from the CR equations that:

vxy = uxx uxy = −vxx.

Using these identities together with the CR equations, (Eq 3.13) is then equal to:

(3uxx − uyy) + 4αrux + 4αcuy + 4βru− 4βcv = 4γr

(3vxx − vyy) + 4αrvx + 4αcvy + 4βcu+ 4βrv = 4γc.

(3.14)

Consider the initial conditions ω(z0) = u0 + iv0 and ω′(z0) = u1 + iv1. Since both equations have

both u and v (see last two terms of the left-hand side of (Eq 3.14)), the equations are coupled and

must be solved simultaneously. For notation purposes, denote the initial conditions and for-ward

differences by:

u(x0, y0) ≡ u0 := u1,1 v(x0, y0) ≡ v0 := v1,1. (3.15)

u(x0 + jh, y0 + kh) := uj+1,k+1 v(x0 + jh, y0 + kh) := vj+1,k+1. (3.16)

Note here that the computational domain D is consistently and uniformly spaced. For (Eq 3.14)

we will use a 2nd-order approximation for all derivatives present; namely:

uxx ≈
1

h2

(
uj+1,k − 2uj,k + uj−1,k

)
, ux ≈

1

2h

(
uj+1,k − uj−1,k

)
, (3.17)
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and similarly for vxx, vx and the y derivatives. This then transforms (Eq 3.14) into:

3

h2

(
uj+1,k − 2uj,k + uj−1,k

)
− 1

h2

(
uj,k+1 − 2uj,k + uj,k−1

)
+

2

h
αr(xj , yk)

(
uj+1,k − uj−1,k

)
+

2

h
αc(xj , yk)

(
uj,k+1 − uj,k−1

)
+ 4βr(xj , yk)u

j,k − 4γr(xj , yk) = 4βc(xj , yj)v
j,k

(3.18)

3

h2

(
vj+1,k − 2vj,k + vj−1,k

)
− 1

h2

(
vj,k+1 − 2vj,k + vj,k−1

)
+

2

h
αr(xj , yk)

(
vj+1,k − vj−1,k

)
+

2

h
αc(xj , yk)

(
vj,k+1 − vj,k−1

)
+ 4βr(xj , yk)v

j,k − 4γc(xj , yk) = −4βc(xj , yj)u
j,k.

(3.19)

As an observation, that aside from u and v, the only difference between (Eq 3.18) and (Eq 3.19)

is the terms surrounding the equal sign. Rearranging these equations into a more useful form, we

have:

uj+1,k
(

3 + 2hαj,kr

)
+ uj,k+1

(
−1 + 2hαj,kc

)
= vj,k

(
4h2βj,kc

)
+ uj,k

(
4− 4h2βj,kr

)
+ uj−1,k

(
−3 + 2hαj,kr

)
+ uj,k−1

(
1 + 2hαj,kc

)
+ 4h2γj,kr .

(3.20)

vj+1,k
(

3 + 2hαj,kr

)
+ vj,k+1

(
−1 + 2hαj,kc

)
=uj,k

(
−4h2βj,kc

)
+ vj,k

(
4− 4h2βj,kr

)
+ vj−1,k

(
−3 + 2hαj,kr

)
+ vj,k−1

(
1 + 2hαj,kc

)
+ 4h2γj,kc .

(3.21)

For sake of discussion, denote the right-hand side of (Eq 3.20) as Φj,k
u and the right-hand side of

(Eq 3.21) as Φj,k
v , making our finite-difference systems equivalent to that of:

uj+1,k
(

3 + 2hαj,kr

)
+ uj,k+1

(
−1 + 2hαj,kc

)
= Φj,k

u

vj+1,k
(

3 + 2hαj,kr

)
+ vj,k+1

(
−1 + 2hαj,kc

)
= Φj,k

v .
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To implement this numerical scheme, when j or k is equal to 2, the knowledge of u0,0 and v0,0

is needed, which exists before our initial condition. From these ”ghost points”, we can take two

half-steps of size h
2 to get to our initial conditions. To implement this recall that from (Eq 3.2):

ω′(z) =
1

2
(ux + vy) +

i

2
(vx − uy).

From our second initial condition to the general inhomogeneous differential equation we have:

ω′(z0) =
1

2
(ux(x0, y0) + vy(x0, y0)) +

i

2
(vx(x0, y0)− uy(x0, y0)) ≡ u1 + iv1. (3.22)

Using the Cauchy-Riemann equations to restructure (Eq 3 .22) and equating real and imaginary

parts, we have the following:

u(x0, y0)− u(x0 − h, y0)

h
= u1 → u0,1 = u1,1 − hu1

−u(x0, y0) + u(x0, y0 − h)

h
= v1 → u1,0 = u1,1 + hv1

v(x0, y0)− v(x0 − h, y0)

h
= v1 → v0,1 = v1,1 − hv1

v(x0, y0)− v(x0, y0 − h)

h
= u1 → v1,0 = v1,1 − hu1.

(3.23)
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To demonstrate this method, let us consider the constant-coefficient second-order non-homogeneous

differential equation:

ω′′ + 7ω′ + 10ω = i, ω(0) =
i

10
, ω′(0) = 1 + 2i. (3.24)

Applying (Eq 3.14) onto this particular equation gives us the 2-variable PDE system:

3uxx − uyy + 28ux + 40u = 0

3vxx − vyy + 28vx + 40v = 4.

(3.25)

Note here that these equations are uncoupled and can be solved for u and v independently, hence

any error accumulation will also be dependent solely only the initial steps and its consequences.

Applying (Eq 3.20) and (Eq 3.21) to obtain our numerical scheme, we obtain:

uj+1,k(3 + 14h)− uj,k+1 = uj,k(4− 40h2) + uj−1,k(−3 + 14h) + uj,k−1

vj+1,k(3 + 14h)− vj,k+1 = vj,k(4− 40h2) + vj−1,k(−3 + 14h) + vj,k−1 + 4h2.

(3.26)

Our initial condition ω(0) gives us:

u0 ≡ u1,1 = 0 v0 ≡ v1,1 = 0.2, (3.27)

and initial condition ω′(0) (i.e. u1 = 1, v1 = 2) together with (Eq 3.23) and (Eq 3.27) gives:

u0,1 = −h, u1,0 = 2h

v0,1 = 0.2− 2h, v1,0 = 2− h.
(3.28)

This gives us all of the tools to implement our LR and BT methods as described in the previous

chapter to obtain a numerical solution for the differential equation. To compare our numerical

solution, we will compare to the easily obtainable analytical soltuion:

ω(z) = c1e
−5z + c2e

−2z +
i

10
, where c =

−1/3− 2/3i

1/3 + 2/3i

 . (3.29)
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To graphically illustrate the LT and BT methods with single ghost cells, consider the following

diagram. Depending on the general differential equation, different schemes or approaches. Take

Figure 3.1: Solution Strategies for 1C-D w/ Single Ghost Cells

for example, the LR method initialization phase. The first point for which we will desire will be

u2,1, since u1,1 is given as an initial condition and u0,1 is a ghost cell that allows for the second

order scheme to be set up. Letting j = k = 1 in (Eq 3.26), we obtain an equation containing u2,1

(what we want), on the RHS we have u1,1, u0,1 and u1,0, but on the LHS, we have the term u1,2. By

the defined LR method, this point in the solution space is not calculated until the solution phase

(post initialization). Note that this ”issue” will occur any time a ”Laplacian”-like equation is being

solved with second-order in both spatial dimensions.
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One could approach this in one of many ways, the two obvious approaches are:

• Create a boundary of ghost cells on both sides of the computational domain and use them

to approximate the boundary conditions.

• Approximate the inner solution with a first-order scheme with spatial steps h
2 to approximate

the boundary.

We will take the second approach. With this approach, one needs to consider a couple things since

the part of the solution space (besides the boundary) have been approximation in the initialization

of LR/BT:

• Do you keep the first column (LR)/first row (BT) that was used to calculate the boundary?

• Should the ghost-cells be stored during the initialization phase for the solution phase of both

LR and BT?

The answer (in my approach) to both of these questions is ‘yes’. Recalculating the first column/row

from the boundary is equivalent as using the first column/row to calculate the boundary. For the

second question, the vertical ghost cells are used in initialization of LR and used in the solution

phase of BT, whereas the horizontal ghost cells are used in the initialization of BT and used in the

solution phase of LR. To explain the initialization phase (of LR in particular), consider the following

diagrams. For the solution phase of LR (and BT), as one proceeds across the row (column) by say

n steps, one needs to know the n− 1 steps of the next row above (column to the right). In short,

a bit more complex than the first-order methods described in Chapter 2, but that is the trade off

needed for higher order accuracy. See the diagrams on the following page for details.

As the reader may already be thinking, this approach is not practical, especially since it is

not for the general equation of interest. Yes; the purpose of this section is to just pose that ”it can

be done” via this approach. But for those who are familiar with the sequence of differential topics,

the next section is a trivial follow up approach to higher-order equations.
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Figure 3.2: Second-Order Strategy for LR(BT) Initialization Phase

Figure 3.3: Second-Order Strategy for LR(BT) Solution Phase
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3.3 First-Order System Approach for Higher Order Equations

As we have seen previously, there are many issues that make a direct approach to solving

higher order differential equations complication. With this in mind, a convenient approach to

higher-order equations is by converting them into a system of first-order equations. Let us take

(Eq 3.24) as a guiding example of this process:

ω′′ + 7ω′ + 10ω = i, ω(0) =
i

10
, ω′(0) = 1 + 2i.

The rule here is that for the highest derivative in the equation, that corresponds to how many new

complex variables to introduce and define; in this case, the order is 2. Define the following complex

variables:

η1 := ω

η2 := ω′
(3.30)

Note at this point, that the only variable that will ‘matter’ is the variable η1, where η2 (and onwards

for higher orders) will only be used to obtain η1. From (Eq 3.30) one can easily see that η′1 = η2.

In general η′k = ηk+1. From this identity and (Eq 3.24) we obtain an equivalent first-order system

for our differential equation:

η′1 = η2

η′2 = −10η1 − 7η2 + i.

(3.31)

It is sometimes convenient to write this in matrix form as:

η1

η2


′

=

 0 1

−10 −7


η1

η2

+

0

i

 . (3.32)

For the general higher-order system:

ω(n) + αn−1ω
(n−1) + ...+ α0ω = β, (3.33)
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one has the corresponding first-order system:



η1

η2

η3
...ηn−1

ηn



′

=



0 1 0 . . . 0 0

0 0 1 . . . 0 0

0
...0 0

...0 0
...0 0

...1

−α0 −α1 −α2 . . .− αn−2 −αn−1





η1

η2

η3
...ηn−1

ηn


+



0

0

0
...0

β


. (3.34)

Here, αk and β can be functions C → C, not necessarily constants (see next example). From

here, we will temporarily refer to the real and imaginary parts of ηk(z) by ak(x, y) and bk(x, y),

respectively. One can then obtain, from the Wirtinger representation of ∂
∂z , the following two

identities:

(
∂

∂x
− i ∂

∂y

)
(ak + ibk) = −(ak+1 + ibk+1), k = 1, 2, ..., n− 1 (3.35)(

∂

∂x
− i ∂

∂y

)
(an + ibn) = β −

n−1∑
l=0

αl · (al + ibl) (3.36)

Equating real and imaginary parts of (Eq 3.35) gives us:

(ak)x + (bk)y = −(ak+1)

(bk)x − (ak)y = −(bk+1), k = 1, 2, ..., n− 1,

(3.37)

and equating real and imaginary parts of (Eq 3.36), where β := βr + iβc and αl := (αl)r + i(αl)c,

gives us:

(an)x + (bn)y = βr −
n−1∑
l=0

[(αl)ral − (αl)cbl]

(bn)x − (an)y = βc −
n−1∑
l=0

[(αl)rbl − (αl)cal].

(3.38)

Remember, the goal of converting this to a system is to solve for the functions a1 ≡ u and b1 ≡ v,

which builds our η1 ≡ ω.For our problem, (Eq 3.32), applying the Cauchy-Riemann equations on

the real and imaginary parts on η1, η2 following the Wirtinger decomposition, and equating real
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and imaginary parts, we obtain the following systems; from (Eq 3.32.1), we have:

(a1)x =
1

2
(a2) (a1)y = −1

2
(b2)

(b1)x =
1

2
(b2) (b1)y =

1

2
(a2)

(3.39)

and from (Eq 3.32.2) we have:

(a2)x =
1

2
· [−10(a1)− 7(a2)] (a2)y = −1

2
· [−10(b1)− 7(b2) + 1]

(b2)x =
1

2
· [−10(b1)− 7(b2) + 1] (b2)y =

1

2
· [−10(a1)− 7(a2)].

(3.40)

For brevity, I won’t mention the generalizations from here on since they are trivial to derive. From

here, recall that ω(z) = η1(z) and ω′(z) = η2(z), therefore ω(0) = η1(0) = i
10 and ω′(0) = η2(0) =

1 + 2i. This implies that:

a1(0, 0) := a1,1
1 = 0 b1(0, 0) := b1,11 = 0.2 (3.41)

a2(0, 0) := a1,1
2 = 1 b2(0, 0) := b1,12 = 2. (3.42)
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Applying a forward-difference scheme on (Eq 3.39) and (Eq 3.40) gives us:

aj+1,k
1 = aj,k1 +

h

2
aj,k2 aj,k+1

1 = aj,k1 −
h

2
bj,k2

bj+1,k
1 = bj,k1 +

h

2
bj,k2 bj,k+1

1 = bj,k1 +
h

2
aj,k2 ,

(3.43)

and

aj+1,k
2 = aj,k2 +

h

2
· [−10aj,k1 − 7aj,k2 ] aj,k+1

2 = aj,k2 −
h

2
· [−10bj,k1 − 7bj,k2 + 1]

bj+1,k
2 = bj,k2 +

h

2
· [−10bj,k1 − 7bj,k2 + 1] bj,k+1

2 = bj,k2 +
h

2
· [−10aj,k1 − 7aj,k2 ].

(3.44)

From here, the solution strategy is trivial. For the LR method:

• Initialization Phase: Use (Eq 3.43-4),

• Solution Phase: Use (Eq 3.43-4),

and for the BT method:

• Initialization Phase: Use (Eq 3.43-4),

• Solution Phase: Use (Eq 3.43-4).

As already mentioned in the previous section, we can compare the solutions a1 = Re(η1) = u, b1 =

Im(η1) = v to the real and imaginary parts of the analytical solution (Eq 3.29):

u(x, y) = −1

3
e−5x cos(5y)− 2

3
e−5x sin(5y) +

1

3
e−2x cos(2y) +

2

3
e−2x sin(2y)

v(x, y) =
1

3
e−5x sin(5y)− 2

3
e−5x cos(5y)− 1

3
e−2x sin(2y) +

2

3
e−2x cos(2y) + 0.2.

(3.45)

The results for the forward difference approach are shown below.
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Figure 3.4: Real/Imaginary Parts for Exact Solution of ω′′ = −7ω′ − 10ω + i

Figure 3.5: Error Measures for Numerical Solutions w/ h = 0.1 and h = 0.005

Once confidence is placed in some numerical method and verified with known solutions, one can

then apply it to other differential equations either for fun or experimentation. For example, complex

De Boer-Ludford equation given by:

ω′′ − zω = 2ω · |ω|α, α > 0. (3.46)

Doing the η1, η2 transformation of (Eq 3.46) gives us the non-linear system:

η′1 = η2

η′2 = zη1 + 2η1 · |η1|α.
(3.47)

Here, for any η1 ∈ C × C and α ∈ R+, |η1|α ∈ R. It is also important to note that for any

second-order differential equation, the η′1 equation can be decomposed into (Eq 3.39). For our
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De-Boer-Ludford equation, we have that the η′2 equation decomposition is given by:

(a2)x =
1

2
(xa1 − yb1 + 2a1|a1 + ib1|α)

(b2)x =
1

2
(xb1 + ya1 + 2b1|a1 + ib1|α)

(a2)y = −1

2
(xb1 + ya1 + 2b1|a1 + ib1|α)

(b2)y =
1

2
(xa1 − yb1 + 2a1|a1 + ib1|α).

(3.48)

One can then apply a forward-difference scheme as was done in (Eq 3.43-44) to obtain a numerical

solution.

The Riemann surface for various values of α under the initial condition ω(0) = i and ω′(0) = 2− 5i

are shown below. It is to note that the De Boer-Ludford equation is typically treated as a boundary

value problem with complex-extended boundary conditions given by:

ω(∞+ i∞) = 0

ω(z) ∼ −(0.5z)1/α,

(3.49)

but as our focus here is not BVP’s, but rather IVP’s, we reserve this type of problem for our

future consideration. One can observe from the Riemann surfaces why such boundary conditions

may want to be imposed. More about the De Boer-Ludford equation and its application to plasma

physics can be found in [24].
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Figure 3.6: De Boer-Ludford Riemann Surface, α = 0.1 and α = 0.8

Figure 3.7: De Boer-Ludford Riemann Surface, α = 1.2 and α = 1.8
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3.4 Laplace Transform Solutions to Higher-Order Equations

Now that we have discussed numerical solutions to higher-order differential equations, we

again return to the discussion of Laplace transforms to help us obtain the exact solution to some

equations (namely the ones whose Laplace transform are practically obtainable). Before we proceed

to generalizations, let us just recall some of the important results that we derived in section 2.4.

Firstly, the two-dimensional transform is given by:

L{ϕ(x, y)} =

∫ ∞
0

∫ ∞
0

ϕ(x, y) · e−xξ1−yξ2dxdy.

Also, as we have taken advantage of several times:

ω′ = ux − iuy = vy + ivx.

From these, we derived the Laplace transform of first partial derivatives of functions:

L{fx} = ξ1L{f(x, y)} − Ly{f(0, y)}

L{fy} = ξ2L{f(x, y)} − Lx{f(x, 0)}.

In order to directly tackle higher-order equations, we first need to obtain a general form for the

Laplace transform of (Eq 3.8):

ω(n)(z) =

(
1

2

)n
·
n∑
l=0

[(
n

l

)
(−i)l

(
u(n−l,l) + iv(n−l,l)

)]
,

which requires a generalization of the Laplace transform of higher-order partial derivatives, both

strictly in x, y, and all combinations of both x and y. For this discussion, assume that the functions

here are continuous, differentiable, and all of its partial derivatives are also continuous, allowing us

to use Clairauts theorem for mixed partial derivatives.
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Also, keep in mind that the notation fx(0, y) ≡ ∂f(x,y)
∂x |x→0 and not ∂

∂x [f(0, y)]; trust me, I am

aware that the later is equal to 0. For the same-direction higher-order partial directions, induction

can show that:

L{fx} = ξ1L{f} − Ly{f(0, y)},

L{fxx} = ξ1L{fx} − Ly{fx(0, y)}

= ξ2
1L{f} − ξ1Ly{f(0, y)} − L{fx(0, y)},

...

L{f (j,0)} = ξj1L{f} −
j−1∑
l=0

ξl1Ly{f (j−l−1,0)(0, y)}.

(3.50)

Similarly, one can derive the y equivalent relation to be:

L{f (0,k)} = ξk2L{f} −
k−1∑
l=0

ξl2Lx{f (0,k−l−1)(x, 0)}. (3.51)

For mixed partials, we can begin by analyzing f (1,1):

L{(fy)x} = ξ1L{fy} − Ly{fy(0, y)}

= ξ1ξ2L{f} − ξ1Lx{f(x, 0)} − Ly{fy(0, y)},

L{(fx)y} = ξ2L{fx} − Lx{fx(x, 0)}

= ξ1ξ2L{f} − ξ2Ly{f(0, y)} − Lx{fx(x, 0)}.

(3.52)

If Clairaut’s theorem applies, we then have two equivalent ways of defining f (1,1). But before

proceeding into the generalization, if Clairaut doesn’t hold true, then there will be
(
j
k

)
ways of

writing and nonetheless calculating the different variations of L{f (j,k)}. Let’s assume that these

conditions do hold true, allowing us to reorder derivatives in whatever direction one wants. This

implies that we can begin with (Eq 3.50) and apply k of the y derivatives, or start with (Eq 3.51)

and apply j of the x derivatives.
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We can then substitute (Eq 3.51) into (Eq 3.50) to obtain:

L{f (j,k)} = ξj1ξ
k
2L{f} − ξ

j
1

k−1∑
l=0

ξl2Lx{f (0,k−l−1)(x, 0)} −
j−1∑
l=0

ξl1Ly{f (j−l−1,k)(0, y)}; (3.53)

or one can substitute (Eq 3.50) into (Eq 3.51) to obtain:

L{f (j,k)} = ξj1ξ
k
2L{f} − ξk2

j−1∑
l=0

ξl1Ly{f (j−l−1,0)(0, y)} −
k−1∑
l=0

ξl2Lx{f (j,k−l−1)(x, 0)}. (3.54)

Remember that our goal, in the end, is to solve for L{f}, so everything else in (Eq 3.53-54) should

be given to us in some form. If we choose to focus on equation (Eq 3.53) we mandate the following

things be given to us:

• Σ1 mandates f (0,0:(k−1))(x, 0).

• Σ2 mandates f (0:(j−1),k)(0, y).

From here we can take the two-dimensional Laplace transform of (Eq 3.8) and replace L{u(n−l,l)}

and L{v(n−l,l)} with either (Eq 3.53) or (Eq 3.54) with the replacement j → (n − l) and k → (l).

Thus for a general nth-order differential equation of the form:

ω(n) = f(z, ω′, ω′′, ..., ω(n−1)),

this gives us a general representation for the left-hand side. One can then apply the Laplace

transform to the right-hand side and use whatever identities are available to allow us to equate

real-and imaginary parts, until we obtain a system of the form:

L{u} = F (ξ1, ξ2)

L{v} = G(ξ1, ξ2),

thus allowing us to invert to obtain ω = u+ iv. One could, of course, approach this via first-order

systems as we did previously.
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3.5 A Differential Approach to Contour Integration

Before concluding this chapter with some side examples to think about, it is to note that the

existence and uniqueness theorem for higher-order equations falls as a direct result of first-order

system transformations. That is, since each of the first-order equations of the system have a unique

solution, its corresponding higher-order equation also has a unique solution. This section will focus

on (Eq 3.9):

2πi

k!
ωk(z) =

∫
γ

ω(ζ)

(ζ − z)k+1
dζ =

πi

2k−1
·
k∑
l=0

(−i)l

l!(k − l)!

(
u(k−l,l) + iv(k−l,l)

)
, k ∈ N,

which is a result that arouse from the higher-order equation generalization and the Cauchy integral

equation. Recall, the function ω must be analytic inside and on the boundary of the simple closed

positively oriented contour γ, where z ∈ γ.

Suppose that we are interesting in finding the following contour integral:

I =

∫
γ

ez

(z − 2)2
dz, γ : |z| = 9. (3.55)

Note here that 2 ∈ γ and for ω(ζ) = eζ and k = 1, this integral is of the form (Eq 3.9). Therefore

for some F :

F (z) :=

∫
γ

eζ

(ζ − z)2
dζ = πi · [(ux + ivx)− i(uy + ivy)]

= 2exπi[cos(y) + i sin(y)].

(3.56)

Since I = F (2 + 0i), we evaluate F at x = 2, y = 0. Therefore:

∫
γ

ez

(z − 2)2
dz = 2e2πi. (3.57)

One can easily verify that Resf(z) = e2, so this result matches Cauchy’s Residue Theorem.
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To satisfy curiosity, let us do another example that is a tad bit more involved. Consider the contour

integral:

A =

∫
γ

5z2 + 2z + 1

(z − i)3
dz, γ : |z| = 2. (3.58)

Note here that the singularity z = i lies within γ, and the singularity has order 3. The reason

I note these things is that the order must be greater than or equal to 1 for the corresponding

derivative to hold. If one wants to consider k ∈ R instead of k ∈ N, then one can perform an

analytical extension to account for fractional-order derivatives (a discussion for another day). And

in terms of the singularity lying within our contour, recall that if the singularity does not lie within

our contour γ, then the contour γ can be contracted to a point resulting in
∫
γ = 0 about that

singularity; hence we only consider functions f for which are not holomorphic on the entirety of γ

for discussion purposes. For (Eq 3.58), we approach it the same way by defining a function G(z)

and applying (Eq 3.9) with k = 2. We obtain:

G(z) :=

∫
γ

5ζ2 + 2ζ + 1

(ζ − z)3
dζ =

πi

2

[
1

2
(uxx + ivxx)− i(uxy + ivxy) +

1

2
(uyy + ivyy)

]
= 10πi.

(3.59)

Hence we can see that for any value a ∈ γ, F (a) = A = 10πi, otherwise if a /∈ γ,A = 0; this can

readily be verified since Resf(z) = 5.

Even though this section is not ‘directly’ related to this thesis, it is easy to say that I feel that

this application/result can be used for a variety of things and definitely will be explored in heavier

detail in my near future.
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Chapter 4
TIME-DEPENDENT DIFFERENTIAL EQUATIONS

In this chapter we will discuss time-dependent complex variable differential equations:

namely the advection and wave equations. We discuss the finite difference schemes, we

discuss/review how to determine the stability of the schemes and also briefly discuss how to

interpret the results near singularities.

4.1 The Complex Advection Equation

We will begin by noting that we will be considering time as a real variable rather than

trying to parse the meaning of complex variable time (e.g. t = 2 + 2i seconds). Suppose

that ω represents the complex-velocity of a particle at complex-position z at real-time t

(hence ω = ω(z, t)). Let us also assume that the speed of the particle varies with time; i.e.

c = c(t) ∈ R. Hence the one-complex dimensional advection equation can be constructed to

be:

∂ω

∂t
+ c(t)

∂ω

∂z
= 0. (4.1)

Since ω = u+ iv, we can again rewrite ωz via the Wirtinger representation and decom-

pose ωt directly with the time-derivatives of its real and imaginary parts. Equating real and

imaginary parts gives us the time-dependent system:

ut +
1

2
c(t)[ux + vy] = 0,

vt +
1

2
c(t)[vx − uy] = 0.

(4.2)

Here, remember that both u and v are functions of x, y and t. Applying the CR equations,
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gives us equations for which we can solve through the spatial directions of both u and v:

ut = −c(t)ux and ut = −c(t)vy

vt = c(t)uy and vt = −c(t)vx.
(4.3)

We will first note that if we use a forward difference approximation for ut and central differ-

ence for ux, write out the scheme, and run the results and realize ‘the method is unstable.’

This issue is discussed thoroughly in [25] and [23]; we will thus take the forward-time central-

space approach and reference the reader to the aforementioned leader for more details on

why this approach is prefered/necessary. Take for example the ut, ux equation of (Eq 4.3).

This will give us:

uj,kn+1 = uj,kn −
c(t)∆t

2h
(uj+1,k

n − uj−1,k
n ). (4.4)

For notations, we will use superscripts to denote spatial positions and subscripts to denote

time positions. The Lax method replaces the uj,kn term with the spatial average at that point

to cure the instability issue, which turns (Eq 4.4) into:

uj,kn+1 =
1

2
(uj+1,k

n + uj−1,k
n )− c(t)∆t

2h
(uj+1,k

n − uj−1,k
n ). (4.5)

One then would desire to have better accuracy by applying a central difference scheme via a

central-order approximation for ut, but one would have to again investigate the stability of

the scheme. But again, we refer to the references cited for more details on this since it has

been investigated thoroughly by others. For now, we will move forward with (Eq 4.5) and

allow our ∆t and h magnitude dictate the accuracy of our methods. For an exact solution

to our PDE (Eq 4.1) to exist, we need to prescribe an initial condition (t = 0) to be:

ω(z, 0) := f(z), (4.6)
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and a time-varying boundary condition (z = z0) to be:

ω(z0, t) := g(t). (4.7)

The initial condition (Eq 4.6) will allow us to know all points uj,k0 + ivj,k0 for all points (x, y)

inside and outside of D, so the need of constructing ghost cells and so on is irrelevant in

this case, as the entire right-hand of (Eq 4.5) depends on ω0 in order to determine ωn for all

n > 0. In terms of the boundary condition, the prescription is dependent on the problem

that is being modeled/considered. For example, if you want to model a water wave in a

pool, then a reflective boundary condition; whereas if you want to model a sound wave in a

sound-proof room, a absorbing boundary condition may be appropriate. Numerically, some

sort of boundary behavior is desired in order to limit the domain space D to something

computationally practical. In a similar fashion to equation (Eq 4.5):

uj,kn+1 =
1

2
(uj+1,k

n + uj−1,k
n )− c(t)∆t

2h
(uj+1,k

n − uj−1,k
n ).

which was built from the ut, ux equation of (Eq 4.3), one can derive a similar equation for

vn+1 from the vt, vx equation of (Eq 4.3) to be:

vj,kn+1 =
1

2
(vj+1,k
n + vj−1,k

n )− c(t)∆t

2h
(vj+1,k
n − vj−1,k

n ). (4.8)

For discussion purposes, consider a complex Gaussian initial condition:

f(z) = a · e−k·z2 , a, k ∈ R,
dc

dt
= 0,

and let us solve the advection equation on the computational domain D = [−5, 5] × [−5, 5]

with h = ∆t = 0.05 in addition to prescribing an absorbing boundary. As seen in (Fig-

ure 4.1), the solution appears to behave nicely and tends to dissipate into the boundary as
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Figure 4.1: Complex Advection Equation (Re/Im) w/ ∆t = 0.05 at t = 5 and t = 15

Figure 4.2: Complex Advection Equation (Re/Im) w/ ∆t = 0.2 at t = 1.2 and t = 4

t → ∞ as designed. In some mathematical models, it is useful to track the model into the

near (or far) distant future. One approach to this desire is to re-scale the model to be, say,

in terms of hours rather than seconds; this requires modification of the equation terms, but

is not highly difficult. Another approach is to just increase the value of ∆t to something

higher. For example, if ∆t = 1 corresponds to every frame showing concurrent seconds,

∆t = 60 will correspond to every frame showing concurrent minutes; this does not require

modification of the model and is very easy to code. As seen in (Figure 4.2), increasing ∆t

from 0.05 to 0.2 creates a slight disturbance in the solution, which does not exist in smaller

values of ∆t. This ties into the stability of the finite difference scheme.
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We can determine the values of ∆t that will cause our finite difference scheme to con-

verge/diverge by performing Von Neumann stability analysis; let us take (Eq 4.5) to illustrate

the idea. We will first define a (time varying) constant r to be:

r :=
c(t)∆t

h
. (4.9)

This number is sometimes referred to as the Courant-Freidrichs-Lewy (CFL) number. Our

equation then becomes:

uj,kn+1 =
1

2
(uj+1,k

n + uj−1,k
n )− r

2
· (uj+1,k

n − uj−1,k
n ). (4.10)

Since our finite difference methods only have spatial derivatives in one direction, we can treat

the k index in (Eq 4.10) as if it is not there since the error in the solution calculation will not

propagate into the y direction. We can then expand the spatial variation of the error, ε, into

a finite Fourier series in the one-dimensional (x) interval L pertaining to our computational

domain D. We will include the y portion of the Fourier expansion for general. We can write

this as:

εm(x, t) = eσtei(jmx+kmy), (4.11)

where jm = πm
L

and kn = πn
L

are the wave numbers with m,n = 1, 2, ..., L
h

and σ a constant.

In the case that D is not a square domain, one an define Lx and Ly if desired. Hence we can
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rewrite each of our finite difference terms as:

uj,kn = eσtei(jmx+kny)

uj,kn+1 = eσ(t+∆t)ei(jmx+kny)

uj+1,k
n = eσtei(jm(x+h)+kny)

uj−1,k
n = eσtei(jm(x−h)+kny).

(4.12)

We can then rewrite (Eq 4.10) into its Fourier form to be:

eσ(t+∆t)ei(jmx+kny) =
1

2

(
eσtei(jm(x+h)+kny) + eσtei(jm(x−h)+kny)

)
−

r

2
·
(
eσtei(jm(x+h)+kny) − eσtei(jm(x−h)+kny)

)
.

(4.13)

As mentioned before, our finite difference equation does not contain discretizations of the

y-derivative, so we can divide both sides of (Eq 4.13) by ekny and also eσt. This gives us:

eσ∆teijmx =
1

2

(
eijm(x+h) + eijm(x−h)

)
− r

2
·
(
eijm(x+h) − eijm(x−h)

)
.

Simplifying our exponential expressions gives us:

eσ∆t =
1

2

(
eijmh + e−ijmh

)
− r

2
·
(
eijmh − e−ijmh

)
. (4.14)

We can rewrite the exponential terms of (Eq 4.14) in terms of sin and cos to be:

eσ∆t = cos(jmh)− ir sin(jmh).

The Lax-equivalence theorem states that a necessary and sufficient condition for the error
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to be bounded is that |G| ≤ 1, where

G =
εj,kn+1

εj,kn

=
eσ(t+∆t)ei(jmx+kny)

eσ(t)ei(jmx+kny)

= eσ∆t.

(4.15)

Therefore, the error of the finite difference scheme (Eq 4.10) will be bounded if and only if:

| cos(jmh)− ir sin(jmh)| ≤ 1. (4.16)

This is equivalent to the inequality equation:

(r2 − 1) sin2(jmh) ≤ 0; (4.17)

and since sin2(jmh) ≥ 0 for all jmh, hence we get the condition that r2 ≤ 1 in order for

stability to be achieved. Therefore,

∆t ≤ h

c(t)
. (4.18)

Note also that this is the same result as in the real-variable case. Therefore, if you choose

the same numerical values as we did in our simulation of the advection equation (namely

c(t) = 0.4 and h = 0.05), then the finite difference method (Eq 4.10) will be stable in its

solution if and only if ∆t ≤ 0.125, which explains why ∆t = 0.2 caused an instability in our

solution.

The last thing to mention in terms of the solution method for the advection equation, recall
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that from (Eq 4.3), we chose to use the equations:

ut = −c(t)ux, vt = −c(t)vx

to obtain our numerical solutions u, v. Note here that these two equations are the same aside

from real-part/imaginary-part difference, hence the CFL condition is the same for both to

determine the stability of the solutions for both u, v. An alternative would be to use the

system:

ut = −c(t)vy, vt = c(t)vy.

It is easy to see that the CFL condition is the same for these two equations (due to the

definition of | · |), and the numerical solutions of the two systems are comparable as was the

BT and LR methods of the previous chapters.
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4.2 The Complex Wave Equation

In continuation of the previous section, we proceed to a second order version of the

advection equation, namely the wave equation:

∂ω

∂t
= c(t) · ∂

2ω

∂z2
. (4.19)

We again rewrite ωt as ut + ivt. For the ωzz term, we will use (Eq 3.3) to rewrite it in terms

of x, y partial derivatives. Therefore:

ut + ivt =
1

4
c(t) · [(uxx − 2iuxy − uyy) + i(vxx − 2ivxy − vyy)]. (4.20)

Equating real and imaginary parts gives us the system:

ut =
1

4
c(t)[uxx − uyy + 2vxy]

vt =
1

4
c(t)[vxx − vyy − 2uxy].

(4.21)

For ut and vt, we will use a forward difference approximation as before. For uxx, uyy (and

similarly for vxx, vyy), we will use the second order central difference approximation:

uxx :≈ 1

h2

(
uj+1,k
n − 2uj,kn + uj−1,k

n

)
,

uyy :≈ 1

h2

(
uj,k+1
n − 2uj,kn + uj,k−1

n

)
.

(4.22)

For the uxy = uyx (and similarly for vxy = vyx) term, we have:

uxy :≈ 1

h2

(
uj+1,k+1
n − uj+1,k

n − uj,k+1
n + uj,kn

)
,

vxy :≈ 1

h2

(
vj+1,k+1
n − vj+1,k

n − vj,k+1
n + vj,kn

)
.

(4.23)
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This creates one method of solving the wave equation. To make things more simple for

analysis, recall that u, v satisfy the Cauchy-Riemann equations. Therefore:

uxy = −vxx and vxy = uxx.

This allows us to transform (Eq 4.21) into:

ut =
1

4
c(t)[3uxx − uyy]

vt =
1

4
c(t)[3vxx − vyy].

(4.24)

Hence the ut and vt finite-difference equations for (Eq 4.24) is given by:

uj,kn+1 = uj,kn +
c∆t

4h2

(
3uj+1,k

n − uj,k+1
n − 4uj,kn + 3uj−1,k

n − uj,k−1
n

)
vj,kn+1 = vj,kn +

c∆t

4h2

(
3vj+1,k

n − vj,k+1
n − 4vj,kn + 3vj−1,k

n − vj,k−1
n

) (4.25)

Even though (Eq 4.24) and (Eq 4.21) are analytically equivalent, the finite difference methods

could potentially gain different numerical results. Therefore, using (Eq 4.22) and (Eq 4.23)

to obtain a finite-difference method for (Eq 4.21), we obtain the following finite-difference

equations:

uj,kn+1 = uj,kn +
c∆t

4h2

(
uj+1,k
n − uj,k+1

n + uj−1,k
n − uj,k−1

n + 2vxy
)
,

vj,kn+1 = vj,kn +
c∆t

4h2

(
vj+1,k
n − vj,k+1

n + vj−1,k
n − vj,k−1

n − 2uxy
)
,

(4.26)

where vxy and uxy are represented by (Eq 4.23). For the Von-Neumann stability analysis,

our CFL number is given by:

r :=
c(t)∆t

h2
. (4.27)
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To reduce the instability of the finite-difference scheme, we will again apply the Lax Method

for the uj,kn term in each of the equations. For the implementation, finite-difference system

(Eq 4.25) is uncoupled and can be split on two different computational threads, whereas the

finite-difference system (Eq 4.26) cannot be ’easily’ parallelized.

One of the last things to mention in regards to these approaches is one of the downsides

to finite difference methods. Let us assume that our initial condition, f(z), has one or more

singularities in the computational domain; for example f(z) = 1
1+z2

. Therefore, if one is use

finite difference methods for these type of problems (impulse problems such as f(z) = δ(z))

must by taken with caution as the singularity undefined-ness ripples outwards from the orig-

inal singularities. This may not be the case for both Re(ω) and Im(ω), but the numerical

solution will provide such a conclusion as shown in the following set of figures.

Figure 4.3: Complex Wave Equation Finite-Difference Results Around Singularities

To verify our results, consider the wave equation with c = 1:

∂ω

∂z
=
∂2ω

∂z2
. (4.28)
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It is easy to see that the function:

ω(z, t) = e−t/10 sinh

(
i√
10
z

)
(4.29)

satisfies (Eq 4.28), which will allow us to verify our solution numerically. Therefore, it is

necessary to prescribe the initial condition for (Eq 4.28) to be:

f(z) = sinh

(
i√
10
z

)
. (4.30)

As an easy exercise, we can find the real/imaginary decomposition of our test solution to be:

u(x, y, t) = −e−t/10 cos

(
x√
10

)
sinh

(
y√
10

)
v(x, y, t) = e−t/10 sin

(
x√
10

)
cosh

(
y√
10

)
.

(4.31)

A time frame of the real/imaginary parts of the solution together with the Riemann surface

can be seen in Figure 4.4.

To compare the numerically obtained solution, we can compare the exact solution to the

numerical solution at varying time steps through the simulation at sub-domains that are

not affected by the boundary condition implemented. At time t = 0, the numerical and

theoretical results are trivially equal, so for our numerical comparison, we have taken three

time steps after t = 0 and taken the L2 norm of difference of solutions with the ideal case

that the norm is equal to zero; the results are given in Figure 4.5 (vertical axis is the L2

error, and horizontal axis is the number of time steps taken). As evident from the analytical

solution, as t → ∞, the true solution ω → 0, which both the analytical and numerical

solutions converge to at about the same time.
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Figure 4.4: Complex Wave Equation Finite-Difference Exact Solution Time Frame

Figure 4.5: Time Series of L2 Error in Solutions for the Wave Equation
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Chapter 5
CONCLUSIONS AND FINAL REMARKS

In this final chapter, we will summarize the work that has been discussed in this thesis

and some of the contributions that has been laid down. We will also discuss some of the

problems that we are considering for future applications and investigation.

5.1 Summary of Results

The first chapter of this thesis is primarily dedicated to literature review and discussions

of things that has already been done, but there are a couple things that can be discussed

in more detail and be applied to other potential problems. As the majority of this thesis

is focused around the perspective of solving complex-variable problems in the perspective

of two-real-variable problems, the acquisition of the real and imaginary parts of a complex

function, ω(z), is/can be of vital importance. For a complex function, ω(z), one can easily

numerically obtain the real and imaginary parts, u and v; simply substitute various numbers

for x, y into ω(x + iy), and allow for whatever numerical software to calculate the real and

imaginary parts of it; to some, this isn’t enough. Having the ability to quickly obtain the

analytical representation of u(x, y) and v(x, y) may be of importance to some, but due to the

nature of algebraic structures, a closed form may not exist (similar to elementary primitives).

The second chapter is, the heart of this thesis, as it presents the main idea and goals of

what we aimed to achieve. The main results that we have taken advantage of are:

• The Cauchy-Riemann Equations,

• The conversion of ∂z into ∂x and ∂y (Wirtinger).

Equating real and imaginary parts proved that solving a single-complex-variable ordinary (or

equivalently partial) differential equation is equivalent to solving a two-real-variable system

of partial differential equations. In the spatial domain, we considered to different directions:
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the left-to-right (LR) and bottom-to-top (BT) methods. We realized that even though the

two methods do not, unsurprisingly, produce the same numerical results, they do converge

to the same solution.

We also proved the existence and uniqueness theorem for first-order complex initial value

problems and illustrated that the iteration method still can be applied for numerical pur-

poses. We have not seen much extensive applications of multi-variable Laplace transforms in

the literature, so we felt that it was necessary to approach it in an elementary approach that

would be useful for other people who may be interested in investigating analytical methods.

In the third chapter, we derived a generalized real-imaginary decomposition of a complex-

valued function ω that can be used to translate a higher-order complex differential equation

into a real-valued partial differential system. We demonstrated that this is not algebraically

efficient, and should only be approached if the problem was extremely general or a particu-

lar narrowed down problem for investigation. We demonstrated that the first-order system

approach is still a viable alternative that can be used to solve non-linear complex-variable

higher-order equations. As a side result, from the generalization of Dα, we were able to find

a partial-derivative alternative for evaluating contour integrals.

In the fourth chapter, we demonstrated that adding time to the complex variable prob-

lem was a trivial extension if we assumed that time itself was real valued. If we break this

assumption, then the complexity may again arise, but the same approach can be used for

the spatial derivatives.

5.2 Future Considerations

There are some theoretical investigations that one may pursue in response to some of

the numerical approaches discussed here. In regards to the LR and BT methods, we hope
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to determine a necessary condition as to which method will be the best approximation to

the solution under some assumptions about the original equation or initial conditions. A

simple modification that one can propose is taking the average of the LR and BT methods

to construct a ”mid-point” like method. As this is a very easy modification to the code, we

did not have significant results to prove that it was any more favorable than the other, so

we chose not to include it. As we did not consider the theoretical aspects of convergence (as

it was not my focus), a guarantee of its order convergence being higher than LR or BT is

no expected based on the side results that were obtained. From my knowledge, this is most

likely due to the higher-dimensional nature of the problem in consideration.

Another problem that we are curious to investigate in the future is multi-variate differ-

ential equations. Take for example the real-variable differential equation y′ = arctan(x). It

is typically assumed that the branch considered for this is the one whose range is 1
2
(−π, π).

If this is true, then the problem is asking ”what functions derivative has this behavior on

this interval”. Choosing another branch of inverse tangent will have a different but similar

goal, but the solution would itself be different. Branches are not often considered in the

real-variable case, even though there are several real-valued functions that have multiple

branches, namely the inverses of y = x2, y = sin(x), the solution of y for yey = x (namely

the Lambert W function) to name a few. Branches come up more often in the realm of com-

plex analysis due to the ”new” (but not really) nature of the logarithmic and exponential

functions, mainly due to the multi-variate nature of f(z) = arg(z).

Also in the second chapter, we illustrated the iterative method for solving complex initial

value problems. As this method is effective, it can be computationally expensive (by hand).

For numerical purposes, one would have to have a symbolic system to execute the calculation

of the indefinite integrals. For the existence and uniqueness theorem, certain properties of

f(z, ω) must be met (analyticity being one). But for some functions, such as Re(z) and z̄
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to name two trivial functions, this criteria is not met; this does not necessarily imply that a

(local) solution exists for the differential equation, so investigating these ”special” problems

would be useful to satisfy curiosity.

We chose to use Laplace transforms to analyze the analytical solution of the complex dif-

ferential equations. This method requires knowledge of the real-imaginary decomposition of

functions to find the two-variable Laplace transform of. The interest of integral transforms

has disappeared from the primary interest of research in the past few decades, but we still

feel that it poses some value still in the modern day (as so many applications are still in use

today). A couple problems that we do plan on investigating in regards to Laplace transform

solutions of differential equations are the following points:

• Numerical construction of the Laplace transform of a real and/or complex valued func-

tion.

• Constructing an numerically efficient inverse Laplace transform of a transformed func-

tion. As was discussed in chapter 4, a partial-differential method was derived that may

hold promise for this goal.

• From a initial value problem, we able to construct the boundary of the solution in

order to use Laplace transforms for the solution. Some have referred to these problems

as ”immersed boundary problems”, but we feel that more work can be done in this

field.

In the third and fourth chapter, we discussed applications to higher-order and time-varying

differential equations in the complex spatial domain. We feel that so much work can be done

in this realm, both in the real and complex sense. One of the primary future goals that we

want to consider is developing a spectral method for solving a complex-variable equation.

We believe that this approach will be more of a tensor algebra problem, but nonetheless it
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will benefit the numerical realm as spectral methods are one of the top preferred methods

of solving differential equation problems. We also plan to investigate the partial-differential

approach to evaluating contour integrals; we hope to develop a necessary and sufficient

condition that will guarantee that this method will work. This will allow numerical contour

integration to easily see an advantage. The generalization of the complex differential operator

can also be extended to the fractional calculus sense in the traditional manner as was the real

differential operator, so we also plan to investigate the consequences of that extension. Due

to the variety of directions one can take, we hope that we gain develop physical applications

of these things to fields such as fluid dynamics, quantum physics and computer vision.
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