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DEDICATION

To young people all around the world,

Don’t let distractions block you from your goals and destiny.

Stay focused and keep your eyes on the prize. No matter how challenging

the situation or how bad the circumstance, BE RESILIENT!

“I can do ALL things through Christ which strengtheneth me.”

Philippians 4:13 KJV
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A Qualitative Simulation of Blood Flow Through an Elastic Cerebral Saccular

Aneurysm Using an Immersed Boundary Method
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Research Advisor: Dr. Dawn A. Lott

ABSTRACT

Fluid dynamics has been used to simulate blood flow through major arteries of the

human body (e.g. aorta and carotid) for advancement of medical technology. This disser-

tation is directed towards blood flow through a saccular aneurysm attached to a cerebral

artery and the effects that the velocity and force of the blood flow have on the aneurysm

wall. The two-dimensional nonlinear incompressible Navier-Stokes equations are solved on

a staggered Eulerian grid to determine the flow of blood through the artery and aneurysm.

An immersed boundary method is utilized to enforce solid boundaries. Subsequently, these

nonlinear equations are coupled with the dynamic equation for the motion of an elastic body

using an implicit second-order finite-difference scheme on a Lagrangian grid. An efficient and

effective numerical program is created that simulates blood flow through a moving artery

and its adjoining aneurysm.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

In the past years, researchers have studied fluid mechanics in conjunction with the

biomedical field. More specifically, fluid dynamics has been used to simulate blood flow

through major arteries of the human body (e.g. aorta and carotid) for advancement of

medical technology. This dissertation is directed towards blood flow through a saccular

aneurysm attached to a cerebral artery and the effects that the velocity and force of the

blood flow have on the aneurysm wall. An efficient and effective numerical code is developed

and simulated. Use of this code and future development of these algorithms will enable

others to determine the best way to treat a saccular aneurysm.

There are three different treatment methods for aneurysms in-vivo; that is, endovascular

coiling, coiling in conjunction with ballooning or stenting, and clipping. Within the last

two years, there has been the introduction of “flow diversion” [5] in the setting of treating

aneurysms endovascularly. The difference between the coiling, etc., and the flow diversion

is that flow diversion depends on placing an object (usually a stent) within the vessel itself

which then modifies the flow around the neck of the aneurysm, slows the flow down as

blood enters the aneurysm, and further slows its egress from the aneurysm. This results in

thrombosis (clotting) of the aneurysm. Another potential mechanism, which has been fully

substantiated, is that it “deflects” flow away from the aneurysm and this results in a change

in flow dynamics and ultimately stagnation and thrombosis.

A cerebrovascular neurosurgeon specializes in surgical clipping, and an interventional

neuro-radiologist/endovascular surgeon specializes in the less invasive treatment of cerebral

aneurysms by coiling and/or flow diversion. During neurosurgery, the neurosurgeon places a

surgical clip around the aneurysm’s neck. The clip seals off the aneurysm so that blood can-

not enter, causing thrombosis. During the endovascular procedure, a small tube (catheter)
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is directed through the blood vessel into the aneurysm itself. Then, using X-ray guidance,

the surgeon carefully places soft platinum micro-coils into the aneurysm and detaches them.

The coils stay inside the aneurysm and act as a mechanical barrier to the blood flow reducing

the blood’s velocity, which promotes thrombosis, thus sealing off the aneurysm. [10]

Most methods for determining the aneurysm characteristics require intracranial intru-

sion. There are methods for aneurysm treatment that are non-invasive such as mathematical

predictions for aneurysm treatment. This research may help to determine the morphology

of an aneurysm and thus, its propensity to rupture, by using information regarding the fluid

mechanics of blood, the elasticity properties of blood vessels, and mechanical properties of

fluid-solid interactions.

The method used will be an aid in predicting how aneurysms may be best treated

using the various endovascular treatments in-silico instead of proceeding with an invasive

procedure. Another important outcome of this methodology is that one might be able to

use this technique to also help predict which aneurysms are at a very high risk of rupture

and thus, expose only those patients with a high rupture risk to the risk of treatment.

Morales et al. proposed a virtual coiling technique for treating image-based aneurysm

models. They used a dynamic path planning to mimic the structure and distribution of

coils inside aneurysm cavities and to reach high packing densities which was desirable by

clinicians when treating with coils. Several tests were done to evaluate the performance on

idealized and image-based aneurysm models. The proposed technique was validated using

clinical information of real coiled aneurysms. The virtual coiling technique reproduced the

macroscopic behavior of inserted coils and properly captured the densities, shapes, and coil

distributions inside aneurysm cavities. [29]

A practical application was performed by assessing the local hemodynamics, after coil-

ing, using computational fluid dynamics (CFD). Wall shear stress and intra-aneurysmal
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velocities were reduced after coiling. Additionally, CFD simulations showed that coils de-

creased the amount of contrast entering the aneurysm and increased its residence time. [29]

Tremmel et al. presented a study using computational fluid dynamics to quantifying the

effect of single and multiple self-expanding Enterprise stents alone or in combination with

balloon-mounted stents on aneurysm hemodynamics. They used computed tomographic

angiography images to reconstruct the geometry of a wide-necked, saccular, and basilar

trunk aneurysm. One to three stents were virtually placed inside the aneurysm and they

calculated the hemodynamic parameters after this placement. Their results showed that the

complex aneurysmal flow pattern was suppressed by stenting. [40]

Jeong and Rhee studied initiation, progress, and rupture of cerebral aneurysms. They

also analyzed results of flow after coiling and stenting of an aneurysm [15]. Wu et al. also

studied the effects of placing a stent inside of an intracranial aneurysm [49]. Ventikos et

al. evaluated the rupture risk, the thrombogenic characteristics of specific lesions and the

efficacy assessment of endovascular coil embolisation and flow diversion using stents [46].

Recent studies have demonstrated that by placing a stent with a high mesh density

(low porosity) in the parent vessel across the aneurysm’s neck, the flow of blood into the

aneurysm can be sufficiently modified to promote thrombosis within the aneurysm itself.

Meuschke et al. presented the first visualization tool that combined patient-specific

hemodynamics with information about the vessel wall deformation and wall thickness in

cerebral aneurysms. They investigated the morphological and hemodynamic data of patient-

specific cerebral aneurysms. They used a linked 2.5-dimensional and 3-dimensional depiction

of the aneurysm together with blood flow information that enabled the simultaneous explo-

ration of wall characteristics and hemodynamic attributes during the cardiac cycle. They

developed a GPU-based (graphics processing unit) implementation of their visualizations

with a flexible interactive data exploration mechanism. They designed their techniques in

collaboration with domain experts, and provide details about the evaluation. [27]
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Lott et al. developed a virtual two-dimensional flow model replicating an in vitro

aneurysm model to analyze how changes in morphology modified flow characteristics. They

concluded that the data suggested that neck and proximal dome configuration, independent

of size, were important characteristics of flow. [24]

Mikhal wrote a thesis which focused on the role of computational fluid dynamics for

identifying and classifying therapeutic options in the treatment of aneurysms. The con-

tribution made was computing the precise patient-specific pulsatile flow in all spatial and

temporal details, using an immersed boundary method (IBM). Computations of the flow

inside the aneurysm to predict high and low stress regions, indicative of possible growth

of an aneurysm, were done. Visualization of vortical structures in the flow indicating the

quality of local blood circulation were done. Mikhal showed that as the size of the aneurysm

increased, qualitative changes in the flow behavior arose. [28]

Bazilevs et al. [3], Endres et al. [8], Jiang et al. [16], Karmonik et al. [18], Marzo

et al. [26], Oubel et al. [31], Paál et al. [32], Sugiyama et al. [37], Tateshima et al. [38],

Torii et al. [39], Valen-Sendstad et al. [42], and Wong et al. [48] studied the hemodynamics

of an intracranial aneurysm using computational fluid dynamics. These authors studied

fluid-structure interaction, took into consideration the wall shear and tension stresses of the

aneurysm, examined the motion of the wall as blood moved through the aneurysm including

the outer forces on the aneurysm wall, and they examined the morphology of the aneurysm.

Though slightly different methods and subjects were used to be successful in their studies,

they all had the same idea in studying the hemodynamics of intracranial aneurysms.

Valencia et al. carried out eight computational structural dynamics simulations, one

computational fluid dynamics simulation, and four fluid-structure interaction simulations

in an anatomically realistic model of a saccular cerebral aneurysm with the objective of

quantifying the effects of type of simulation on principal fluid and solid mechanics results.

The results allowed the study of the influence of the type of material elements in the solid, the
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aneurysm’s wall thickness, and the type of simulation on the modeling of a human cerebral

aneurysm. [43]

Arthurs et al. developed a two-dimensional model of arteriolar fluid flow and mass

transport. The model included a phenomenological representation of the myogenic response

of the arteriolar wall, in which an increase in perfusion pressure stimulated vasoconstriction.

The model also included the release, advection, diffusion, degradation, and dilatory action

of nitric oxide, a potent, but short-lived, vasodilatory agent. Parameters for the model were

taken primarily from the experimental literature of the rat renal afferent arteriole. Solutions

to the incompressible Navier-Stokes (N-S) equations were approximated by means of a split-

ting technique that used upwind differencing for the inertial term and a spectral method

for the viscous term and incompressibility condition. The immersed boundary method was

used to include the forces arising from the arteriolar walls. The advection of nitric oxide was

computed by means of a high-order flux-corrected transport scheme; the diffusion of nitric

oxide was computed by a spectral solver. [1]

Simulations demonstrated the efficacy of the numerical methods employed, and grid

refinement studies confirmed anticipated first-order temporal convergence and demonstrated

second-order spatial convergence in key quantities. By providing information about the

effective width of the immersed boundary and sheer stress magnitude near that boundary, the

grid refinement studies indicated the degree of spatial refinement required for quantitatively

reliable simulations. Owing to the dominating effect of nitric oxide advection, relative to

degradation and diffusion, simulations indicated that nitric oxide had the capacity to produce

dilation along the entire length of the arteriole. [1]

Valencia and Solis described the flow dynamics and arterial wall interaction in a repre-

sentative model of a terminal aneurysm of the basilar artery, and they compared its wall shear

stress, pressure, effective stress, and wall deformation with those of a healthy basilar artery.

The arterial wall was assumed to be elastic (or hyper-elastic), isotropic, incompressible, and
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homogeneous. The flow was assumed to be laminar, Newtonian, and incompressible. The

incompressible Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formu-

lation were used as the governing equations which were suitable for problems with fluid

structure interaction and frequent mesh adjustments. [44]

The intra-aneurysmal pulsatile flow showed single recirculation region during both sys-

tole and diastole. The pressure and shear stress on the aneurysm wall exhibited large tem-

poral and spatial variations. The wall thickness, the Youngs modulus in the elastic wall

model, and the hyper-elastic Mooney–Rivlin wall model affected the aneurysm deformation

and effective stress in the wall especially at systole. [44]

Jones compared varying middle cerebral artery (MCA) bifurcation angles to uncover

any changes to fluid flow and wall shear stress that could simulate aneurysm growth. Eight

pre-aneurysm MCA bifurcation models were created. The laminar fluid flow module was

used on these models to simulate non-Newtonian blood flow. Fluid flow profiles showed

little to no change between the models. [17]

Rossitti investigated whether the branching geometry determined an underlying increase

of shear stress on the vessel wall in cerebral arteries of patients with aneurysms located dis-

tally to the circle of Willis. The ratio between shear stress in the branches and shear stress

in the parent vessel at bifurcations was estimated using exponential relations of vessel cal-

iber. Cerebral angiograms of 10 patients with an aneurysm of the distal anterior cerebral

artery were analyzed and compared with normal values from an earlier study. The branching

geometry determined a relatively small but significant increase on shear stress in branches

and of shear stress gradients at bifurcation apices on cerebral arteries of patients with an

aneurysm. [33] Jansen et al. compared intracranial aneurysm hemodynamics based on gen-

eralized versus patient-specific inflow boundary conditions. Geometric models of aneurysms

were determined for 36 patients by using 3D rotational angiography. Two-dimensional phase

contrast MR imaging velocity measurements of the parent artery were performed. Compu-
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tational fluid dynamics simulations were performed twice. Resulting mean and maximum

wall shear stress and oscillatory shear index values were analyzed, and hemodynamic char-

acteristics were qualitatively compared. [14]

A non-uniform rational B-splines (NURBS)-based isogeometric fluid–structure interac-

tion formulation, coupling incompressible fluids with non-linear elastic solids, and allowing

for large structural displacements, was developed by Bazilevs et al. Their methodology, en-

compassing a very general class of applications, was applied to problems of arterial blood flow

modeling and simulation. A set of procedures enabling the construction of analysis-suitable

NURBS geometries directly from patient-specific imaging data was outlined. The approach

was compared with representative benchmark problems, yielding very good results. Compu-

tation of a patient-specific abdominal aorta was also performed, giving qualitative agreement

with computations by other researchers using similar models. [2]

Isaksen et al. aimed to develop a computational model for simulation of fluid-structure

interaction in cerebral aneurysms based on patient specific lesion geometry, with special em-

phasis on wall tension. They developed an advanced isogeometric fluid-structure analysis

model incorporating a flexible aneurysm wall based on patient specific computed tomogra-

phy angiogram images. The simulation results exposed areas of high wall tension and wall

displacement located where aneurysms usually rupture. [13]

Carallo et al. investigated the relationships between shear stress and circumferential wall

tension and between these hemodynamic factors and the intima-media thickness (IMT) of the

common carotid artery in healthy men. Fifty-eight subjects were studied. Shear stress was

calculated as blood viscosity×blood velocity/internal diameter. Circumferential wall tension

was calculated as blood pressure×internal radius. Blood velocity, internal diameter, and IMT

were measured by a high-resolution echo-Doppler. Their findings confirmed that common

carotid shear stress varied among healthy individuals and decreased as age, blood pressure,

and body mass index (BMI) increased. Their findings also demonstrated that circumferential
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wall tension was directly associated with wall thickness, age, and BMI and that shear stress

was associated with common carotid IMT independent of other hemodynamic, clinical, or

biochemical factors. [6]

Lind et al. investigated if a reduced shear stress was also related to the echolucency

of plaque and the intima-media complex. A population-based study of 1016 subjects aged

70 were studied in the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS)

study. The left common carotid artery diameter, IMT, the grey scale median (GSM) of

the intima-media complex (IM-GSM), and the blood flow velocity were measured, for each

subject, by ultrasound. They found that a low shear stress in the common carotid artery

was associated with both a thick IMT and an echolucent intima-media complex. [23]

Yang and Stern presented a direct forcing immersed boundary framework for the sim-

ple and efficient simulation of strongly coupled fluid–structure interactions. The immersed

boundary method developed by Yang and Balaras was greatly simplified by eliminating sev-

eral complicated geometric procedures without sacrificing the overall accuracy. The fluid–

structure coupling scheme of Yang et al. was also significantly expedited by moving the

fluid solver out of the predictor–corrector iterative loop without altering the strong coupling

property. [52]

They reformulated the field extension strategy and the evaluation of fluid force and

moment exerted on the immersed bodies, by taking advantage of the direct forcing idea

in a fractional-step method. Several cases with prescribed motions were examined first

to validate the simplified field extension approach. Then, a variety of strongly coupled

fluidstructure interaction problems, including vortex induced vibrations of a circular cylinder,

transverse and rotational galloping of rectangular bodies, and fluttering and tumbling of

rectangular plates, were computed. The excellent agreement between the present results

and the reference data from experiments and other simulations demonstrated the accuracy,
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simplicity, and efficiency of the new method and its applicability in a wide range of compli-

cated fluid-structure interaction problems. [52]

Wang and Eldredge presented a strong coupling algorithm for simulating the dynamic

interactions between incompressible viscous flows and rigid-body systems in both two-and

three-dimensional problems. In this work, the Navier–Stokes equations for incompressible

flow were solved on a uniform Cartesian grid by the vorticity-based immersed boundary

projection method of Colonius and Taira. Dynamical equations for arbitrary rigid-body sys-

tems were also developed. The proposed coupling method attempted to unify the treatment

of constraints in the fluid and structure (the incompressibility of the fluid), the linkages in

the rigid-body system, and the conditions at the interface (through the use of Lagrange

multipliers). [47]

The resulting partitioned system of equations was solved with a simple relaxation

scheme, based on an identification of virtual inertia from the fluid. The scheme achieved

convergence in only two to five iterations per time step for a wide variety of mass ratios.

The formulation required that only a subset of the discrete fluid equations be solved in each

iteration. Several two-and three-dimensional numerical tests were conducted to validate and

demonstrate the method, including a falling cylinder, flapping of flexible wings, self-excited

oscillations of a system of many linked plates in a free stream, and passive pivoting of a

finite aspect ratio plate under the influence of gravity in a free stream. The results from the

current method were compared with previous experimental and numerical results and good

agreement was achieved. [47]

Di and Ge improved and implemented Uhlmanns direct-forcing IBM on a supercomputer

with CPU–GPU (central processing unit-graphics processing unit) hybrid architecture. The

direct-forcing IBM was modified by solving the Poissons equation for pressure before eval-

uation of the body force, and the force was only distributed to the Cartesian grids inside

the immersed boundary. A multi direct forcing scheme was used to evaluate the body force.
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These modifications resulted in a divergence-free flow field in the fluid domain and the no-slip

boundary condition at the immersed boundary simultaneously. [7]

Di and Ge’s method was implemented in an explicit finite-difference fractional-step

scheme, and was validated by two-dimensional simulations of lid-driven cavity flow, Couette

flow between two concentric cylinders, and flow over a circular cylinder. The method was

used to simulate the sedimentation of two circular particles in a channel. The results agreed

very well with previous experimental and numerical data, and were more accurate than the

conventional direct-forcing method, especially in the vicinity of a moving boundary. [7]

In 1981, Hirt and Nichols described a simple, but powerful, method that was based on

the concept of a fractional volume of fluid (VOF). To illustrate the method, a description was

given for an incompressible hydrodynamics code, SOLA-VOF (solution algorithm-volume of

fluid), which used the VOF technique to track free fluid surfaces. [11]

Kim, J. et al. developed a new immersed-boundary method for simulating flows over

or inside complex geometries by introducing a mass source/sink as well as a momentum

forcing. A stable second-order interpolation scheme for evaluating the momentum forcing

on the body surface or inside the body was also proposed. [19]

Shen and Chan later developed a combined immersed boundary and volume of fluid

(VOF) methodology to simulate the interactions of free-surface waves and submerge solid

bodies. They used the immersed boundary method to account for the no-slip boundary

condition at solid interfaces and the VOF method to track free surfaces. The Navier-Stokes

equations were used to capture the essential features of the flow-structure interactions. [35]

Xu and Wang implemented the immersed interface method to incorporate the jump con-

ditions, previously derived for simulating incompressible viscous flows subject to moving

boundaries in 3D with second-order spatial and temporal accuracy near the boundaries, in

a two-dimensional numerical scheme. They studied the accuracy, efficiency, and robustness

of their method by simulating Taylor–Couette flow, flow induced by a relaxing balloon, flow
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past single and multiple cylinders, and flow around a flapping wing. Their results showed

that their code had second-order accuracy in the infinity norm for both the velocity and the

pressure; the addition of an object introduced relatively insignificant computational cost; and

the method was equally effective in computing flow subject to boundaries with prescribed

force or boundaries with prescribed motion. [51]

Udaykumar et al. presented a Cartesian grid method for computing flows with complex

immersed and moving boundaries. A mixed Eulerian-Lagrangian framework was used which

allowed them to treat the immersed moving boundary as a sharp interface. They discretized

the incompressible Navier-Stokes equations using a second-order-accurate finite-volume tech-

nique. They also used a second-order accurate fractional-step scheme for time advancement.

Their methodology was validated by comparing it to the experimental data on two cases,

the flow in a channel with a moving indentation on one wall, and vortex shedding from a

cylinder oscillating in a uniform free-stream. [41]

Vanella et al. developed a structured adaptive mesh refinement (S-AMR) strategy for

fluid–structure interaction problems in laminar and turbulent incompressible flows. The

computational grid consisted of a number of nested grid blocks at different refinement levels.

The filtered Navier–Stokes equations for incompressible flow were advanced in time using

an explicit second-order projection scheme, where all spatial derivatives were approximated

using second-order central differences on a staggered grid. For transitional and turbulent

flow regimes, the large-eddy simulation (LES) approach was used, where special attention

was paid on the discontinuities introduced by the local refinement. [45]

For all the fluid-structure interaction problems reported in their study, the complete

set of equations governing the dynamics of the flow and the structure were simultaneously

advanced in time using a predictor corrector strategy. An embedded-boundary method was

utilized to enforce the boundary conditions on a complex moving body which was not aligned
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with the grid lines. Several examples of increasing complexity were given to demonstrate

the robustness and accuracy of their proposed formulation. [45]

Huang and Sung proposed an immersed boundary method for simulation of fluid-flexible

structure interaction. They used an efficient Navier-Stokes solver, adopting the fractional

step method, and a staggered Cartesian grid system to solve the incompressible fluid motion

in an Eulerian domain. They also used a moving Lagrangian grid to discretize the structure

domain [12].

Le et al. presented an implicit immersed boundary method for the incompressible

Navier-Stokes equation which was capable of handling three-dimensional membrane-fluid

flow interactions. Their goal was to greatly improve the time step by using the Jacobian-free

Newton-Krylov method (JFNK) to advance to location of the elastic membrane implicitly

[20]. Li et al. used an immersed boundary method to track the morphology of an animal cell

membrane during cytokinesis. They performed numerical simulations on the axisymmetric

domain to have sufficient resolution and incorporated three-dimensional effects [22].

Shishir et al. investigated the dynamics of blood flow in saccular cerebral aneurysms.

They computationally analyzed the flow field by the three-dimensional Navier-Stokes equa-

tions for laminar flow of incompressible Newtonian fluid. This study was done for a rigid

vascular wall where different sizes of circular and elliptical necks was studied. Results showed

that the geometrical parameter of the aneurysm caused variations with the vortex location,

inflow area in the neck, and other aspects of the solid body. [36]

Xenos studied the blood flow in an aneurysm by developing a method that would track

the moving tissue and account for its interaction with the fluid. A mixed Euler-Lagrangian

formulation was used to study blood flow in the aneurysm during the cardiac cycle. A

coupled and nonlinear system of partial differential equations made up the motion equation

and were discretized using the finite volume method. Results showed that the pulsating

wall greatly influenced the flow velocity, Reynolds and Womersley numbers increased as
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pulsatility increased, and the wall shear stress was amplified at the shoulders of the moving

wall compared to that of the rigid wall. [50]

Similar methods are used in this research as done in [50]. The difference is that Xenos

used the finite volume method to discretize the system of nonlinear partial differential equa-

tions. In this research, a finite difference method is used for discretization of such system.

Mori and Peskin recognized that the immersed boundary method is a computational

framework for problems involving the interaction of fluid and immersed elastic structures,

and immersed boundary computations typically evaluate the elastic forces explicitly in the

configuration of the immersed elastic structure. As a result, they concluded that, in many

applications, these aspects result in a severe restriction on the time step. Hence, they

presented a semi-implicit and a fully implicit second-order accurate immersed boundary

method. The methods provided a natural way to handle mass on the immersed elastic

structures. They demonstrated the performance for a prototypical fluid-structure interaction

problem. The methods were shown to possess superior stability properties that significantly

alleviate the typically severe time step restriction of explicit computations. [30]

Seibold created a compact and fast code to solve the incompressible Navier-Stokes equa-

tions on a rectangular domain. It contained fundamental components such as discretization

on a staggered grid, an implicit viscosity step, a projection step, and the visualization of the

solution over time [34]. This code serves as the foundation for this research.

Lee and Choi presented an immersed boundary method for the simulation of flow around

an elastic slender body. Their method was based on the discrete-forcing immersed boundary

method for a stationary, rigid body proposed by Kim, J. et al. They implicitly coupled the

incompressible Navier-Stokes equations with the dynamic equation for an elastic slender body

motion. Eulerian and Lagrangian coordinates were used to accomplish this fluid-structure

interaction. [21]
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Ghaffari et al. presented an efficient algorithm for simulation of deformable bodies inter-

acting with two-dimensional incompressible fluid flows. The temporal and spatial discretiza-

tions of the NavierStokes equations in vorticity stream-function formulation were based on

classical fourth-order RungeKutta scheme and compact finite differences, respectively. Using

a uniform Cartesian grid, they benefited from the advantage of a new fourth-order direct

solver for the Poisson equation to ensure the incompressibility constraint down to machine

zero over an optimal grid. For introducing a deformable body in fluid flow, the volume

penalization method was used. [9]

A Lagrangian structured grid with prescribed motion covered the deformable body

which was interacting with the surrounding fluid due to the hydrodynamic forces and the

torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature

of an anguilli-form fish, swimming toward a prescribed goal, was proposed which was based

on the geometrically exact theory of nonlinear beams and quaternions. Validation of the

developed method showed the efficiency and expected accuracy of the algorithm for fish-like

swimming and also for a variety of fluid–solid interaction problems. [9]

This dissertation is a unique, novel combination work of the methods used by Mori

and Peskin, Seibold, Lee and Choi, and Ghaffari et al. to create fluid-structure interaction

using a finite-difference, immersed boundary method to simulate blood flow through a cere-

bral artery and its adjoining saccular aneurysm. A semi-implicit numerical code solving the

two-dimensional nonlinear incompressible Navier-Stokes equations is created [34] and simu-

lations of laminar and pulsatile blood flow through the rigid cerebral artery and its adjoining

aneurysm are simulated in Chapter 2. This benchmark problem is tested for accuracy and

stability and is the framework for Chapter 3.

In Chapter 3, the two-dimensional Navier-Stokes equations are coupled with the equa-

tion of motion for an elastic body [21] to simulate fluid flow through a deformable vessel and

adjoining aneurysm. The numerical method, in Chapter 2, is modified to incorporate a fluid-
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solid algorithm and a deformable immersed boundary for the simulation of blood–aneurysm

vessel interaction.

The Navier-Stokes equations, discretized on a staggered Eulerian grid, is coupled with a

semi-implicit, second-order finite-difference scheme (Crank-Nicolson) on a Lagrangian grid.

Numerical results depicting aneurysm and vessel movement in response to fluid flow are

presented in Chapter 4. The discussion and conclusion are presented in Chapter 5. This

dissertation concludes with Chapter 6, Future Work.

15



Chapter 2

FLOW WITH A STATIONARY IMMERSED BOUNDARY

2.1 Laminar flow through a cylinder around a stationary circular solid

2.1.1 Problem Formulation

Accurate, stable, and consistent results for the problems presented in this dissertation

are obtained by first developing a fluid-solid numerical code [34] that simulates laminar flow

in a right, circular cylinder around a rigid circular solid. This problem is the benchmark

example and is utilized for code development and verification. The flow of an incompressible

fluid is governed by the two-dimensional incompressible Navier-Stokes equations. In vector

form, the Navier-Stokes equations are,

∂u

∂t
= −u · ∇u +

1

Re
∇2u−∇p + f , (2.1)

where u = (U, V )> are the fluid velocities, Re is the Reynolds number, p is the pressure,

and f is the momentum force. Along with the Navier-Stokes equations is the continuity

equation in vector form,

∇ · u = 0, (2.2)

which enforces time-dependent pressure. Equations (2.1) and (2.2) are formulated as a

system of nonlinear equations as follows,

Ut = −(U2)x − (UV )z +
1

Re
(Uxx + Uzz)− Px + FU , (2.3)

Vt = −(UV )x − (V 2)z +
1

Re
(Vxx + Vzz)− Pz + FV , (2.4)

Ux + Vz = 0. (2.5)
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Here, U and V are the fluid velocity vectors in the x and z directions, respectively; t is the

time variable, x and z are the spatial variables, Px and Pz are the derivatives of the pressure

in the x and z directions, respectively; FU and FV are the momentum forcing components

defined at the cell faces on or inside the immersed boundary to satisfy the no-slip boundary

condition on the immersed boundary. Re,

Re =
ρ umax Lz

µ
, (2.6)

is the Reynolds number, ρ is the fluid density, µ is the dynamic viscosity of the fluid, umax is

the maximum velocity of the fluid flow (characteristic velocity), and Lz is the length of the

domain in the z direction. All time is in seconds and length is scaled to meters.

The above incompressible Navier-Stokes equations are solved in the Eulerian coordinate

system on a rectangular domain Ω = [0, Lx]× [0, Lz] which is fixed in time where Lx is the

length of the domain in the x direction and Lz is as above [34]. The time step, ∆t, is chosen

based on the grid size to insure stability of the numerical code. A fixed grid of dimension

nx × nz, where nx and nz denote the number of cells in the x and z directions, respectively

[34], is defined when the length [0, Lx] is partitioned into nx cells and the width [0, Lz] is

partitioned into nz cells. Hence, the dimension of one grid cell is hx × hz where,

hx =
Lx

nx

, hz =
Lz

nz

. (2.7)

The velocities, U and V , and the pressure, P , are initialized as zero matrices in there

respective dimensions.

A staggered grid is used for stability purposes [34] where U (red dots) and V (blue dots)

are placed on the vertical and horizontal cell interfaces, respectively, and the pressure, P

(black dots), is placed in the center of each cell interface (See figure 2.1). For the staggered
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grid, the U and V velocities are defined with the interior resolution of the U velocity equal

to (nx − 1)× nz and the interior resolution of the V velocity equal to nx × (nz − 1).

Figure 2.1: The four domain boundaries with imposed no-slip boundary conditions at z = 0 and

z = Lz.

In figure 2.1, the four domain boundaries are denoted as North, South, East, and West.

The no-slip boundary conditions are imposed on the North and South boundaries as follows

[34],

u(x, Lz) = uN(x) = 0 (2.8)

v(x, Lz) = vN(x) = 0 (2.9)

u(x, 0) = uS(x) = 0 (2.10)

v(x, 0) = vS(x) = 0. (2.11)
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The Dirichlet boundary conditions imposed on the West boundary are,

u(0, z) = uW (z) (2.12)

v(0, z) = vW (z) = 0, (2.13)

and the Neumann boundary conditions imposed on the East boundary are,

ux(Lx, z) = 0 (2.14)

vx(Lx, z) = 0. (2.15)

Notice that all of the boundary conditions are set equal to zero except the West boundary

for the U velocity vector, uW . This is done to simulate laminar flow, i.e. fluid flowing in from

the West boundary. Fluid is free to flow out of the East boundary by setting the velocity

derivatives equal to zero. The West boundary condition, uW , is parabolic and dependent

upon the maximum velocity of the fluid, umax, the height of the domain, Lz, and z where,

uW =
4umax

L2
z

z(Lz − z). (2.16)

As a result of this derivation, the uW boundary condition simulates laminar (Poiseuille) flow

through the West domain.

2.1.2 Methodology

The two-dimensional incompressible Navier-Stokes equations are discretized in time and

space and are solved numerically. The computational steps used to solve the two-dimensional

incompressible Navier-Stokes equations, modeling laminar flow in a cylinder around a rigid

circular solid, are described in Algorithm I.
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2.1.2.1 Algorithm I

1. Initialization:

(a) Flag cells as solid, fluid, or boundary cells.

(b) For each boundary cell, determine the fluid approach direction to be used in

computing the force on the boundary.

(c) Initialize computational variables U , V , and P .

(d) Define inlet velocity of fluid for uW .

2. Begin computation at t = n ∆t, for n = 1 and continue for n = 2, ..., NT , where NT

is the maximum number of iterations.

3. Compute the terms to be used in calculating the imposed forces on the rigid solid:

(a) Compute the preliminary nonlinear terms N (un),

N (Un) =
(
(Un)2)

x
+ (UnV n)z , (2.17)

N (V n) = (UnV n)x +
(
(V n)2)

z
. (2.18)

(b) Compute the preliminary viscosity terms L(un) explicitly,

L(Un) =
1

Re
(Un

xx + Un
zz) , (2.19)

L(V n) =
1

Re
(V n

xx + V n
zz) . (2.20)

(c) Compute the gradient of the pressure, ∇P n,

∇P n = 〈(P n)x , (P n)z〉 . (2.21)
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(d) Compute the imposed forces F n+1
U and F n+1

V ,

F n+1
U =

Ũn − Un

∆t
+ (P n)x +N (Un)− L(Un), (2.22)

F n+1
V =

Ṽ n − V n

∆t
+ (P n)z +N (V n)− L(V n), (2.23)

where Ũn and Ṽ n are the velocities that are interpolated to enforce the velocities

at the boundary to be zero.

4. Compute the intermediate velocities u�, u� �, and u� � �:

(a) Update u� by forcing terms,

U� = Un + ∆t F n+1
U , (2.24)

V � = V n + ∆t F n+1
V . (2.25)

(b) Update u� � by nonlinear terms,

U� � = U� −∆t
[(

(Un)2)
x

+ (UnV n)z

]
, (2.26)

V � � = V � −∆t
[
(UnV n)x +

(
(V n)2)

z

]
. (2.27)

(c) Update u� � � by computing viscosity terms implicitly,

U� � � = U� � +
∆t

Re
(U� � �

xx + U� � �
zz ) , (2.28)

V � � � = V � � +
∆t

Re
(V � � �

xx + V � � �
zz ) . (2.29)
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5. Compute the pressure by solving the Poisson equation followed by computing the

gradient of the pressure yielding the final velocities un+1,

Un+1 = U� � � −∆t
(
P n+1

)
x
, (2.30)

V n+1 = V � � � −∆t
(
P n+1

)
z
. (2.31)

6. Update t = (n + 1)∆t.

Figure 2.2: Flow Chart for Flow Around a Rigid Body
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2.1.3 Defining the Immersed Boundary

The immersed boundary is defined as a circle of radius r0 with center (x0, z0) where,

x = r0 cos(θ) + x0 (2.32)

z = −r0 sin(θ) + z0. (2.33)

The maximum number of points defining the boundary are chosen to ensure there is at least

one point in each of the Eulerian boundary cells (See figure 2.3).

Figure 2.3: Defining the boundary with all points and redefining the boundary with only two points

in each cell, one for the U velocity direction (red points) and one for the V velocity direction (blue

points).

From the many points that are created to define the boundary, only two points are

chosen in each cell, one for the U velocity direction, defined as BU(x, z) and one for the V

velocity direction, defined as BV (x, z). It is possible for one point to be used for both velocity

directions. Where only one point is needed in order to flag the cell as a boundary cell, the

two points are needed to effectively compute the imposed forces that will be described in

Section 2.1.4. There are two cases to consider before minimizing the number of points in

each Eulerian boundary cell.
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1. A point in the boundary cell lines up with a discrete vertical and/or horizontal velocity.

In figure 2.3, in cell 1 , the red and blue dots represent the points that are used to define

forces on this cell which contribute to the discrete horizontal and vertical velocities for

this cell, respectively.

2. A point in the boundary cell does not line up with a discrete vertical and/or horizontal

velocity. In figure 2.3, in cell 2 , the points closest to the discrete vertical (blue dot)

and horizontal (red dot) velocities are used.

The cells that contain these boundary points are flagged as fluid-solid cells. The cells

that are completely inside the solid are flagged as solid cells, and the cells that are completely

in the fluid are flagged as fluid cells. Cell-flagging aids in determining the location of the

fluid with respect to the boundary.

2.1.4 Determination of Imposed Forces

2.1.4.1 Treatment of Nonlinear Terms

The first step in Algorithm I is to compute the forcing terms. This is done by computing

the nonlinear terms at time t = tn. To compute these terms, the right side of equations 2.17

and 2.18 must be solved,

N (Un) =
(
(Un)2)

x
+ (UnV n)z , (2.34)

N (V n) = (UnV n)x +
(
(V n)2)

z
. (2.35)

In order to treat these terms, the U and V matrices are extended to include their respective

boundary points (i.e., the North, South, East, and West boundaries). Next, (UV )x and

(UV )z are computed by averaging and differentiating the extended U velocity vertically and

the extended V velocity horizontally and by using γ, the transition parameter [34] yielding,
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UVx =
∂(UaVa − γ |Ua|Vd)

∂x
, (2.36)

UVz =
∂((UaVa − γUd |Va|)T )T

∂z
. (2.37)

Here, Ua, Va, Ud, and Vd are the averages of U and V and the derivatives of U and V ,

respectively. The parameter, γ, is used to implement a smooth transition between centered

differencing and up-winding.

γ = min

(
1.2∆t max

(
max (max |U |)

hx

,
max (max |V |)

hz

)
, 1

)
. (2.38)

Gamma is the maximum fraction of cells for which information can travel in one time step,

multiplied by 1.2 and capped at 1 [34].

Next, (U2)x and (V 2)z are computed by averaging and differentiating the extended U

velocity horizontally and the extended V velocity vertically and by using γ to get [34],

(
U2

)
x

=
∂(U2

a − γ |Ua|Ud)

∂x
, (2.39)

(
V 2

)
z

=
∂((V 2

a − γ |Va|Vd)
T )T

∂z
. (2.40)

Substituting each part into equations 2.17 and 2.18 yields the nonlinear terms needed to

compute the force. The same method is used for computing the nonlinear terms in equations

2.26 and 2.27 when updating the intermediate velocities, U� � and V � �.

2.1.4.2 Computation of Laplacian Matrices

Computation of the Laplacian matrices for U , V , and P are needed in order to treat

the viscosity terms of velocities U and V and for the pressure field P at each time step.

25



The Laplace operator with appropriate boundary conditions are discretized in the Laplacian

matrices Lu (≡ ∆U), Lv (≡ ∆V ), and Lp (≡ ∆p) for U , V , and P , respectively [34].

The Kronecker tensor product is utilized to construct the block matrices in two dimen-

sional space which combines the sparse identity matrix of dimension (nx× nx) or (nz× nz)

and the tridiagonal matrix, K1, approximating either ∂2

∂x2 or ∂2

∂z2 , both in one dimensional

space [34]. K1 generates the following matrix,

K1 =
1

h2



− a11 1

1 − 2 1

. . . . . . . . .

1 − 2 1

1 − b11


(2.41)

where a11 and b11 denote the boundary condition parameters.

Before creating the system matrices, Lu, Lv, and Lp, the boundary conditions for

U , V , and P have to be determined in terms of either Neumann, Dirichlet (for points

on the boundary), or mid-Dirichlet (for boundary between two points) boundaries with

parameters denoted as 1, 2, or 3, respectively. A second-order central-differencing scheme

is used to determine the boundary conditions for the U and V velocities. For this scheme,

U requires both Neumann and Dirichlet boundary conditions in the x direction and the

mid-Dirichlet boundary condition in the z direction; V requires both Neumann and mid-

Dirichlet boundary conditions in the x direction and the Dirichlet boundary condition in the

z direction. Neumann boundary conditions are prescribed for P [34].

2.1.4.3 Treatment of Explicit Viscosity Terms

After computing the Laplacian matrices, the explicit viscosity terms of equations 2.19

and 2.20 can be determined. Multiplication of the Laplacian matrices, Lu and Lv, by the
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velocities, Un and V n, yield the explicit computation of the viscosity terms, equations 2.19

and 2.20. The modified Laplacian equations for Un and V n are,

∆Un =
1

Re

(
∂2

∂x2
+

∂2

∂z2

)
Un, (2.42)

∆V n =
1

Re

(
∂2

∂x2
+

∂2

∂z2

)
V n. (2.43)

2.1.4.4 Computation of Pressure

The gradient of the pressure field is needed at the nth level to compute the force (equation

2.21),

∇P n = 〈(P n)x , (P n)z〉 . (2.44)

2.1.4.5 Computation of the Force

The immersed boundary method used consists of replacing an actual solid body with

the force being imposed on the body surface (See figure 2.4.) [35].

Figure 2.4: (a) The original flow domain Λ is enclosed by Ω and solid body surface RB and (b) the

submerged solid is replaced by the same fluid Λ′ with proper forces being applied on RB.

The forces are applied before the intermediate velocities are computed and they satisfy

the no-slip boundary conditions on the immersed boundary. Recall equations 2.22 and 2.23,
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F n+1
U =

Ũn − Un

∆t
+ (P n)x +N (Un)− L(Un), (2.45)

F n+1
V =

Ṽ n − V n

∆t
+ (P n)z +N (V n)− L(V n). (2.46)

Since the forces are imposed on the solid boundary, the imposed forcing components have

to be shifted to the associated positions nearest to the solid boundary [35].

Figure 2.5: Illustration of the imposed force positions

There are three cases that must be considered when computing the imposed force on each

boundary cell. Figure 2.5 illustrates the two most frequently occurring cases.

1. The discrete vertical or horizontal velocity is located at a point on the immersed

boundary. At point A, there is a vertical velocity, and at point E, there is a horizontal

velocity. Note that there can be a case where there is both a horizontal and vertical

velocity in any given cell. The imposed force in the x direction for point E is numeri-

cally determined by equation 2.22 with Ũn = ŨE where ŨE is the x-component velocity

of the boundary. The same method is used for point A in the vertical direction where

Ṽ n = ṼA in equation 2.23.
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2. A discrete vertical or horizontal velocity is not located at a point on the immersed

boundary. In figure 2.5, point B does not coincide with a discrete vertical velocity,

and point G does not coincide with a discrete horizontal velocity. In this case, the

associated force term will be calculated at the nearest position to the boundary [35].

Thus, for point C, in the vertical direction, the z-component force imposed at this

point is computed using equation 2.23 with Ṽ n = ṼC where linear interpolation is used

to determine the velocity ṼC using velocities VB and VD. For point H, in the horizontal

direction, the x-component force imposed at this point is determined using equation

2.22 with Ũn = ŨH where linear interpolation is used to determine the velocity ŨH

using velocities UG and UK .

3. Figure 2.6 illustrates the special case where a cell has an interpolated velocity in the z

direction but not in the x direction and vice versus. Since we must have a velocity in

both directions for each cell, we choose a discrete vertical or horizontal velocity closest

to the boundary point defined for that cell and we use that velocity in computing the

imposed force for that boundary cell.

Figure 2.6: Illustration of special case for the imposed force positions
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For example, we let AU be the discrete horizontal velocity closest to point A. Then the

points AU and CU are used to do linear interpolation to find the velocity at BU . Similar

steps are taken for determining the velocity at HV in the vertical direction using GV and

KV . Hence, the imposed force in the x direction for point BU is numerically determined by

equation 2.22 with Ũn = ŨBU
where linear interpolation is used to determine the velocity

ŨBU
using AU and CU . The same method is used for point HV in the vertical direction.

2.1.4.6 Linear Interpolation

The numerical code determines the direction in which the fluid is approaching the

boundary of each cell and this information is used when linearly interpolating a velocity.

There are four directions in which the fluid can approach the boundary.

• Left Approach:

Figure 2.7: Illustration of the force being imposed from the left side of the boundary.

In figure 2.7, the velocity, Ũi−1, at the xi location is numerically determined by the

following equation,

Ũi−1 =
Ui−2 − UP

xP − xi−1

(xP − xi) + UP , (2.47)

where xP (≡ BU(x)) is the location of the point on the boundary in the horizontal

direction and UP is the velocity at that point. In this case, every point on the immersed
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boundary is stationary, i.e., UP = 0. Hence, equation 2.47 simplifies to,

Ũi−1 =
xP − xi

xP − xi−1

(Ui−2). (2.48)

• Right Approach:

Figure 2.8: Illustration of the force being imposed from the right side of the boundary.

In figure 2.8, the velocity, Ũi, at the xi+1 location is numerically determined by the

following equation,

Ũi =
Ui+1 − UP

xi+2 − xP

(xi+1 − xP ) + UP , (2.49)

where xP and UP are the same as defined in the left approach example. Since UP = 0

in this case also, equation 2.49 simplifies to,

Ũi =
xi+1 − xP

xi+2 − xP

(Ui+1). (2.50)
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• Top Approach:

Figure 2.9: Illustration of the force being imposed from the top of the boundary.

In figure 2.9, the velocity, Ṽj, at the zj+1 location is numerically determined by the

following equation,

Ṽj =
Vj+1 − VP

zj+2 − zP

(zj+1 − zP ) + VP , (2.51)

where zP (≡ BV (z)) is the location of the point on the boundary in the vertical

direction and VP is the velocity at that point. Since VP = 0 due to the rigid boundary,

equation 2.51 simplifies to,

Ṽj =
zj+1 − zP

zj+2 − zP

(Vj+1). (2.52)
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• Bottom Approach:

Figure 2.10: Illustration of the force being imposed from the bottom of the boundary.

Lastly, in figure 2.10, the velocity, Ṽj−1, at the zj location is numerically determined

by the following equation,

Ṽj−1 =
Vj−2 − VP

zP − zj−1

(zP − zj) + VP , (2.53)

where zP and VP are the same as defined in the top approach example. Since VP = 0

in this case also, equation 2.53 simplifies to,

Ṽj−1 =
zP − zj

zP − zj−1

(Vj−2). (2.54)

Once the velocities, ũ, of the boundary cells are computed at their respective positions,

the forces are calculated and used to update the intermediate velocities, U� and V �, which
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yield equations 2.24 and 2.25,

U� = Un + ∆t F n+1
U , (2.55)

V � = V n + ∆t F n+1
V . (2.56)

2.1.5 Nonlinear Terms

The nonlinear terms computed in Section are used to update U� � and V � � to obtain

equations 2.26 and 2.27,

U� � = U� −∆t
[(

(Un)2)
x

+ (UnV n)z

]
, (2.57)

V � � = V � −∆t
[
(UnV n)x +

(
(V n)2)

z

]
. (2.58)

2.1.6 Implicit Viscosity Terms

Cholesky decomposition is used to solve the viscosity terms of equations 2.28 and 2.29

implicitly in order to update the intermediate velocities, U� � � and V � � �. Rewriting equations

2.28 and 2.29 yield,

U� � = U� � � − ∆t

Re
(U� � �

xx + U� � �
zz ) , (2.59)

V � � = V � � � − ∆t

Re
(V � � �

xx + V � � �
zz ) . (2.60)

Letting,

∆U =

[
I − ∆t

Re

(
∂2

∂x2
+

∂2

∂z2

)]
, (2.61)

∆V =

[
I − ∆t

Re

(
∂2

∂x2
+

∂2

∂z2

)]
, (2.62)
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yields,

U� � = ∆U (U� � �) , (2.63)

V � � = ∆V (V � � �) . (2.64)

Taking the Laplacian inverse of both sides of equations 2.63 and 2.64 yields,

U� � � = ∆−1
U (U� �) , (2.65)

V � � � = ∆−1
V (V � �) , (2.66)

resulting in the updated intermediate velocities, U� � � and V � � �, of equations 2.28 and 2.29.

2.1.7 Computation of Pressure

The final velocities are updated by computing the gradient of the pressure at the (n +

1)th level. Taking the gradient of the pressure enforces incompressibility by applying the

continuity equation.

Un+1 − U� � �

∆t
= −

(
P n+1

)
x

(2.67)

V n+1 − V � � �

∆t
= −

(
P n+1

)
z
. (2.68)

Writing equations 2.67 and 2.68 in vector form yields,

1

∆t
un+1 − 1

∆t
u� � � = −∇P n+1. (2.69)
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Applying the gradient to both sides of equation 2.69 and the continuity equation (equation

2.5) yields the Poisson equation (equations 2.30 and 2.31) written in vector form,

− 1

∆t
∇ · u� � � = −∆P n+1. (2.70)

The Laplacian inverse is applied to both sides of equation 2.70 using Lp from Section 2.1.4.2

to obtain P n+1,

P n+1 = ∆−1
p

(
1

∆t
∇u� � �

)
. (2.71)

Note that a simple matrix inverse of the system matrix for the pressure is computed.

Cholesky decomposition for the pressure is not used since the system matrix for the pressure

is not positive definite.

Applying the divergence to both sides of equation 2.71 and updating the velocity field

yields the final velocities (equations 2.30 and 2.31),

Un+1 = U� � � −∆t
(
P n+1

)
x
, (2.72)

V n+1 = V � � � −∆t
(
P n+1

)
z
. (2.73)

2.1.8 Results

Figures 2.11-2.20 depict the U and V velocity profiles of laminar flow through a cylinder

around a rigid circular solid. The following parameters used to run this simulation are: ρ =

993.3, µ = 6.913× 10−4, umax = 1.201× 10−3, Lx = 1, Lz = 8.66× 10−1, r0 = 2.165× 10−1,

x0 = 5× 10−1, z0 = 4.33× 10−1, nx = 130, nz = 500, Re = 1.4944× 103, ∆x = 7.7× 10−3,

∆z = 1.7× 10−3, ∆t = 5× 10−4, and NT = 8000.
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Figure 2.11: (a) U and (b) V velocity profile of laminar flow at t = 5× 10−4 s.

Figure 2.11 is the initial step of fluid flow as it enters the cylinder from the west bound-

ary. The fluid has an inlet velocity of 1.201× 10−3 m/s.

Figure 2.12: (a) U and (b) V velocity profile at t = 5× 10−3 s.

Figure 2.12 represent the boundary being completely defined and the fluid is being

forced to go around the solid region as it approaches it. The fluid ”trapped” inside the solid

region begins to slow down automatically as the immersed boundary becomes more defined.

The light blue region inside the solid darkens representing no movement inside the solid

region. Figure 2.12(b) demonstrates the V velocity profile which shows no fluid is entering
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or exiting the domain. The red and blue regions are the effects of the U velocity since both

velocity profiles are dependent on each other.

Figure 2.13: (a) U and (b) V velocity profile at t = 0.01 s.

Figure 2.14: (a) U and (b) V velocity profile at t = 0.03 s.
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Figure 2.15: (a) U and (b) V velocity profile at t = 0.05 s.

As the fluid is forced to go around the immersed solid, it speeds up. This is because the

fluid is still entering the fluid domain at the same velocity but now, the fluid has a smaller

region that it has to pass through as it passes through the small enclosed area between the

circular solid and the cylinder wall. The no-slip boundary conditions causes the fluid to

be zero at the wall of the solid and the wall of the cylinder (the dark blue regions). The

Neumann boundary conditions at the East boundary allow for the fluid to flow out of the

East domain freely.

Figure 2.16: (a) U and (b) V velocity profile at t = 0.1 s.
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Figure 2.17: (a) U and (b) V velocity profile at t = 0.25 s.

Figure 2.18: (a) U and (b) V velocity profile at t = 0.5 s.

Figure 2.19: (a) U and (b) V velocity profile at t = 1.5 s.
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Figure 2.20: (a) U and (b) V velocity profile at t = 4 s.

Figure 2.20 displays the stationary solid body immersed inside of a fluid region. The

dark blue area represents the solid which has a zero velocity, and also, the solid blue region

of the walls of the cylinder represents that the wall is not moving and the no-slip boundary

conditions are effective. The numerical code is verified and then modified to solve for flow

through an artery with an adjoining rigid saccular aneurysm described in Section 2.2.

2.2 Laminar flow through a rigid cerebral artery with an adjoining rigid saccular

aneurysm

2.2.1 Problem Formulation

In this section, laminar flow through a rigid cerebral artery and its adjoining rigid

saccular aneurysm is computed and simulated. The two-dimensional incompressible Navier-

Stokes equations in Section 2.1.1 model the flow of blood. That is,

Ut = −Px − (U2)x − (UV )z +
1

Re
(Uxx + Uzz) + FU , (2.74)

Vt = −Pz − (UV )x − (V 2)z +
1

Re
(Vxx + Vzz) + FV , (2.75)

Ux + Vz = 0. (2.76)
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The initial conditions and boundary conditions are the same as used in Section 2.1

except for the uW boundary condition. Fluid is now restricted to flowing through a very

small portion of the West boundary at the opening of the artery. At other locations on the

West boundary, uW is set to zero (See figure 2.21).

Figure 2.21: Illustration of the uW boundary condition and inflow at the opening of the artery.

The West boundary condition, uW , is defined using the velocity of the inflow fluid, the

location of the opening of artery in the Eulerian domain, the diameter of the artery, and the

equation of a parabola similar to in Section 2.1. In figure 2.21, defining the length of the

lower region under the bottom of the artery as D1, and the inflow region as D, results in the

following equation for uW , for the inflow region only,

uW =
umax

D2
((D1 + D)− z) (z −D1) (2.77)

The result of this flow is that of laminar (Poiseuille) flow through the designated domain.

2.2.2 Methodology

The numerical methods for this problem are discussed in detail in Section 2.1.2with a

couple of modifications needed in order to obtain the desired results for this specific problem.

In the cell-flagging process, we modify how the coordinate points are determined for the
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immersed boundary. The initial coordinate points for the shape of the artery and aneurysm

are taken from [24]. A thickness of the boundary is created in order to simulate a replica

of an in-vivo artery and adjoining aneurysm. All dimensions are scaled to fit the numerical

scaling of this problem.

Flagging of the interior, exterior, and boundary cells for the cerebral artery and adjoining

saccular aneurysm are interchanged to simulate fluid flow through the immersed boundary

instead of around it.

Algorithm I (Section 2.1.2.1) is used to determine the final velocities of the fluid domain.

The forcing components are calculated the same way as done in Section 2.1.4 except, now,

the boundary is given a thickness. Therefore, there is an exterior boundary wall and an

interior boundary wall. The exterior boundary wall will have fluid approaching from the

outside whereas the interior boundary wall will have fluid approaching from the inside. See

figure 2.22 below.

Figure 2.22: Illustration of thickness of boundary with fluid approach

Since the boundary is rigid in this problem as in the first problem, the velocities of the

boundary are zero. Depending on the orientation of the boundary in each cell with respects

to the location of the fluid on that boundary, it can be determined whether a left or right
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approach will be use in the horizontal direction and whether a top or bottom approach will

be used in the vertical direction.

2.2.3 Results

Figures 2.23-2.32 simulate the U and V velocity profiles of laminar blood flow through

a rigid cerebral artery with an adjoining rigid saccular aneurysm. The following parameters

used to run this simulation are: ρ = 1060, µ = 2.78 × 10−3, umax ≈ 7.958 × 10−1, Lx = 1,

Lz = 0.4, D = 8.66 × 10−2, Th = 5 × 10−3 which is the two-dimensional thickness of the

arterial wall, nx = 800, nz = 240, Re = 1000, ∆x = 1.25 × 10−3, ∆z ≈ 1.67 × 10−3, ∆t =

5× 10−4, and NT = 4000.

Figure 2.23: (a) U and (b) V velocity profiles at t = 5× 10−4 s.

Figure 2.23 is the initial step of blood flow as it enters the artery from the West boundary.

The blood has an inlet velocity of approximately 7.958 × 10−1 m/s between the top and

bottom boundaries of the artery. The velocity is set to zero everywhere else on the West

boundary. At this early time, the boundary is not yet defined by the numerical calculations.
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Figure 2.24: (a) U and (b) V velocity profile at t = 0.1 s.

Figure 2.24(a) represents a clearly defined boundary of the artery and aneurysm walls

which is defined as dark blue (no movement). Therefore, all velocities shown here, not equal

to zero, are effects from the inflow of the U velocity. The appearance of fluid moving outside

of the artery and aneurysm walls are from the initial effects of x-velocities prior to boundary

enforcement and not the dynamic effects of fluid moving through the artery.

Figure 2.25: (a) U and (b) V velocity profile at t = 0.3 s.

As the fluid approaches the opening of the aneurysm, fluid is forced upwards into the

aneurysm hitting the right side of the aneurysm. Note that the velocities on the outside of
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the solid body are independent of the interior fluid flow and are artifact of the numerical

code. These velocities are still trying to slow down from the initial step when they were first

introduced when there was no boundary clearly defined and fluid was free to go everywhere.

Figure 2.26: (a) U and (b) V velocity profile at t = 0.5 s.

Figure 2.27: (a) U and (b) V velocity profile at t = 0.7 s.
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Figure 2.28: (a) U and (b) V velocity profile at t = 1 s.

Figure 2.29: (a) U and (b) V velocity profile at t = 1.2 s.

Figure 2.30: (a) U and (b) V velocity profile at t = 1.5 s.
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Figure 2.31: (a) U and (b) V velocity profile at t = 1.7 s.

Figure 2.32: (a) U and (b) V velocity profile at t = 2 s.

These results are qualitatively in agreement with results in [24]. Pulsatile blood flow is

now introduced at the inflow domain and is presented in Section 2.3.

2.3 Pulsatile flow through a rigid cerebral artery with an adjoining rigid sac-

cular aneurysm

2.3.1 Problem Formulation

In this section, pulsatile flow through a rigid cerebral artery and its adjoining rigid

saccular aneurysm are computed and simulated. This is done using the same two-dimensional
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incompressible Navier-Stokes equations used in Section 2.1.1. The initial conditions and

boundary conditions are the same as used in Section 2.2.

2.3.2 Methodology

The numerical method is discussed in detail in Section 2.1.2. The immersed boundary

is defined the same as in Section 2.2.2. Here, we define pulsatile flow through the artery

by changing the inlet velocity, umax, at each time step in equation 2.78. The new profile

represents one heart beat averaging 60 beats per minute. Using a fast Fourier transform,

the approximation of the inlet fluid flow is defined as [24],

umax =
µ

5dρ

9∑
n=1

(an cos (2π(n− 1)t) + bn sin(2π(n− 1)t)) . (2.78)

Figure 2.33 illustrates the inlet velocity boundary profile on the West boundary of the artery.

Figure 2.33: Inlet velocity profile of blood flow through artery, umax.

The inflow velocity is at its minimum around t = 5.3 × 10−1 s and it is at its maximum

around t = 2.2× 10−1 s.
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2.3.3 Results

Figures 2.34 – 2.42 simulate the U and V velocity profiles of pulsatile fluid flow through

a rigid cerebral artery with an adjoining rigid saccular aneurysm. Note changes in the color-

bar for each figure at each time-step. The following parameters used to run this simulation

are: ρ = 1060, µ = 2.78×10−3, Lx = 1, Lz = 0.4, D = 8.66×10−2, Th = 5×10−3, nx = 800,

nz = 240, Re = 1000, ∆x = 1.25× 10−3, ∆z ≈ 1.67× 10−3, ∆t = 5× 10−4, and NT = 4000.

Figure 2.34: (a) U and (b) V velocity profile at t = ∆t s, umax ≈ 1.2073× 10−1 m/s

Figure 2.35: (a) U and (b) V velocity profile at t = 0.1 s, umax ≈ 4.1587× 10−1 m/s

Figure 2.34 is the initial step of blood flow as it enters the artery from the West boundary.

Figure 2.35(a) displays a completely defined boundary of the artery and aneurysm wall. The
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interior and exterior fluids have become independent of each other. In figure 2.35(b), flow

outside of the vessel is trying to converge to zero, even though it has effects from the initial

U inlet velocities.

Figure 2.36: (a) U and (b) V velocity profile at t = 0.3 s, umax ≈ 6.8165× 10−1 m/s

Figure 2.37: (a) U and (b) V velocity profile at t = 0.5 s, umax ≈ 5.3618× 10−2 m/s

In figure 2.37(a), as the fluid is pulsating, negative velocity is occurring as the fluid is

beginning to slow down at this time-step. Figure 2.37(b) is trying to converge to zero. The

red region represents flow in the positive z direction, and the dark blue region represents

flow in the negative z direction which is the beginning of a vortex inside the aneurysm.
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Figure 2.38: (a) U and (b) V velocity profile at t = 0.7 s, umax ≈ 1.9438× 10−1 m/s

Figure 2.39: (a) U and (b) V velocity profile at t = 1 s, umax ≈ 1.2009× 10−1 m/s

Figure 2.40: (a) U and (b) V velocity profile at t = 1.2 s, umax ≈ 7.8563× 10−1 m/s
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Figure 2.41: (a) U and (b) V velocity profile at t = 1.7 s, umax ≈ 1.9438× 10−1 m/s

Figure 2.42: (a) U and (b) V velocity profile at t = 2 s, umax ≈ 1.2009× 10−1 m/s

All figures in this section simulate pulsatile blood flow through a rigid cerebral artery

and its adjoining rigid saccular aneurysm at the chosen time-steps. Blood remains inside

the inflow domain as it pulsates through. No fluid is leaking out of the boundary. With

results obtained from this project, the numerical code is modified to simulate movement of

the artery and aneurysm walls. This is simulated in the final project presented in Chapter

3.
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Chapter 3

FLOW WITHIN A DEFORMABLE IMMERSED BOUNDARY

In this chapter, we focus on the fluid-solid interaction of an elastic body and its sur-

rounding fluid. The coupling of fluid and structure systems allow for the movement of the

cerebral artery and its adjoining saccular aneurysm as fluid forces are imposed upon it, in-

ternally and externally. The Navier-Stokes equations used in Section 2.1.1 are coupled with

the dynamic equation for the motion of an elastic body as done in [21]. The Navier-Stokes

equations are solved in the Eulerian coordinate system as done in the previous projects, and

the dynamic motion equation is solved in the Lagrangian coordinate system.

3.1 Problem Formulation

Consider the vector form of the two-dimensional Navier-Stokes equations for motion of

the incompressible fluid in the Eulerian coordinate space (equation 2.1),

∂u

∂t
= −u · ∇u +

1

Re
∇2u−∇p + f ,

along with the modified continuity equation,

∇ · u− q = 0, (3.1)

where q is the mass source/sink to satisfy the mass conservation for the cell containing the

immersed boundary [21]. As done with the pressure, the mass source/sink is also applied at

the cell center.

The two-dimensional Navier-Stokes equations are coupled with the dynamic equation

for the motion of an elastic body in the Lagrangian coordinate system in order to create
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movement of the solid body. Each block is moved by external and internal forces such as

the elastic (F E), buoyancy (F G), and hydrodynamic (F H) forces, and the motion equation

for each block is described by Newton’s second law,

ρsV
∂2X

∂t2
= F E + F G + F H , (3.2)

where ρs is the density of the elastic body, V is the volume of each block, and X is the

location of each material point [21].

The following section will explain the methodology of the coupling of the Navier-Stokes

equations with the equation for the motion of an elastic body. Algorithms are given as well

as a flow chart. Derivation of the Navier-Stokes equations is briefly explained as they were

previously derived in Chapter 2.

3.2 Methodology

3.2.1 Eulerian and Lagrangian Grid

The Eulerian-Lagrangian approach is introduced where both systems are coupled in

order for the fluid-structure interaction to take place. The incompressible Navier-Stokes

equations are solved in the Eulerian coordinate system on a rectangular domain which is

fixed in time as described in Section 2.1.1. The initial conditions of U , V , and P , and the

boundary conditions are defined the same way as in Section 2.1.1. The method for flagging

each cell after movement at each time-step is the same method used for the last two projects

and can be found in Section 2.2.2. The inlet velocity for the West boundary at each time

step is defined in Section 2.3.2.

The dynamic equation for the motion of an elastic body is solved in the Lagrangian

coordinate system. The solid body is divided by a finite number of cells where each cell has
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a central point X in the Lagrangian coordinate system, (s1, s2), and Lagrangian lengths of

∆s1 and ∆s2 (figure 3.1) [21].

Figure 3.1: Elastic Body

Modifications of defining the elastic body take place in comparison to the structure used in

the paper written by Lee and Choi.

Recall equation 3.2,

ρsV
∂2X

∂t2
= F E + F G + F H . (3.3)

The elastic force, F E is derived by first taking into consideration the equation for the elastic

energy as follows [21],

E(X) =

∫∫ 2∑
a,b=1

[
cT
ab

(
Tab − T 0

ab

)2
+ cB

ab

(
Bab −B0

ab

)2
]
ds1ds2. (3.4)
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Here, Tab and Bab are the tension (a = b) or shearing (a 6= b) effect and bending (a = b) or

twisting (a 6= b) effect defined as,

Tab =
∂X

∂sa

· ∂X

∂sb

(3.5)

Bab =

√
∂2X

∂sa∂sb

· ∂2X

∂sa∂sb

, (3.6)

and cT
ab and cB

ab are the tension or shearing and bending or twisting constants, respectively

[21]. The initial conditions for the tension or shearing effect and bending or twisting effect,

T 0
ab and B0

ab [21], respectively, are defined as,

T 0
ab =


1, if a = b,

0, if a 6= b,

and B0
ab = 0. (3.7)

Thus, the elastic force is defined by,

F E =
2∑

a,b=1

[
∂

∂sa

(
κT

ab

(
Tab − T 0

ab

) ∂X

∂sb

)
− ∂2

∂sa∂sb

(
κB

ab

(
Bab −B0

ab

))]
A, (3.8)

where κT
ab = 4cT

ab is the tension or shearing coefficient, κB
ab = 2cB

ab is the bending or twisting

coefficient, and A = ∆s1∆s2 [21]. The non-dimensional dynamic equation for motion of the

elastic body is expressed by,

ρ∗
∂2X∗

∂t∗ 2
=

2∑
a,b=1

[
∂

∂s∗a

(
KT

ab

(
T ∗

ab − T 0
ab

) ∂X∗

∂s∗b

)
− ∂2

∂s∗a∂s∗b

(
KB

ab

(
B∗

ab −B0
ab

))]

+ ρ∗ îgFr +
F∗

H

V ∗ , (3.9)

where KT
ab = κT

ab/ρf U2h, KB
ab = κB

ab/ρf U2D2h, ρ∗ = ρs/ρf is the ratio of solid to fluid densi-
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ties, î = g/ |g| where g is the gravitational acceleration, Fr = |g|D/U2 is the Froude number,

V ∗ = ∆s1∆s2h/D3 is the non-dimensional volume of each block, F ∗
H = F H/ρfU

2D2 is the

non-dimensional hydrodynamic force acting on the immersed boundary, U (≡ umax) is the

maximum velocity of the fluid, and D is the characteristic length defined for each flow

problem. [21]

We neglect gravitational acceleration of the fluid and the bending and twisting effects

of the immersed boundary. Noting that this problem is solved in two-dimensional space,

yielding A = ∆s1∆s2/D
2, the modified motion equation that is coupled with the Navier-

Stokes equations is,

ρ
∂2X

∂t2
=

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
Tab − T 0

ab

) ∂X

∂sb

)]
+

F H

A
. (3.10)

The Crank-Nicolson method, an implicit second-order finite difference scheme, is used to

discretize equation 3.10 in time for constant ∆t as follows,

ρ
Xn+1 − 2Xn + Xn−1

∆t2
=

1

2

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
T n+1

ab − T 0
ab

) ∂Xn+1

∂sb

)]

+
1

2

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
T n

ab − T 0
ab

) ∂Xn

∂sb

)]

+
1

2

1

A

(
Fn+1

H + Fn
H

)
. (3.11)
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Substituting in the equations for the tension or shearing effects yields,

ρ
Xn+1 − 2Xn + Xn−1

∆t2
=

1

2

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
∂Xn+1

∂sa

· ∂Xn+1

∂sb

− T 0
ab

)
∂Xn+1

∂sb

)]

+
1

2

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
∂Xn

∂sa

· ∂Xn

∂sb

− T 0
ab

)
∂Xn

∂sb

)]

+
1

2

1

A

(
Fn+1

H + Fn
H

)
. (3.12)

Note that KT
ab is chosen qualitatively for stability purposes. The center of each La-

grangian cell, X, moves in time according to equation 3.12 [21]. The hydrodynamic forcing

components are obtained directly from the Navier-Stokes equations.

3.2.2 Numerical Algorithms

3.2.2.1 Algorithm II

1. Initialize the Eulerian grid (fluid region) and the Lagrangian grid (solid region).

2. Define boundary conditions, initial conditions, and input parameters (as necessary).

The following steps are necessary to get a defined immersed boundary before movement of

the boundary can take place:

3. Begin computation loop for rigid boundary at t = ∆t.

4. Define inlet velocity of fluid for uW .

5. Compute the terms to be used in calculating the imposed forces on the rigid body:
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(a) Compute the preliminary nonlinear terms N (un),

N (Un) =
(
(Un)2)

x
+ (UnV n)z (3.13)

N (V n) = (UnV n)x +
(
(V n)2)

z
. (3.14)

(b) Compute the preliminary viscosity terms L(un) explicitly,

L(Un) =
1

Re
(Un

xx + Un
zz) (3.15)

L(V n) =
1

Re
(V n

xx + V n
zz) . (3.16)

(c) Compute the gradient of the pressure terms ∇pn,

P̃ n = 〈(P n)x , (P n)z〉 . (3.17)

(d) Compute the imposed forces F n+1
U and F n+1

V ,

F n+1
U =

Ũn − Un

∆t
+∇P n

U +N (Un)− L(Un) (3.18)

F n+1
V =

Ṽ n − V n

∆t
+∇P n

V +N (V n)− L(V n). (3.19)
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6. Update the intermediate velocities u�, u� �, u� � �, and u4�:

(a) Update u� by forcing terms,

U� = Un + ∆t F n+1
U (3.20)

V � = V n + ∆t F n+1
V . (3.21)

(b) Update u� � by nonlinear terms,

U� � = U� −∆t
[(

(Un)2)
x

+ (UnV n)z

]
(3.22)

V � � = V � −∆t
[
(UnV n)x +

(
(V n)2)

z

]
. (3.23)

(c) Update u� � � by viscosity terms,

U� � � = U� � +
∆t

Re
(U� � �

xx + U� � �
zz ) (3.24)

V � � � = V � � +
∆t

Re
(V � � �

xx + V � � �
zz ) . (3.25)

(d) Update u4� by computing the gradient of the pressure terms,

U4� = U� � � −∆t
(
P̃ n+1

)
x

(3.26)

V 4� = V � � � −∆t
(
P̃ n+1

)
z
. (3.27)

7. Update t = k∆t, k = 2, 3, ..., NK, where NK is the number of iterations needed to

clearly define the rigid immersed boundary.
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3.2.2.2 Algorithm III

The following steps are necessary to compute movement of the fluid and the motion of

the immersed boundary:

1. Begin computation loop for the deformable boundary at t = k∆t, k = (NK + 1).

2. Compute steps 4. - 6. from Algorithm II.

3. Compute the hydrodynamic force [21]:

(a) Calculate the mass source/sink,

qn+1 =
1

∆x∆z

[(
U4�

2 − U4�
1

)
∆z +

(
V 4�

2 − V 4�
1

)
∆x

]
. (3.28)

(b) Calculate the Laplacian of the pseudo-pressure,

∇2φn+1 =
1

∆t

(
U4�

x + V 4�
z − qn+1

)
. (3.29)

(c) Determine the final velocities, un+1,

un+1 = u4� −∆t∇φn+1. (3.30)

(d) Calculate the hydrodynamic force,

Fn+1
H =

∫
A

(
un+1 − un

∆t
+N (un)− fn+1

)
dA. (3.31)

4. Update the pressure [21],

P n+1 = P̃ n+1 + φn+1 − ∆t

Re
∇2φn+1. (3.32)
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5. Calculate the dynamic motion equation by solving for the partial derivatives which

include the shearing and tension effects, Tab, and by plugging the hydrodynamic force

into equation 3.12,

ρ
Xn+1 − 2Xn + Xn−1

∆t2
=

1

2

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
∂Xn+1

∂sa

· ∂Xn+1

∂sb

− T 0
ab

)
∂Xn+1

∂sb

)]

+
1

2

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
∂Xn

∂sa

· ∂Xn

∂sb

− T 0
ab

)
∂Xn

∂sb

)]

+
1

2

1

A

(
Fn+1

H + Fn
H

)
. (3.33)

6. Reconstruct the Lagrangian grid as a result of the moved center points Xn+1.

7. Compute the new desired velocities of the solid boundary in each Eulerian cell con-

taining the boundary to be used in computing the imposed forces.

8. Flag (or re-flag) each Eulerian cell as a solid, fluid, or boundary cell.

9. Update t = k∆t, k = (n + 2), ..., NT , where NT is the maximum number of iterations

chosen.
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Figure 3.2: Flow Chart for a Deformable Body

3.2.3 Imposed Forces

In order to compute the imposed forcing terms, the preliminary values of the nonlinear,

viscosity, and gradient of the pressure terms must be computed as done in Section 2.1.4. The

steps are similar for both the rigid body and the elastic body. Linear interpolation must also

take place on the boundary cells where needed as done in Section 2.1.4. The only difference

is modification of the linear interpolation process on the boundary cells once the boundary

begins to move.
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After computing each term needed for calculation of the imposed forces, F n+1
U and F n+1

V

(equations 3.18 and 3.19), are calculated as follows,

F n+1
U =

Ũn − Un

∆t
+ P n

U +N (Un)− L(Un) (3.34)

F n+1
V =

Ṽ n − V n

∆t
+ P n

V +N (V n)− L(V n), (3.35)

where Ũn and Ṽ n are to be determined.

Recall, equations 2.47, 2.49, 2.51, and 2.53 from Section 2.1.4 which solved for Ũn and

Ṽ n in their respective positions,

Ũi−1 =
Ui−2 − UP

xP − xi−1

(xP − xi) + UP , (3.36)

Ũi =
Ui+1 − UP

xi+2 − xP

(xi+1 − xP ) + UP , (3.37)

Ṽj =
Vj+1 − VP

zj+2 − zP

(zi+1 − zP ) + VP , (3.38)

Ṽj−1 =
Vj−2 − VP

zP − zj−1

(zP − zj) + VP . (3.39)

For a rigid body, UP and VP , which are the velocities at the boundary (See figures

2.7-2.10), are defined to equal zero which results in equations 2.48, 2.50, 2.52, and 2.54 in

Section 2.1.4. However, for the dynamic motion of the body, UP and VP are no longer forced

to equal zero. Instead, their values are determined after (1) the motion equation (equation

3.12) is computed for the movement of the solid body, and (2) transformation takes place

from the Lagrangian grid to the Eulerian grid. Further details are explained in Section 3.2.10

on obtaining UP and VP .
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Once the imposed force equations are solved, the intermediate velocities, u� (equations

3.20 and 3.21), can be updated as follows,

U� = Un + ∆t F n+1
U (3.40)

V � = V n + ∆t F n+1
V . (3.41)

3.2.4 Nonlinear, Viscosity, and Pressure Terms

The intermediate velocities are update by computing the nonlinear, viscosity, and gra-

dient of the pressure terms consecutively. Further detail can be found in Sections 2.1.5 -

2.1.7. These computations yield equations 3.22 - 3.27, respectively,

U� � = U� −∆t
[(

(Un)2)
x

+ (UnV n)z

]
, (3.42)

V � � = V � −∆t
[
(UnV n)x +

(
(V n)2)

z

]
, (3.43)

U� � � = U� � +
∆t

Re
(U� � �

xx + U� � �
zz ) , (3.44)

V � � � = V � � +
∆t

Re
(V � � �

xx + V � � �
zz ) , (3.45)

U4� = U� � � −∆t
(
P̃ n+1

)
x
, (3.46)

V 4� = V � � � −∆t
(
P̃ n+1

)
z
, (3.47)

where P̃ n+1 is the intermediate pressure, and U4� and V 4� are the updated intermediate

velocities needed to compute the mass source/sink, pseudo-pressure, final velocities, and

updated pressure in the following sections.
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3.2.5 Mass Source/Sink

Determining the mass source/sink for each cell is dependent upon which discrete hori-

zontal and vertical velocity components are inside the fluid and inside the solid. To obtain

the mass source/sink, qn+1 (equation 3.28), needed to compute the Laplacian of the pseudo-

pressure (equation 3.29), consider the illustration shown in figure 3.3. Only cells where at

least one of the discrete horizontal or vertical velocity components is inside of the solid region

are considered.

Figure 3.3: Mass Source/Sink

For any cell containing the solid body, the continuity equation reads,

U4�
2 ∆z + V 4�

2 ∆x = U4�
1 ∆z + V 4�

1 ∆x + qn+1∆x∆z. (3.48)

Solving for qn+1 yields equation 3.28,

qn+1 =
1

∆x∆z

[(
U4�

2 − U4�
1

)
∆z +

(
V 4�

2 − V 4�
1

)
∆x

]
. (3.49)

Consider the two-dimensional cell in figure 3.3 where U4�
1 and V 4�

1 are the velocity components
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inside the solid body and U4�
2 and V 4�

2 are the velocity components outside the solid body

[19]. For this particular cell, the continuity equation for the fluid region of the cell reads,

U4�
2 ∆z + V 4�

2 ∆x = 0. (3.50)

Substituting equation 3.50 into equation 3.48 and solving for qn+1 yields,

qn+1 = − U4�
1

∆x
− V 4�

1

∆z
. (3.51)

This is one of 13 cases to consider when solving for the mass source/sink of any given cell.

Consider another case where if U4�
1 and V 4�

1 were the velocity components outside the solid

body and U4�
2 and V 4�

2 were the velocity components inside the solid body, then the continuity

equation would read,

− U4�
1 ∆z − V 4�

1 ∆x = 0. (3.52)

Substituting equation 3.52 into equation 3.48 and solving for qn+1 would yield,

qn+1 =
U4�

2

∆x
+

V 4�
2

∆z
. (3.53)

After each time-step, when the solid body moves causing the momentum forces and

mass source/sink locations to change, cell-flagging/re-flagging must take place in order to

determine the new fluid and solid cells for the next time-step. This is required in order to

have more accuracy in computing the momentum forces and mass source/sink at the next

time-step.

3.2.6 Pseudo-Pressure, Final Velocities, and Updated Pressure

The pseudo-pressure is used to correct the velocity field so that the continuity equation

is satisfied at each computational time step [19]. To determine the pseudo-pressure, consider
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equation 3.29,

∇2φn+1 =
1

∆t

(
U4�

x + V 4�
z − qn+1

)
. (3.54)

This equation, yielding the Laplacian of the pseudo-pressure, is computed by substituting

in the values of equations 3.26, 3.27, and 3.49. To solve for the pseudo-pressure, φn+1, the

Laplacian inverse must be taken. The Laplacian matrix used for computing the pressure in

Section 2.1.7 is also used here since the pseudo-pressure is defined at the center of each cell.

Therefore, φn+1 is defined as,

φn+1 = ∆−1
φ

(
∇2φn+1

)
, (3.55)

where ∆−1
φ is the inverse of the Laplacian operator for φ. Computing the gradient of φn+1

with respects to x and z for the intermediate velocities, U4� and V 4�, respectively, yields,

∇φn+1 =

〈
∂φn+1

∂x
,
∂φn+1

∂z

〉
. (3.56)

Once the gradient of φn+1 is computed, the final velocities, Un+1 and V n+1, illustrated in

Chapter 4, are updated yielding,

Un+1 = U4� −∆t
∂φn+1

∂x
(3.57)

V n+1 = V 4� −∆t
∂φn+1

∂z
, (3.58)

rewritten in vector form as equation 3.30,

un+1 = u4� −∆t∇φn+1. (3.59)

Lastly, the pressure is updated using the pressure calculated in Section 3.2.4, the method

from Section 2.1.7, the Laplacian of the pseudo-pressure defined by equation 3.29, and the
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pseudo-pressure defined in equation 3.55 resulting in equation 3.32,

P n+1 = P̃ n+1 + φn+1 − ∆t

Re
∇2φn+1. (3.60)

3.2.7 Hydrodynamic Force

The hydrodynamic force used in equation 3.12 is computed in this section. Recall

equation 3.31, the hydrodynamic force acting on each cell of the solid body,

Fn+1
H =

∫
A

(
un+1 − un

∆t
+N (un)− fn+1

)
dA,

where un+1 are the final velocities defined in Section 3.2.6, un are the velocities at the

previous time-step, N (un) are the nonlinear terms calculated in Section 2.1.5, and fn+1 is

the momentum force computed in Section 3.2.3. This equation represents the hydrodynamic

force on each Lagrangian cell which is directly obtained from the Navier-Stokes equations

as sum of unsteady, inertial, and momentum forcing terms without any interpolation on the

surface [21]. Since this project is two-dimensional, the area of each cell is computed instead

of the volume of each block as done in [21].

The Eulerian grid size is chosen to be smaller than the Lagrangian lengths ∆s1 and

∆s2 to enforce the momentum forcing inside of the solid body, to satisfy the no-slip bound-

ary condition, and to compute the hydrodynamic force [21]. For each discrete horizontal

or vertical velocity component of an Eulerian cell located inside of a Lagrangian cell, the

hydrodynamic force imposed on that particular Lagrangian cell is updated.

Calculation of the area of each Lagrangian cell and determining whether a velocity

component is inside a particular Lagrangian cell is done by using Heron’s Formula which is

outlined in Algorithm IV.
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3.2.7.1 Algorithm IV

Repeat cycle for N Lagrangian cells and M Eulerian cells:

1. Calculate the edge lengths of the Lagrangian cell.

2. Calculate the length of the line segments inside the Lagrangian cell by calculating the

distance from the questionable velocity component to each Lagrangian grid point. This

will create four triangles inside of the Lagrangian cell.

3. Calculate the semi-perimeter of each triangle.

4. Calculate the area of each triangle which includes calculation of the four smaller tri-

angles and the area of the two larger triangles all within the cell.

5. Sum up the four areas of the smaller triangles where

totalA� = A1 + A2 + A3 + A4.

6. Add the area of the two larger triangles to calculate the actual area of the Lagrangian

cell, totalA�� = A5 + A6.

7. If totalA� - totalA�� < 4ε, where ε ≈ 2.22×10−16, then the velocity component is inside

of the Lagrangian cell and the hydrodynamic force can be computed for that cell.

After the hydrodynamic force is computed for each Lagrangian cell of the solid body, it is

used to compute the motion equation for movement of the solid body.

3.2.8 Dynamic Motion Equation Using Finite Difference Methods

In this section, the finite difference methods used to compute the partial derivatives of

the center points X of each Lagrangian cell of the solid body as well as the methods used
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to compute the motion equation are explained. Recall equation 3.12,

ρ
Xn+1 − 2Xn + Xn−1

∆t2
=

1

2

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
∂Xn+1

∂sa

· ∂Xn+1

∂sb

− T 0
ab

)
∂Xn+1

∂sb

)]

+
1

2

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
∂Xn

∂sa

· ∂Xn

∂sb

− T 0
ab

)
∂Xn

∂sb

)]

+
1

2

1

A

(
Fn+1

H + Fn
H

)
.

The partial derivatives in the above equation, which include the tension and shearing effects,

Tab, are calculated, in part, using the second-order forward, backward, and centered difference

methods (See figures 3.4 and 3.5). Each partial derivative is taken with respect to either s1

or s2.

Figure 3.4: Illustration of Finite Difference Methods used to calculate the partial derivatives of the

center points with respect to s1.
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Figure 3.5: Illustration of Finite Difference Methods used to calculate the partial derivatives of the

center points with respect to s2.

In figure 3.4, if i = 2, 3, ..., k − 1, where k is the maximum number of center points in

the s1 direction, then the second-order centered finite difference method will be used which

reads,

∂2g (X i,j)

∂s1
2

=
g (X i+1,j)− 2 g (X i,j) + g (X i−1,j)

(∆s1)
2 , O

(
(∆s1)

2) (3.61)

The second-order forward finite difference method is used if i = 1, and the second-order

backward finite difference method is used if i = k. Similar steps are taken with finite

difference approximations of the center points with respect to s2 in figure 3.5.

After computing the partial derivatives of equation 3.12 using the second-order finite

difference methods described above, all parts of the equation are substituted in to solve for

the new location of the center points X. Algorithm V describes the iterative process for

solving for Xn+1.
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3.2.8.1 Algorithm V

1. Set up equation 3.12 as a system of nonlinear equations to be solved using an iterative

nonlinear algebraic solver. Letting,

W (X) =
∂

∂sa

(
KT

ab

(
∂X

∂sa

· ∂X

∂sb

− T 0
ab

)
∂X

∂sb

)
, (3.62)

where X = (X, Z)>, yields the system of nonlinear equations to be computed,

0 = − ρ
(
Xn+1 − 2Xn + Xn−1

)
+

(∆t)2

2

[
W (Xn+1) + W (Xn)

]
+

(∆t)2

2A

(
F n+1

HU + F n
HU

)
, (3.63)

0 = − ρ
(
Zn+1 − 2Zn + Zn−1

)
+

(∆t)2

2

[
W (Zn+1) + W (Zn)

]
+

(∆t)2

2A

(
F n+1

HV + F n
HV

)
, (3.64)

where FHU and FHV are the hydrodynamic forces for the U and V velocities, respec-

tively.

2. Choose an initial guess for Xn+1.

3. Substitute initial guess for Xn+1 into equations 3.63 and 3.64 along with the known

values for Xn, Xn−1, and all other values needed. The iterative nonlinear algebraic

solver will solve for the new center points, Xn+1, outputting the Lagrangian coordinates

of each point. This iterative process is done with a function tolerance of 1×10−8. Note

that in the initial step, let Xn−1 = Xn which are the values of the original Lagrangian

coordinate points of the rigid body, i.e., the Lagrangian values before movement of the

solid body.
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After obtaining the new location of the center points of the solid body, the grid is

reconstructed. In the following section, procedures for reconstruction of the Lagrangian

grid, after movement of the center points of each cell, and transformation from Lagrangian

coordinates to Eulerian coordinates are discussed.

3.2.9 Lagrangian Grid Reconstruction and Transformation

Lagrangian grid reconstruction and transformation of Lagrangian coordinate points to

Eulerian coordinate points is necessary for visualization of the solid body in physical space.

Therefore a mapping must take place from a logical representation to a physical representa-

tion of the solid body. The Lagrangian coordinates were initially defined using the distance

formula and simple arithmetic on the original location of the Eulerian coordinates.

Once the new center points, Xn+1, are computed, the old Lagrangian grid coordinates

must be shifted to new Lagrangian grid coordinates to mirror the movement of the new

center points. This step is done prior to transformation to the Eulerian coordinate system.

Both the Lagrangian grid reconstruction and transformation to the Eulerian system is done

by a mapping which is represented in figure 3.6.

Figure 3.6: Mapping between physical and logical space.
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A bilinear mapping function is created to represent the physical coordinates as logical

coordinates. A general method to this mapping is described below and more detail can be

found in [4]. Assume the following bilinear mapping function,

x = a1 + a2α + a3β + a4αβ, (3.65)

z = b1 + b2α + b3β + b4αβ, (3.66)

where a and b are the unknown mapping coefficients, x and z are the known physical co-

ordinates at the nth level, and α and β are the known logical coordinates at the nth level.

Rewriting equations 3.65 and 3.66 in matrix form yields,



x1

x2

x3

x4


=



1 α1 β1 α1β1

1 α2 β2 α2β2

1 α3 β3 α3β3

1 α4 β4 α4β4





a1

a2

a3

a4


,



z1

z2

z3

z4


=



1 α1 β1 α1β1

1 α2 β2 α2β2

1 α3 β3 α3β3

1 α4 β4 α4β4





b1

b2

b3

b4


. (3.67)

Solving for the mapping coefficients by computing the inverse of the 4× 4 matrix yields,



a1

a2

a3

a4


=



1 α1 β1 α1β1

1 α2 β2 α2β2

1 α3 β3 α3β3

1 α4 β4 α4β4



−1 

x1

x2

x3

x4


,



b1

b2

b3

b4


=



1 α1 β1 α1β1

1 α2 β2 α2β2

1 α3 β3 α3β3

1 α4 β4 α4β4



−1 

z1

z2

z3

z4


. (3.68)

Once the mapping coefficients a and b are computed, the mapping from logical space to

physical space is defined. The Lagrangian center points are solved for by computing equation

3.12 followed by computation of the new Lagrangian grid points by the above mapping and

then transformation to the Eulerian system. Below is an outline of the mapping steps done

for this project.
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1. Find the mapping coefficients for the mapping from the nth level Lagrangian center

points to the (n + 1)th level Lagrangian center points.

2. Use the mapping coefficients and the nth level Lagrangian grid points to get the (n+1)th

level Lagrangian grid points. Figure 3.7 shows the Lagrangian center and grid points

at the nth level overlapped by the Lagrangian center and grid points at the (n + 1)th

level.

Figure 3.7: Lagrangian center and grid points at the nth level (thin lines and dashed circles)

overlapped by the Lagrangian center and grid points at the (n + 1)th level (bold lines and

solid circles).

3. Find the mapping coefficients for the mapping from the nth level Lagrangian grid points

to the nth level Eulerian grid points.

4. Use the mapping coefficients from Step 3 and the (n+1)th level Lagrangian grid points

from Step 2 to get the (n + 1)th level Eulerian grid points.

After the mapping procedures are completed, resulting in the updated Eulerian coor-

dinate points of the Lagrangian boundary, the velocity of the boundary can be determined.

Further detail is given in Section 3.2.10.
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3.2.10 Eulerian Velocities of Solid Body After Movement

In the first three projects, computations were done for a rigid boundary. This allowed

for the velocities at the boundary, UP and VP from Section 2.1.4, to be initialized as zero and

remain zero throughout the computational cycle. In this project, computations are done for

a deformable boundary. This means that the solid body is free to move where its movement

is caused by the no-slip boundary conditions and the hydrodynamic force. Therefore, the

velocities at the boundary are no longer enforced to be zero throughout the computational

cycle. Instead, these velocities are defined after the mapping of the Lagrangian coordinates

to Eulerian coordinates of the solid boundary takes place.

Although there are an m amount of layers defining the Lagrangian grid for this project,

the velocities of the Lagrangian grid in the Eulerian system are only needed and computed

for the exterior layers of the boundary where the fluid and solid meet. The velocities of

the mapped Lagrangian grid points to Eulerian space, defined as Ex and Ez, are computed

using the second-order backwards finite difference method in time yielding,

(Ex)n =
3(Xe)n − 4 (Xe)n−1 + (Xe)n−2

2∆t
, O

(
(∆t)2

)
(3.69)

(Ez)n =
3(Ze)n − 4 (Ze)n−1 + (Ze)n−2

2∆t
, O

(
(∆t)2

)
(3.70)

where (Xe, Ze) represents the Eulerian coordinates of the Lagrangian boundary transformed

from the Lagrangian grid to Eulerian space.

After these values are calculated, UP and VP are calculated where these values are

defined for each Eulerian boundary cell. Consider the illustration in figure 3.8.
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Figure 3.8: Illustration of points needed to define UP and VP .

Let BU(x, z) and BV (x, z) (explained in Section 2.1.3) represent the new U and V

boundary points to be used in each Eulerian cell along the immersed boundary. Then for

S representing the difference of Eulerian velocities in the x and z directions and for D

representing the distance between two points on the boundary, the following equations for

linear interpolation of the velocities UP and VP on the immersed boundary are,

DU

D
=

SU

S(x)
(3.71)

DV

D
=

SV

S(z)
. (3.72)
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where,

D =
√

(Xei+1 −Xei)2 + (Zei+1 − Zei)2 (3.73)

DU =
√

(BU(x)−Xei)2 + (BU(z)− Zei)2 (3.74)

DV =
√

(BV (x)−Xei)2 + (BV (z)− Zei)2 (3.75)

SU = UP − Exi (3.76)

SV = VP − Ezi (3.77)

S(x) = Exi+1 − Exi (3.78)

S(z) = Ezi+1 − Ezi. (3.79)

Substituting equations 3.73 - 3.79 into their respective positions of equations 3.71 and 3.72

yields,

√
(BU(x)−Xei)2 + (BU(z)− Zei)2√
(Xei+1 −Xei)2 + (Zei+1 − Zei)2

=
UP − Exi

Exi+1 − Exi

, (3.80)

√
(BV (x)−Xei)2 + (BV (z)− Zei)2√
(Xei+1 −Xei)2 + (Zei+1 − Zei)2

=
VP − Ezi

Ezi+1 − Ezi

. (3.81)

Solving for UP and VP produces the following two equations,

UP = (Exi+1 − Exi)

√
(BU(x)−Xei)2 + (BU(z)− Zei)2√
(Xei+1 −Xei)2 + (Zei+1 − Zei)2

+ Exi, (3.82)

VP = (Ezi+1 − Ezi)

√
(BV (x)−Xei)2 + (BV (z)− Zei)2√
(Xei+1 −Xei)2 + (Zei+1 − Zei)2

+ Ezi. (3.83)
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Once UP and VP are computed for each Eulerian cell defining the immersed boundary,

these values are used in equations 2.47, 2.49, 2.51, and 2.53 to interpolate what the exterior

neighboring velocities of the fluid need to be in the horizontal and vertical directions as the

fluid approaches the boundary (See figures 2.7, 2.8, 2.9, and 2.10 in Section 2.1.4.) From

this point, the momentum forcing terms can be computed in Section 3.2.3.

In the next chapter, results of this project are presented. The U and V velocities are

displayed using a meshed grid where the color bar will define the intensity of the velocities

at each part of the grid defining the cerebral artery and adjoining aneurysm surrounded by

interior and exterior fluids.
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Chapter 4

NUMERICAL RESULTS

Figures 4.1-4.8 simulate the U and V velocity profiles of pulsatile blood flow through a

rigid cerebral artery with an adjoining rigid saccular aneurysm. Figures 4.9-4.30 simulate the

U and V velocity profiles of pulsatile blood flow through an elastic cerebral artery with an

adjoining elastic saccular aneurysm. The following parameters used to run this simulation

are: ρS = 1160, ρF = 1060, µ = 2.78 × 10−3, umax ≈ 7.958 × 10−1, K11 = K22 = 9 × 10−3,

K12 = K21 = 5 × 10−3, D = 2.6 × 10−3 scaled to D = 1, Th = 1 × 10−1, Lg = 4 which is

the number layers of the Lagrangian grid in the s2 direction for both the top and bottom

of the artery, s1 = 116 for the top boundary which includes the aneurysm wall, s1 = 89 for

the bottom of the artery wall, Lx = 16× 10−3 scaled by D to Lx ≈ 6.1538, Lz = 14× 10−3

scaled by D to Lz ≈ 5.3846, nz = 1600, nx = 1000, Re ≈ 7.8898× 102, ∆x ≈ 6.1538× 10−3,

∆z ≈ 3.3654 × 10−3, ∆t = 5 × 10−4 s, and NT = 6000. Note the changes in the color-bar

for each figure at each time-step.

Figure 4.1: (a) U and (b) V velocity profile at t = 0.25 s, umax ≈ 7.7537× 10−1 m/s
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Figure 4.2: (a) U and (b) V velocity profile at t = 0.5 s, umax = 5.3618× 10−2 m/s

Figures 4.1-4.8 define the artery and aneurysm at a rigid state. Computations of the

boundary at a rigid state are done in order to obtain a defined boundary prior to movement.

This is done for two complete time cycles ending at t = 2 s. Once this process presents

stable results, the boundary is released to move which can be seen in figures 4.9-4.30.

Figure 4.3: (a) U and (b) V velocity profile at t = 0.75 s, umax ≈ 1.6758× 10−1 m/s
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Figure 4.4: (a) U and (b) V velocity profile at t = 1 s, umax ≈ 1.2009× 10−1 m/s

Figure 4.5: (a) U and (b) V velocity profile at t = 1.3 s, umax ≈ 7.7537× 10−1 m/s

Figure 4.6: (a) U and (b) V velocity profile at t = 1.5 s, umax ≈ 5.3612× 10−2 m/s
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Figure 4.7: (a) U and (b) V velocity profile at t = 1.8 s, umax ≈ 1.6758× 10−1 m/s

Figure 4.8: (a) U and (b) V velocity profile at t = 2 s, umax ≈ 1.2009× 10−1 m/s

After the boundary is initialize and seen by the fluid, the boundary is now released to

move. Figure 4.9 represents the movement of the boundary at t = 2.05 seconds. Note that

the movement is not obvious at this early stage.
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Figure 4.9: (a) U and (b) V velocity profile at t = 2.05 s, umax ≈ 2.3163× 10−1 m/s

Figure 4.10: (a) U and (b) V velocity profile at t = 2.1 s, umax ≈ 4.1587× 10−1 m/s
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Figure 4.11: The aneurysm at t = 2 s (red lines) versus t = 2.1 s (blue lines, not quite visible).

Figure 4.12: (a) The proximal and (b) distal side of the aneurysm at t = 2 s (red lines) versus

t = 2.1 s (blue lines, not quite visible).
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Figure 4.13: (a) U and (b) V velocity profile at t = 2.2 s, umax ≈ 7.8563× 10−1 m/s

Figure 4.14: (a) The proximal and (b) distal side of the aneurysm at t = 2 s (red lines) versus

t = 2.2 s (blue lines).

Figure 4.15: (a) The proximal and (b) distal side of the ostium (neck) at t = 2 s (red lines) versus

t = 2.2 s (blue lines).
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Figure 4.16: (a) U and (b) V velocity profile at t = 2.3 s, umax ≈ 6.8165× 10−1 m/s

Figure 4.17: (a) U and (b) V velocity profile at t = 2.4 s, umax ≈ 2.5242× 10−1 m/s

In figure 4.17(a), discoloration at the left side of the aneurysm (the light blue region)

represents movement at approximately 1× 10−2 m/s. This movement is caused by a vortex

that is beginning to take place as the fluid is being pushed to that side of the aneurysm as

it pushes off of the right side of the aneurysm.
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Figure 4.18: (a) U and (b) V velocity profile at t = 2.5 s, umax ≈ 5.3618× 10−2 m/s

In figure 4.18(a), the velocity of the proximal side of the aneurysm is becoming more

intense resulting in a peak velocity of approximately 1.75× 10−2 m/s.

Figure 4.19: (a) Magnification of proximal region of the aneurysm at t = 2.5 s
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Figure 4.20: The aneurysm at t = 2 s (red lines) versus t = 2.5 s (blue lines).

Figure 4.21: Magnification of (a) the proximal side of the ostium (neck); (b) the distal side of the

ostium (neck); (c) the middle region of the bottom of artery at t = 2 s.
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Figure 4.22: Magnification of (a) the top of the aneurysm; (b) the proximal side of the aneurysm;

(c) the distal side of the aneurysm at t = 2 s.

Figure 4.23: (a) U and (b) V velocity profile at t = 2.6 s, umax ≈ 1.0828× 10−1 m/s
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Figure 4.24: (a) U and (b) V velocity profile at t = 2.7 s, umax ≈ 1.9438× 10−1 m/s

Figure 4.25: The aneurysm at t = 2 s (red lines) versus t = 2.7 s (blue lines).
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Figure 4.26: (a) The proximal and (b) distal side of the ostium leading up to the aneurysm at t = 2

s (red lines) versus t = 2.7 s (blue lines).

Figure 4.27: (a) The proximal side of the top artery wall leading up to the ostium and (b) the

distal side of the ostium leading down to the artery wall at t = 2 s (red lines) versus t = 2.7 s (blue

lines).
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Figure 4.28: (a) U and (b) V velocity profile at t = 2.8 s, umax ≈ 1.1657× 10−1 m/s

Figure 4.29: (a) U and (b) V velocity profile at t = 2.9 s, umax ≈ 7.4527× 10−2 m/s

Figure 4.30: (a) U and (b) V velocity profile at t = 3 s, umax ≈ 1.2009× 10−1 m/s
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Figure 4.31: The aneurysm at t = 2 s (red lines) versus t = 3 s (blue lines).

Figure 4.32: (a) The proximal side of the top artery wall leading up to the ostium,(b) the distal

side of the ostium leading down to the artery wall and (c) the middle region of the bottom of artery

at t = 2 s (red lines) versus t = 3 s (blue lines).
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All figures, displayed in this chapter, represent the simulation of a deformable cerebral

artery and adjoining saccular aneurysm as interior and exterior forces were enforced. One

may consider increasing the grid size and decreasing the time step which will allow the

boundary to be defined much quicker resulting in less movement of exterior fluid from the

initial effects of x-velocities prior to boundary enforcement.

Also, increasing the tension and shearing constants will result in a more flexible bound-

ary where the arterial and aneurysmal walls will be allowed to move more freely. Decreasing

the shearing and tension constants will result in more resistance of arterial and aneurysmal

wall movement from the effects of the interior and exterior fluid forces.
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Chapter 5

CONCLUSION

In the first project, presented in Section 2.1, laminar flow of water was simulated through

a rigid cylinder around a rigid circular solid. An immersed boundary method was applied to

handle the solid body. The two-dimensional incompressible Navier-Stokes equations, which

governs the flow of the fluid, were solved on a staggered Eulerian grid. The numerical code

was verified through the results obtained and then modified to solve for flow through an

artery with an adjoining rigid saccular aneurysm.

The second project, presented in Section 2.2, demonstrated laminar flow of blood

through a rigid cerebral artery with an adjoining rigid saccular aneurysm. The same meth-

ods in the first project were used in this project in order to compute the two-dimensional

incompressible Navier-Stokes equations. The only modification made was the change of the

immersed boundary from a rigid circular solid to a rigid artery with its adjoining saccular

aneurysm. The results obtained were qualitatively in agreement with results in Lott et al.’s

paper [24].

In the third project, presented in Section 2.3, modifications were made to the second

project to simulate pulsatile flow of blood through the rigid artery and aneurysm. This was

done by introducing a fast Fourier transform in order to approximate the inlet blood flow at

the entrance of the artery. Results showed that blood remained inside the inflow domain as

it pulsated through, i.e., there was no leakage outside of the flow domain.

After stable results from all three projects, the fourth and final project was able to be

simulated. In this project, pulsatile blood flow through a deformable artery and adjoining

saccular aneurysm was simulated. This introduced the dynamic equation for the motion

of an elastic body which was solved in the Lagrangian coordinate system using the Crank-

Nicolson method, and the Navier-Stokes equations were solved in the Eulerian coordinate
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system as done in the previous projects. The coupling of these two sets of equations allowed

for movement of the artery and saccular aneurysm at each time step with respect to the flow

of the blood and the forces that the blood imposed on the boundary.

This dissertation presented a unique combination of studies done by Mori and Peskin,

Seibold, Lee and Choi, and Ghaffari et al. to create fluid-structure interaction using a finite-

difference, immersed boundary method to simulate blood flow through a cerebral artery and

its adjoining saccular aneurysm. A semi-implicit numerical code solving the two-dimensional

nonlinear incompressible Navier-Stokes equations was created similar to that of work done by

Seibold who presented the lid driven cavity problem, and simulations of laminar and pulsatile

blood flow through the rigid cerebral artery and its adjoining aneurysm were simulated. Then

with the aid of Mori and Peskin’s [30] and Lee and Choi’s [21] work, success in coupling the

two-dimensional Navier-Stokes equations with the equation of motion for an elastic body

was achieved to simulate blood–aneurysm vessel interaction.

As done by Ghaffari et al. [9], a Lagrangian structured grid covered the deformable

aneurysm and artery walls which was coupled with the surrounding fluid by hydrodynamic

forces calculated on the Eulerian grid. Unlike Di and Ge [7] who solved Poisson’s equation

for pressure before computing the body force, in this research, the force was calculated

prior to solving Poisson’s equation for the pressure. The same results were achieved where

a divergence-free flow field in the fluid domain and no-slip boundary conditions on the

immersed boundary were produced.

This work validated the lid driven cavity problem presented by Seibold [34] (not pic-

tured), flow around a circular solid, Poiseuille flow and pulsatile flow through a rigid aneurysm.

The novelty and major contribution of this work is that it uniquely tracks free surfaces by

using second-order finite difference methods to compute the velocity of surface cells. This

work also uses a mapping technique to transform and restore the location of the deformable

body in Eulerian space.
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Results of all four projects demonstrated that the immersed boundary method used

and the coupling of the two-dimensional incompressible Navier-Stokes with the dynamic

equation for the motion of an elastic body are potential tools for simulations involving fluid-

solid interactions on both rigid and elastic boundaries. Stability, accuracy, and consistency

of the results of the fourth project allows for modifications to be taken into consideration on

a quantitative basis proposed in Chapter 6, Future Work.
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Chapter 6

FUTURE WORK

Future work includes checking if the present model gives a non-zero pressure field

even though the velocity is near zero. Also, modification of the numerical code from two-

dimensions to three-dimensions using the three dimensional Navier-Stokes equations as fol-

lows,

Ut = −(U2)x − (UW )y − (UV )z +
1

Re
(Uxx + Uyy + Uzz)− Px + FU (6.1)

Wt = −(UW )x − (W 2)y − (V W )z +
1

Re
(Wxx + Wyy + Wzz)− Py + FW (6.2)

Vt = −(UV )x − (V W )y − (V 2)z +
1

Re
(Vxx + Vyy + Vzz)− Pz + FV (6.3)

Ux + Wy + Vz = 0, (6.4)

coupled with the three-dimensional motion equation where the volume of each block will

be incorporated and the bending and twisting effects will take into effect resulting in the

following equation,

ρ
∂2X

∂t2
=

2∑
a,b=1

[
∂

∂sa

(
KT

ab

(
Tab − T 0

ab

) ∂X

∂sb

)
− ∂2

∂sa∂sb

(
KB

ab

(
Bab −B0

ab

))]
+

FH

V
.(6.5)

Things that are expected to be observed during this process are signs of no air pockets and

free surfaces as a result of pulsatile flow.

Future work also includes incorporation of the Womersley number which is a dimension-

less expression used to characterize the unsteady flow in blood vessels [25]. A quantitative
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study is to be considered where the values for the tension and shearing constants are chosen

based on the mechanical properties of a human subject’s cerebral arteries to be used in com-

puting the dynamic equation for the motion of an elastic body. Incorporation of disparity

in the tension and shearing coefficients of the artery to that of the aneurysm will need to be

taken into consideration due to the artery wall, normally, being stiffer than the wall of its

adjoining aneurysm.

Applying both the current model and three-dimensional model to actual angiographic

configurations of a cerebral aneurysm will be considered as well as creating a boundary

mesh for three clipping configurations and computing the flow of blood through the clipped

aneurysms.
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