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ABSTRACT

Interpretation of atomic spectra and the applications of atomic spectroscopy to current

problems in astrophysics, laser physics, and thermonuclear plasma require a precise knowl-

edge of atomic structure and dynamics. The collisional excitation and ionization of atomic

targets by electron impact is distinct in that one or more electrons are in the continua,

which makes the theory complicated and also drastically disturbs the system for probing

and detection.

Analysis of interacting atomic systems is complex and many approximate methods have

been developed in the past. The most prominent of these methods is the Hartree-Fock

procedure and its relativistic and multiconfiguration extensions. This self-consistent-field

(SCF) approach has been limited to treating only fully bound, negative energy states whose

corresponding wave functions are square-integrable. Recently, the SCF extension to scat-

tering in which continuum (positive-energy) states are involved, has been formulated. The

non-integrability of the continuum functions can be overcome by an amputation procedure

that retains all of the physical essentials of the scattering system. It is extended here to

the electron-hydrogenic scattering system in the zero angular momentum coupling models.

In this project, the focus is on devising a numerical algorithm for solving such systems of

integro-differential equations stemming from the SCF theory. The method is compared with
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results obtained by several other approaches. It is shown that the newly devised numerical

approach converges as the amputated continuum functions provide an effective projection of

the scattering function.
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Chapter 1

INTRODUCTION

In the infancy of the field of atomic physics, Joseph John Thomson [19] conducted a

study with beams of negative particles. In 1897, these light-weight particles with negative

charge became known as electrons. Early developments of atomic structures are still used

today to conduct theoretical and experimental research. In the 1920s, the quantum model of

an atom was birthed. Quantum theory is used to show how the wave behavior of electrons

yields the quantized energy when electrons interact with the nucleus. By doing so, the

electrons emit a set of discrete wavelengths.

The Schrödinger equation and perturbative methods are used to interpret the wave-

lengths and energies of the all the electrons in an atomic system approximately. In this

dissertation, the Hartree-Fock Approximation (HFA) is utilized to represent a total wave

function such that a single electron wave equation can be determined with the effect of

an N-electron system. Numerical methods are applied to scattering and bound state wave

functions to solve for energies of the electron.

Over the years, different methods were introduced to treat many-body systems to find

the bound and scattering states. Most of these techniques were studies on specific atomic

structures and then were generalized to extend to more complex systems. In this chapter,

we will highlight some profound theories, numerical methods, and subroutines that have

influenced the progression of atomic theory.

1.1 Close-Coupling Theory

The convergent close-coupling theory for atomic and molecular systems is based on a

complete L2 expansion of the total wave function in the Schrödinger equation for all energies

for elastic, excitation, ionization and charge exchange process. Close-coupling methods give
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approximation for quantum collision systems.

Burke et al. [13] investigated the scattering of electrons and positrons by atomic hy-

drogen for projectile energies. A close-coupling approximation was used to expand the total

wave function in hydrogen eigenstates. Then, Burke et al. [12] calculated the following:

differential and total cross sections for elastic and inelastic scattering, polarization and cor-

relation of electron spin quantities, and the radiation emitted in various electrons due to

polarization

Burke et al. [14] presented a six-state, close-coupling calculation of low-energy elec-

tron scattering by hydrogen. The first six hydrogen eigenstates of hydrogen were found by

expansion and the remaining were solved computationally. Taylor and Burke [63] applied

the same s-wave scattering of electron by atomic hydrogen to the correlation method. This

method observed wave functions that were more flexible. The results were compared with

the close-coupling results obtained with three states for the desired energy region and both

methods were acceptable.

Bray and Stebovics [9] studied close-coupling for expanding the target state in an or-

thogonal L2 Laguerre basis. This was not an approximation and convergence was achieved

by increasing the basis size. This was studied on 2s and 2p differential cross-sections, spin

asymmetries and angular correlation parameters for 2p excitation.

Bray [10] extended the close-coupling method to hydrogen-like targets, atoms or ions.

The work treated H, Li, Na, K atoms, and many ions that have the same isoelectronic se-

quence as any of these atoms. The method’s reliability is independent of the projectile energy

and can be applied to a large set of measurements for electron scattering on sodium (Na).

This includes the measurement of spin antisymmetries, singlet and triplet, reduced Stokes

parameters, differential, integrated, and total cross-sections as well as the total ionization
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spin asymmetry.

1.2 Variational Methods

The variational method finds the lowest expectation energy value which is the ground

state energy. This procedure will give the best possible approximate wave function because

it is closer to the true energy of the system.

Bransden et al. [7] applied a variational method to calculate phases for the s-wave

and p-wave scattering of electron for the hydrogen atom. The study included full electron

exchange and investigated polarization. John [34] applied the variational method used by

Bransden to calculate the phases for s-, p- and d-waves analytically.

Schwartz [53] used the variational principle to calculate the s-wave elastic scattering of

electrons from atomic hydrogen using trial functions introduced by Hylleraas [32] to describe

bound states for two-electron atoms. The phase shifts were calculated and converged well

at energy levels up to 10 electron volts. Keeping the energy level in the range left residual

uncertainties less than one thousandth of a radian. Accurate values were determined for the

scattering lengths.

Armour et al. [4] discussed accurate calculations of low-energy scattering for hydrogen

and helium atoms and the hydrogen molecule. The variational method and trial functions

that contain Hylleraas-type correlation terms were used for these atomic structures. Positro-

nium formation in the Öre gap was taken into account for hydrogen. Methods were discussed

to extend these calculations to electron-helium.

1.3 R-matrix Method

The R-matrix method was first presented by Wigner and Eisenbud [65] for nuclear

reactions. Burke and Robb [15] extended the method to study low energy scattering by
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complex atoms and ions in 1971 and many others have made improvements for this method.

Burke and Robb [15] used the R-matrix method to calculate the elastic scattering of elec-

trons by hydrogen and helium atom. The phase shifts for electron-hydrogen were obtained

in the static approximation and this allowed atomic polarizability by using the pseudo-state

method. Electron-helium scattering phase shifts were obtained using Hatree-Fock and a cor-

related target wave function. The phase shift was dependent on the number of basis states

included in the expansion of the total wave function.

Burke et al. [16] developed a R-matrix theory of electron-atom and electron-molecule

scattering at intermediate energies. The outer valence electron of the target atom or molecule

and the scattered electron were expanded in terms of a continuum R-matrix basis. This en-

abled target eigenstates as well as pseudostates representing inelastic effects to be accurately

represented in an internal region. A two-dimensional R-matrix propagator approach was

developed that enabled the internal region to be subdivided and highly excited target states

that extend out to large distances to be treated. This theory was combined with the T-matrix

energy averaging technique. This method produced accurate cross-sections at intermediate

energies. The method was illustrated by applying it to the elastic s-wave scattering of elec-

trons by atomic hydrogen from threshold to 60 eV.

Scholz and Burke [52] discovered accurate calculations of new intermediate energies

using the R-matrix theory for electron-hydrogen scattering. Cross-sections for elastic scat-

tering and 1s-2s and 1s-2p excitation processes were presented for s-, p-, and d- partial-wave

symmetries. Phase shifts and resonance positions and widths are below n=2 threshold.

Scott and Burke [54] developed a reduced intermediate energy R-matrix approach to

allow more rapid calculation of accurate cross-sections at intermediate energies. The ap-

proach was applied to electron-hydrogen atom scattering for L = 0 (angular momentum),
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S=0 (total spin) and even parity to give the first accurate cross-section for n = 1 and n = 2

to n = 3 transition at intermediate energies.

1.4 Numerical methods

In this section we discuss a variety of numerical methods that have been used to solve

atomic systems and collisions.

1.4.1 Noniterative Methods

Sams and Kouri [50] introduced an integral equation method to solve collision problems

for homogeneous integral solutions. The method was noniterative and was applied well to

local and non-local interactions. The study was extended to solve integral equations of

scattering coupled channels [51].

Smith and Henry [62] applied the non-iterative integral equation theory to open and

closed channels with exchange and orthogonality was formulated for the multi-channel scat-

tering. This method solves coupled, integro-differential equations of the scattering problem

from zero out to some transformation point where the reactant matrix is projected out to

its asymptotic value by using a matrizant technique.

Botero and Sherzter [6] used a direct numerical solution of the Schrödinger equation for

quantum scattering problems. Each partial wave function was expanded in coupled spherical

harmonics. The corresponding radial functions were expanded in a local basis set using finite-

element analysis with appropriate scattering boundary conditions for s, p, d, and f-elastic

phase shift of electron-hydrogen.

Simos et al. [58] developed a two-step method for computing eigenvalues and resonances

of the radial Schrödinger equation. Numerical results were obtained for the integration of

the eigenvalue and the resonance problems. This new method was shown to be better than
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similar method by using several potentials.

Simos [59] studied the importance of the properties of P-stability and Trigonometric-

fitting for the numerical integration of the one-dimensional Schrödinger equation. This was

done through the error analysis and the application of the studied methods to the numerical

solution of the radial Schrödinger equation.

1.4.2 Iterative Methods

Poet [42] problem solved for low and medium energies by neglecting all angular mo-

mentum for simplified electron-hydrogen excitation. The integrals arising were expressed in

terms of hypergeometric functions, so that accurate solutions could be computed rapidly.

The model included an effect that is more complex than realistic problems. Issues were

the strong coupling between an infinite number of open channels and need for an adequate

continuum representation.

Ixaru [33] found expressions for the coefficients of the Numerov scheme to ensure the

optimal approximation to the Schrödinger equation in the deep continuum spectrum of

energies.

Poet [43] presented a new method for obtaining scattering information for electron-atom

and ion collisions. Results were obtained for model electron-hydrogen collisions when the

angular momentum is neglected. Schrodinger’s equation was separable in the outer region, so

that the wave function is a linear sum of Coulomb functions multiplied by exponentials. An

explicit interpolation scheme was used for the generalized unitary matrix, thus eliminating

any ill-conditioning. This scheme converged rapidly. Five adjustable parameters gave errors

of around 1-2 percent for incident energies of 0.8 to 3 Rydberg. The results were obtained

by using a separable pseudo-state expansion in the outer region.
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Raptis [45, 46] implemented multi-step methods to solve the Schrödinger equation with-

out exchange. The Chebyshevian Multi-step Theory of Lyche [39] was developed and applied

to the numerical solution of the radial form of the Schrödinger equation. Significant improve-

ments were made over previously reported approaches.

Berghe et al. [5] revisited an algorithm previously introduced by Brown et al. (1963)

[8] for solving radial Schrödinger equations that was implemented in a more accurate way.

The method was applied to equations where potentials were finite at the origin and have

an asymptotic behaviour V (r) → 0 as r → ∞. The method was used for many potentials

as well as Coulomb-like potentials. Comparisons were made with approximate methods and

exact bound state energies.

Simos [57] developed a new four-step exponentially-fitted method. The expressions

for the coefficients of the method were found to ensure the optimal approximation to the

eigenvalue Schrödinger equation for positive energy.

Kim [36] presented the Lanczos [37] method for a non-local optical model calculation of

the Schrödinger equation. The method was tested with other methods and adapts well to

solving large dimensional, coupled channel equations very efficiently.

Bray [11] discovered a way to apply the convergent close-coupling method to allow the

continuum to be treated in a systematic manner by using square-integrable states. The

convergent close-coupling method used an expansion of the target in a complete set of or-

thogonal L2 functions to form a basis for the underlying Hilbert space. To demonstrate

convergence in the scattering amplitudes of interest, the basis size is increased.

Waxman [64] used numerical methods to find accurate determinations of the bound-state

eigenfunctions and eigenvalues of a differential operator such as the one-particle Schrödinger

Hamiltonian. The method applied potentials that asymptotically vanish. The eigenvalues
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and eigenfunctions were determined as functions of the strength of the potential and this

allowed for the determination of the bound-state energies for arbitrarily weak strengths of the

potential. Since the matrix was not diagonalized, the method could be applied to problems

with space dimension greater than unity.

Rawitscher et al. [47] extended the spectral non-iterative method that was previously

designed to solve the Lippmann Schwinger integral equation with local potentials, to include

the exchange non-locality. It was applied to the electron-hydrogen scattering case where

the bound electron remains in the ground state and the incident electron has zero angular

momentum.

Shao et al. [56] introduced an algorithm to calculate the Green’s function of the

Schrödinger equation in a block layered potential. Applying the block layered potential

has many applications in quantum modeling of electron transport. The method is based

on expanding the eigenfunction of a Sturm-Liouville problem and a collocation matching

procedure.

Anastassi [1] introduced a new methodology for the construction of numerical meth-

ods for the approximate solution of the one-dimensional Schrödinger equation. The new

methodology was based on the requirement of vanishing the phase-lag and its derivatives.

The efficiency of the new methodology was proved through error analysis and numerical

applications.

Simos [60] developed new methodology of efficient numerical methods for the approxi-

mate the one-dimensional Schrödinger equation. This methodology was based on the phase-

lag and its derivatives vanishing. Error analysis and numerical results were used to validate

this methodology.

Pillai [41] recasted the well-known Numerov method for solving Schrödingers equa-
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tion into a representation of the kinetic energy operator on a discrete lattice. A high-level

programming environment made it simple to calculate and plot accurate eigenvalues and

eigenvectors for a variety of potential problems. Their paper illustrated the method by

calculating high-accuracy solutions for the |x| potential.

Nikolopoulos [40] developed a calculational method of solving the scattering equations

for spherically symmetric potentials by expanding the solutions on Coulomb functions. A

multistep integration scheme together with the standard partial wave analysis in a region

where the potential term dominates were utilized. The method is applied to any physical

problem scattering equation without exchange terms. A two-step Coulomb-fitted integration

scheme by calculating the short-range scattering phase shifts for various potentials were

demonstrated in this research.

Arellano et al. [2] presented an exact solution for the scattering wave function from

a non-local potential in the presence of Coulomb interaction. The approach was based on

the construction of a Coulomb Green’s function in coordinate space whose associated kernel

involves any non-local optical potential superposed to the Coulomb-screened interaction.

The scattering wave function, exact solution of the integro-differential Schrödingers equation

posed no restrictions on the type of non-locality of the interaction.

1.5 Subroutines

In recent years, subroutines have been created for public use to solve atomic systems.

These subroutines address specific problems and require certain parameters. Here, we review

some of the subroutines that are available, and the type of problem they can solve.

Seaton [55] used the code NUMER for numerical integrations of Coulomb radial wave

functions using the Numerov method. The inputs required were a function and its derivative
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to start integration, an integration range and an accuracy parameter, abdominal circumfer-

ence, such that the accumulated error is no larger than abdominal circumference. Alternative

inputs were initial function, integration step, and function after first step. The program is

suitable for positive energies.

Čert́ık et al. [17] presented a robust and general solver for the radial Schrödinger, Dirac,

and Kohn-Sham equations. This solution used general potentials and meshes: uniform,

exponential, or other defined by nodal distribution and derivative functions. For a given

mesh type, convergence was controlled systematically by increasing the number of grid points.

Radial integrations were carried out using a combination of asymptotic forms, Runge-Kutta,

and implicit Adams methods. Eigenfunctions were determined by a combination of bisection

and perturbation methods for robustness and speed. An outward Poisson integration was

employed to increase accuracy in the core region, allowing absolute accuracies of 108 Hartree

to be attained for total energies of heavy atoms, such as uranium. Detailed convergence

studies were presented, and computational parameters were provided to achieve accuracies

commonly required in practice. Comparisons to analytic and current-benchmark density-

functional results for atomic numbers Z=1 to 92 were presented, verifying and providing

a refinement to current benchmarks. An efficient, modular Fortran 95 implementation,

“dftatom,” was provided as open source, including examples, tests, and wrappers for interface

to other languages; wherein particular emphasis is placed on the independence, reusability,

and generality of the individual routines.

Salvat et al. [48, 49] described a Fortran package of subroutines RADIAL for the nu-

merical solutions of the Schrödinger wave equation of electrons in central potentials. This

includes finite-range potentials as well as combinations of Coulomb and finite-range poten-

tials. The function V (r) was used calculate the natural cubic spline that interpolates a table

10



of values provided by the user. The radial equations were solved by using piecewise exact

power series expansions of the radial functions, which are summed up to the prescribed

accuracy so that truncation errors can be completely avoided. The RADIAL subroutines

computed radial wave functions, eigenvalues for bound states and phase shifts for free states.

These subroutines compute the radial functions and phase shifts for free states of complex

optical potentials having a finite-range absorptive imaginary part. The subroutines provided

example main programs, as well as specific programs that perform calculations relevant in

atomic, nuclear, and radiation physics that involve the self-consistent solution of the Dirac-

Hartee-Fock-Slater equations for neutral atoms and positive ions, and the calculation of

cross-sections for elastic scattering of high-energy electrons and positrons by atoms and of

nucleons by nuclei. The distribution package gave a detailed manual with a description of

the basic physics and the mathematical formulas implemented in the subroutines.

1.6 Hartree-Fock Approximation and Numerical Methods

The first study of the Hartree-Fock (HF) method was introduced by Hartree [29, 30]

in the 1920s. Since then, many developments have been made to improve the theory and

make it a popular approximation method for atomic spectra. This dissertation will focus on

this self-consistent approach to approximating scattering and bound state wave equations

and numerical methods to solve these equations. In this section, we highlight some the

contributions made over the years.

Fonte et al. [20] used the Newton iteration method for constructing a solution of the

atomic and nuclear HF equations for an arbitrary number of particles. This was based on

the theorem by Kantorovich [35] and the following points: 1) the two-body potential must

be bounded; 2) the approximation used to start the iteration sequence must satisfy certain

11



conditions for local and nonlocal potentials.

Slater [61] showed that the HF equation can be regarded as the Schrödinger equations

for the motion of electrons. Each electron moves in a slightly differential potential field that

is computed by electrostatics of all the charges of the system. A weighted mean potential

was investigated for all electrons. The weighted mean potential was a simplification of the

HF method and pictorially agreed with solid states.

Lieb and Simon [38] proved the existence of solutions of the HF equations which min-

imize the HF energy for neutral atoms and molecules and positive ions. They established

some properties of the solutions including exponential falloff.

Hahn [26, 27] improved on the conventional HF and HF Approximations for electron-

bound systems to treat positive-energy scattering problems. This was achieved by using

square-integrable functions associated with the scattering wave functions and relaxing the

asymptotic condition. This method differs from previous methods because it can treat both

the bound and scattering orbitals simultaneously. It also improved the wave function system-

atically through configuration interaction. In 2014, Hahn [28] discussed the self-consistent

field theory of collisions and how they were formed by incorporating the unique dynamics

generated by the self-averaged potentials. Alternatively, the integrable spin orbitals were

generated by constructing the individual orbital equations that contain asymptotic sources

and self-averaged potentials. The orbital energies were not determined by the equations, and

a special channel energy fixing procedure was developed to secure the solutions. It was also

shown that the variational construction of the orbital equations has intrinsic ambiguities that

were generally associated with the self-consistent approach. When a small subset of open

channels were included in the source term, the solutions were only partially integrable, but

the individual open channels were then treated more simply by properly selecting the orbital
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energies. The configuration mixing and channel coupling were then necessary to complete

the solution. The new theory improved the earlier continuum HF model.

Zerrad et al. [67] continued the self-consistent field (SCF) study and the results showed

that the theory converges to the correct amplitudes and the exact boundary conditions

when more configurations are added. Amputated wave functions and the weak asymptotic

condition upon which the SCF theory is based, is justified as the weak asymptotic condition

converges to the correct limit. It was then applied to the positron-helium and electron-helium

scattering systems where the helium function was calculated simultaneously together with

the scattering function. The phase shifts and the SCF target functions were compared with

those obtained with the predetermined target functions in the conventional approaches.

Zerrad el at. [68] created a new numerical method for solving the integro-differential

equations that appear in the theory of atomic scattering. The method decomposes the kernel

into separable terms using the singular-value decomposition. A set of integro-differential

equations has a residual integral kernel that is solved to obtain the wave function. From the

wave function, the phase shift is evaluated. In 2009, Zerrad et al. [69] applied this method

to low energy helium and illustrated how the Green’s function for a Schrödinger equation

with both local and non-local but fully separable potentials can be obtained without much

difficulty by adding solution dependent constants to the Green’s function distorted only by

the local potential.

This dissertation is an extension of previous SCF work on numerical methods of scatter-

ing and bound states. Chapter 2 discusses the HF theory that produces the wave functions

in a SCF and the application of the theory to atomic structures that is used in later chap-

ters. In Chapter 3, Numerov’s method is used to find the scattering wave function and phase

angle. Chapter 4 discusses the Green’s function and SVD method to separate the non-local
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kernel and discovery of more solutions at low energies for the hydrogen atom. In Chapter 5,

an energy matching scheme for the solution of the eigenvalue radial problem for bound state

electrons is investigated. The HF Theory that was introduced by Hahn to treat scattering

problems is used to solve for the scattering and bound orbitals simultaneously in Chapter 6.

These states are computed using the numerical methods in the preceding chapters. Chapter

7 contains a conclusion of the findings. Future work will presented in Chapter 8.
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Chapter 2

HARTREE-FOCK APPROXIMATION

2.1 Overview

The Hartree-Fock Approximation (HFA) is used to find approximate solutions to many-

body problems for atoms, molecules and solids. With the HFA, single particle states can be

found based on the effect of the multi-particle system. This method is used to access atomic

collision and give an accurate view of the atomic structure with many electrons. For many-

body problems, this approximation has many real-world applications and is easily applied to

numerical computations. In this chapter, a general overview of theory of the Hartree-Fock

(HF) method is given, as well as, applications of the theory for the hydrogen atom.

2.2 Theory

In this section, a many body system will be applied to the HFA. This general form

can be extended to more complex systems. The many body, time-independent system is

governed by the Schrödinger equation,

ĤΨ = EΨ (2.1)

where Ψ is the total wave function

Ψ(x1, x2, ..., xN). (2.2)
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The Hamiltonian for a molecular system composed of M nuclei with charge Zα and position

Rα and N electrons can be written as

Ĥ = −
N∑
j=1

(
−1

2
5xj +

M∑
α=1

Zα
|Rα − xj|

)
+

N∑
i,j=1

1

|x1 − xj|
, (2.3)

where the first term represents the kinetic energy with respect to the the xj electron. The

second term describes the attraction of the nuclei to the jth electron. The final term represent

the interactions of all the electrons which has repulsive characteristics. The Hamiltonian is

the total energy of the system.

In quantum mechanics the position and momentum of an electron cannot be determined

at the same time. This phenomenon is based on the Heisenberg Uncertainty Principle [18,

21, 22, 25]. The wave function Ψ is used to describe the quantum state of the electrons. The

probability distribution of finding the electron at a position x is based on the modulus of the

wave function |Ψ|2. The description of the system is intrinsically probabilistic [18, 21, 22, 25].

The energy of the system is obtained by taking the scalar product of

EΨ =
〈

Ψ|Ĥ|Ψ
〉

=

∫
R3

Ψ(x1, ...xN)ĤΨ(x1, ...xN)dx1,..., dxN . (2.4)

The ground state of the system is given by minimizing the wave function of the energy. This

means that wave function must be anti-symmetric and the norm of the wave function must

be 1. The product form of the total wave function is called the Hartree Product. It is written

as

Ψ(1, 2, ..., N) ' ΨHF (1, 2, ..., N) = ψ1(r1)ψ2(r2)...ψN(rN). (2.5)

The wave function contains the product of the orbitals ψ. These orbitals describe the wave

16



behavior of the N-electrons in the system.

The total wave function does not account for the energy exchange of the electrons.

According to quantum theory, this not an accurate representation of the electrons in a

atomic system. The HFA assumes that each electron moves in an averaged potential based

on the other electrons. The wave function needs to be anti-symmetric to take into account

that any two electron are indistinguishable [18, 21, 22, 25]. The wave function should be

written as

Ψ(1, ..., i, j, ..., N) = −Ψ(1, ..., j, i, ..., N). (2.6)

This property comes form the Pauli Exclusion Principle [18, 21, 22, 25]. To produce all

possible wave functions of a many body problem, a permutation operator is applied to the

total wave function. The anti-symmetric form of the wave function is written as

PijΨ(1, ..., i, j, ..., N) (2.7)

where 1 ≤ (i, j) ≤ N and i 6= j. This operator addresses the intrinsic spin coordinates that

insures there are two spin-orbitals for each spatial orbital. These spin orbitals have opposite

signs. The wave function is rewritten simply as function x of spatial r and spin coordinates

ω. Due to spin-degeneracy, it is more convenient to continue with the spatial components

only. Assuming the HFA can be expressed as a Slater determinate of single particle wave

functions will allow anti-symmetry for a N-electron system [18, 21, 22, 25]. This can be

17



simply written as

=
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) · · · ψN(r1)

ψ1(r2) ψ2(r2) · · · ψN(r2)

...
...

. . .
...

ψ1(rN) ψ2(rN) · · · ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1√
N !

∑
(−1)pnPnx1(1)x2(2)xN(N)

The Slater determinate accounts for all N ! permutations of the N single particle states

of the total wave function. The value pn depends on whether the permutation Pn is even or

odd. This process allows the many body problem to be decoupled and leaves a single-particle

wave function that is based on a self- consistent field.

2.3 Hartree Product and Applications of the Hartree-Fock Approximations

Now that the each particle in a N-electron system can be obtained using HFA, this

dissertation will look at specific atomic collisions and systems. Then numerical methods are

applied to determine the energies of the electronic particles. There are not many analytic

solutions to these type of problems. Hence, this research looks at atomic collisions and

systems with known analytic solutions. The hydrogen atom has well known analytic solutions

that will be used to compare with numerical solutions found in this dissertation. This section

will discuss the different interactions that can be applied to the hydrogen atom. Specifically,

single channel configuration of the bound and scattering states will be evaluated. These

simple cases are the stepping stone to more complex atomic structures.
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2.3.1 Scattering Wave Equation for Positron-Hydrogen Scattering System

The equation below describes a hydrogen-like atomic system with two particles, where

the electron particle is bound to the nucleus, and the incident particle is a positron. Since

the incident particle is a positron, it has a positive charge which makes it distinguishable

from the electron. This means there is no exchange of energy between the particles. The

hydrogen-like system without exchange is the following 3-dimensional Schrödinger equation:

− ~2

2µ

(
52

x1
+52

x2

)
−
[
+
Ze2

x1

− Ze2

x2

+
e2

x>

]
Ψ(x1,x2) = ĒΨ(x1,x2). (2.8)

where Z is the charge of the nucleus. The kinetic energy (Ēk) of the incident electron acts on

the ground state of the system. The overall wave function of the system is denoted Ψ(x1,x2).

The total energy is Ē. The charge of the particles is e where the positron has a positive

sign and the electron has a negative sign to indicate their respective charges. The reduced

mass of the incident electron is µ. The Planck’s constant is ~. The position vectors of the

electron and positron are denoted are denoted x1 and x2, and x> is the distance between

the two particles. To transform the variables into atomic units, multiply equation (2.8) by

the quantity

(
2µa2o
~2

)
, where ao

(
~2

2µe2

)
is the Bohr unit of length. The resulting equation

is

[
−52

r1
−52

r2
−2Z

r1
+

2Z

r2
− 2

r>

]
Ψ(r1, r2) = EΨ(r1, r2). (2.9)

Here r = x/ao is a displacement vector in units of Bohr, and E = Ē/< is the total en-

ergy in Bohr units. One Rydberg equal is to < = ~2/(2µa2o). We utilize the well-known
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expansion 1
r>
→ 1

r12
where

r12 =

 r2 for r1 ≤ r2

r1 for r1 > r2.
[3] (2.10)

The Hartee-Fock Approximation (HFA) expands the total wave function in terms of the

bound states φi of the atomic electron and ψi are the wave functions of the scattered positron

in channel i, to be determined from the solution of a set of coupled equations. In this case,

HFA without exchange terms is used to arrive at the homogeneous, ordinary differential

equation governing the scattering wave function. The HFA without exchange is [23, 24]

Ψ(r1, r2) =
∑
i=1

φi(r1)ψi(r2). (2.11)

The subscript i represents the set of all quantum numbers which label the electron bound

states. The corresponding principal quantum number is ni, and the corresponding bound

state energy is

EBi
= −

(
Z2

n2
i

)
<. (2.12)

In this dissertation, the ground state will be assumed, i.e., i = 1, and this subscript will

be left off for simplicity, and Z = 1. With these assumptions the bound-state electron energy

is EB = −< where < is the Rydberg constant for hydrogen, and the incident electron has the

asymptotic kinetic energy Ēk = Ē − EB. Assuming this is a positive quantity, Ēk = EC<,

where EC = k2, and the corresponding wave number k in atomic units is given by

EC =
Ē − EB
<

=
Ē − (−<)

<
= E + 1. (2.13)

based on equation (2.13), the bound state energy in this system is -1, and it will be labeled
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as EB in all calculations of the atomic equations to reference in proceeding chapters.

The equation for ψ is obtained by truncating the sum in equation (2.11) to one term, and

inserting it into equation (2.9). Then, we multiply on the left by the functions φ = φi(r1),

and integrate over d3r1.

∫
φ(r1)

[
−52

r1
−52

r2
− 2

r1
+

2

r2
− 2

r12
− E

]
φ(r1)ψ(r2)d

3r1 = 0. (2.14)

Then we have

∫
φ(r1)

{
−52

r1
−52

r2
− 2

r1
+

2

r2
− 2

r12
− EC − EB

}
φ(r1)ψ(r2)d

3r1 = 0.

(2.15)

Now the integral is separated by the desired wave equation and the Weak Asymptotic Con-

dition (WAC) is enforced. Hence,

∫
φ(r1)

{
−52

r2
− 2

r2
− 2

r12
− EC

}
φ(r1)ψ(r2)d

3r1

+

∫
φ(r1)

{
−52

r1
− 2

r1
− EB

}
φ(r1)ψ(r2)d

3r2 = 0. (2.16)

The WAC is

{
−52

r1
− 2

r1
− EB

}
φ(r1) = 0. (2.17)

This condition is imposed to maintain the self consistent field, and the chosen energy of the
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incident particle (EC). Once the weak asymptotic condition is applied, the equation becomes

{
−52

r2

〈
φ(r1)

∣∣∣φ(r1)
〉
− 2

r2

〈
φ(r1)|φ(r1)

〉
+
〈
φ(r1)

2

r12
φ(r1)

〉
− EC

〈
φ(r1)|φ(r1)

〉}
ψ(r2) = 0. (2.18)

For simplicity, the equation is rewritten as

{
−52

r2
A− 2

r2
A+B − ECA

}
ψ(r2) = 0. (2.19)

The integrals are labeled as

A =
〈
φ(r1)

∣∣∣∣φ(r1)
〉
,

B =
〈
φ(r1)

∣∣∣∣ 2

r12
φ(r1)

〉
,

and the symbol
〈∣∣〉 denotes 〈

F
∣∣G〉 =

∫
F (r)G(r)d3r. (2.20)

Hence, we obtain

[
52

r2
− V S(r2) + EC

]
ψ(r2) = 0. (2.21)

where the potential of the equation is

V S(r2) = − 2

r2
+
B

A
. (2.22)
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Rewrite the potential as

V S(r2) = − 2

r2
+
B

A
(2.23)

since it only depends on the length of r1 and not the position of the vector. The wave orbital

is

ψ(r2) =
1

r2

∞∑
l=0

(2l + 1)Rl(r2)Yl,m(θ2, φ2) (2.24)

The spherical harmonics function is

Yl,m = (−1)m

√
(2m+ 1)(l −m)

(l +m)!
P1,m(cosθ2)e

imφ2 . (2.25)

We will be observing the ground state of hydrogen. In this case, the angular momentum

(l) and azimuthal angle m will be neglected for this orbital. This will yield just the radial

portion of the wave function. Now, let

R(r2) =
ψ(r2)

r2
. (2.26)

Hence, equation (2.21) becomes

[
52
r2
− V S(r2) + EC

]
ψ(r2) = 0. (2.27)

This describes the position-hydrogen scattering equation.
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2.3.2 Scattering Wave Equation for Electron-Hydrogen Scattering System

To determine the scattering wave function with exchange terms, utilize equation (2.9)

and apply the following HFA

Ψ(r1, r2) =
∑
i=1

[φi(r1)ψi(r2)± φi(r2)ψi(r1)] . (2.28)

When the + sign is applied to the equation, the result will yield the triplet cases, and the

- sign yields the singlet cases. Then multiply by φ(r2), and integrate with respect to φ(r2).

The following equation arises. Hence, equation (2.9) becomes

∫
φ(r1)

[
−52

r1
−52

r2
− 2

r1
− 2

r2
+

2

r12
− E

]
[φi(r1)ψi(r2)± φi(r2)ψi(r1)] d3r1 = 0. (2.29)

Equation (2.29) can be written as

I1 ± I2 = 0. (2.30)

where

I1 =

∫
φ(r1)

{
−52

r1
−52

r2
− 2

r1
− 2

r2
+

2

r12
− EC − EB

}
φ(r1)ψ(r2)d

3r1

=

∫
φ(r1)

{
−52

r2
− 2

r2
+

2

r12
− EC

}
φ(r1)ψ(r2)d

3r1

+

∫
φ(r1)

{
−52

r1
− 2

r1
− EB

}
φ(r1)ψ(r2)d

3r1 (2.31)

and the weak asymptotic condition is applied. Then, we have

I1 =

{
−52

r2
C − 2

r2
C +D − ECC

}
ψ(r2) (2.32)
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and

C =
〈
φ(r1)

∣∣∣∣φ(r1)
〉
,

D =
〈
φ(r1)

∣∣∣∣ 2

r12
φ(r1)

〉
.

Now, we have

I2 =

∫
φ(r1)

{
−52

r1
−52

r2
− 2

r1
− 2

r2
+

2

r12
− EC − EB

}
φ(r2)ψ(r1)d

3r1

=

∫
φ(r1)

{
−52

r1
− 2

r1
− EB

}
φ(r2)ψ(r1)d

3r1

+

∫
φ(r1)

{
−52

r2
− 2

r2
− EB

}
φ(r2)ψ(r1)d

3r1

+

∫
φ(r1)

{
2

r12

}
φ(r2)ψ(r1)d

3r1

+

∫
φ(r1) {EB − EC}φ(r2)ψ(r1)d

3r1

=

{〈
φ(r1)

2

r12
ψ(r1)

〉
+ (EB − EC)

〈
φ(r1)|ψ(r1)

〉}
φ(r2) (2.33)

I2 = {(EB − EC)E + F}φ(r2) (2.34)

where

E =
〈
φ(r1)

∣∣∣∣ψ(r1)
〉
,

F =
〈
φ(r1)

∣∣∣∣ 2

r12
ψ(r1)

〉
.

Hence, we obtain the scattering wave function

−
[
52

r2
− VS(r2) + EC

]
ψ(r2) = ± 1

C
[(EB − EC)E + F ]φ(r2). (2.35)
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and the potential energy is

VS(r2) = − 2

r2
C +

D

C
. (2.36)

To determine the radial wave function Rl(r2), the Legendre polynomials are expressed

as Pl(cos θ2), and l is the angular momentum. Apply (2.24) to (2.35), and then multiply by

Pl(cos θ2) and integrated over the solid angle dΩ1 and let l = 0. The desired radial equation

is obtained

−
[
52
r2
− VS(r2) + EC

]
ψ(r2) = ± 1

C
[(EB − EC)E + F ]ψ(r2). (2.37)

For simplicity, let R0(r2) =
ψ(r2)

r2
.

2.4 Schrödinger Equation for the Bound State Hydrogen Atom

We will also analyze the energy of the bound state electron. The general form of the

radial equation is [
−52

r1
+
l(l + 1)

r21
+ V (r1)

]
φ(r1) = εφ(r1), (2.38)

where ε = EB, the bound state energy. Chapter 5 will discuss how to find a similar equation

for the bound state using the scattering state.

2.4.1 Summary of Governing Systems

In the section, we were able to arrive at the radial equations for the hydrogen atom,

positron-hydrogen collision, and electron-hydrogen collision. We will proceed in the research

with the following equations to determine the scattering and bound state approximate wave

function for hydrogen, [
52
r2
− V S(r2) + EC

]
ψ(r2) = 0, (2.39)
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−
[
52
r2
− VS(r2) + EC

]
ψ = ± 1

C
[(EB − EC)E + F ]φ(r2), (2.40)

and [
−52

r1
+
l(l + 1)

r21
+ V r1

]
φ(r1) = εφ(r1). (2.41)

These equations will be applied to numerical methods to determine approximate solutions of

the quantum states for hydrogen with the conditions stated in this chapter. Equation (2.39)

is the equation governing the scattering state for positron-hydrogen collisions. Equation

(2.40) is the equation governing the electron-hydrogen of collisions. Lastly, equation (2.41)

is the equation governing the bound state of collisions.
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Chapter 3

CALCULATION OF SCATTERING STATE USING NUMEROV
METHOD

3.1 Overview

Numerov’s method is used to solve second order differential equations without a first

order term [66, 44]. The Numerov Algorithm yields sixth order accuracy. In quantum me-

chanics, this method is commonly used to solve for the wave function of scattering states. In

this chapter, the general algorithm of Numerov’s method is derived to solve a one-dimensional

Schrödinger equation, and applied to positron-hydrogen and electron-hydrogen atomic colli-

sion to solve for the scattering state.

3.2 Derivation of the Numerov’s Method

The Numerov’s method is applied to second-order, linear, ordinary differential equations

of the form

y′′(x) + A(x)y(x) +B(x) = 0, y(a) = α, y(b) = β. (3.1)

The derivation of the Numerov algorithm is referenced from [66, 44]. Utilize the following

Taylor series expansions with y centered around x+ h and x− h:

y(x+ h) = y(x) + y
′
(x)h+ y

′′
(x)

h2

2!
+ y

′′′
(x)

h3

3!
+ y(4)(x)

h4

4!
+ ... (3.2)

and

y(x− h) = y(x)− y′
(x)h+ y

′′
(x)

h2

2!
− y′′′

(x)
h3

3!
+ y(4)(x)

h4

4!
+ ... (3.3)

28



The Taylor Expansions (3.2) and (3.3) are added together to get

y(x+ h)− 2y(x) + y(x− h) = y
′′
(x)

h2

2
+ y(4)(x)

h4

12
+O(h6). (3.4)

Solve for the second derivative

y
′′
(x) =

y(x+ h)− 2y(x) + y(x− h)

h2
− y(4)(x)

h2

12
+O(h6). (3.5)

Then multiply (3.1) by

(
1 +

h2

12

d2

dx2

)

h2

12
y(4)(x) + y′′(x) + A(x)y(x) +B(x) +

h2

12

d2

dx2
[A(x)y(x) +B(x)] = 0. (3.6)

Then replace the second derivative of (3.6) with (3.5).

h2

12
y(4)(x) +

y(x+ h)− 2y(x) + y(x− h)

h2
− y(4)(x) + A(x)y(x) +B(x)

+
h2

12

d2

dx2
[A(x)y(x) +B(x)] = 0 (3.7)

Using the second derivative approximation for
d2

dx2
[A(x)y(x) +B(x)], we obtain

d2

dx2
[A(x)y(x) +B(x)] 'A(x+ h)y(x+ h)− 2A(x)y(x) + A(x+ h)y(x− h)

h2

+
B(x+ h)− 2B(x) +B(x− h)

h2
.

(3.8)
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Apply this approximation to equation (3.7).

A(x+ h)y(x+ h)− 2A(x)y(x) + A(x+ h)y(x− h)

12
+
B(x+ h)− 2B(x) +B(x− h)

12
y(x+ h)− 2y(x) + y(x− h)

h2
+ A(x)y(x) +B(x) = 0.

(3.9)

Combine like terms

y(x+ h)

(
1

h2
+
A(x+ h)

12

)
+ y(x)

(
− 2

h2
+

10

12

)
+ y(x− h)

(
1

h2
+
A(x+ h)

12

)
+
B(x+ h) + 10B(x) +B(x− h)

12
= 0.

(3.10)

Finally, solve for y(x+ h), and the algorithm for a non-homogeneous ordinary differential is

as follows:

yn+1 =
(2− 10h2

12
An)yn − (1 + h2

12
An−1)yn−1 + h2

12

(
Bn+1 + 10

12
Bn(x) +Bn−1

)
1 + h2

12
An+1

. (3.11)

3.3 Application to Positron and Electron Hydrogen Collisions

Recall the Schrödinger equations for positron-hydrogen (2.39) and electron-hydrogen

(2.40) collisions in Chapter 2. Numerov’s algorithm can be easily applied to those problems

by letting A(x) = EC−VS. In the positron-hydrogen case, B(x) = 0. For electron hydrogen,

the exchange terms are present and B(x) = {(EB − EC)C +D}φ.

The known behavior of the scattering wave function is of the form sin(krm + δ). To

determine the accuracy of the computed approximation, the solution is plotted to insure it

has the sine wave behavior and the phase shift denoted by δ, is found for the corresponding
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incident energy, EC = k2. The δ is calculated by the Sum and Difference Identities.

ψ(rm) = sin(krm + δ) (3.12)

= A sin(krm) +Bcos(krm) (3.13)

where

A = cos(δ), (3.14)

B = sin(δ). (3.15)

Then take the derivative of ψ and form a linear system.

ψ′(rm) = kA cos(krm)− kB sin(krm) (3.16)

 ψ(rm)

ψ′(rm)

 =

 sin(krm) cos(krm)

k cos(krm) −k sin(krm)


 A

B

 . (3.17)

Solve for A and B.

A =
k sin(krm)ψ(rm) + cos(krm)ψ′(rm)

k
, (3.18)

B =
k cos(krm)ψ(rm)− sin(krm)ψ′(rm)

k
, (3.19)

δ = arctan(B/A). (3.20)

Finally, δ is determined by taking the arc tangent of
B

A
.

31



3.3.1 Application of Numerov’s Method and Numerical Results

Numerov’s method is utilized to determine the phase shift and profile of the scattering

function for (2.39) and (2.40). In most numerical algorithms, the reduction of the spatial

or time step results in reduced error of the approximation, which is desirable for numerical

calculations. Numerov method has a unique disadvantage in that reduction of the spatial

step, h, causes the influence of B(x) in the algorithm to become smaller, which can be

undesirable. Hence, caution must be taken in choosing appropriate value of h in computation.

Results are emphasized in bold that are the same as the analytic solutions from John [34].

3.3.1.1 Numerical Results without Exchange Terms

For the positron-hydrogen case, Numerov’s method was applied without exchange terms

to the scattering state at low energies. These results were achieved with spaital step of

h = 0.01. When comparing our results with other variational methods, we have obtained

acceptable results. For continuum energies 0.06 ≤ EC ≤ 0.4, the phase shifts computed in

this dissertation where the same those found in [34].
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Table 3.1: The phase shifts, δ, for the continuum function without exchange and their
corresponding energies. The numerical results from [34] are compared with the
approximate phase shifts found using Numerov.

k2 Variational Method δ Numerov Method δ
1.0 0.9055 0.9045
0.8 0.9356 0.9347
0.5 0.9909 0.9901
0.4 1.012 1.012
0.3 1.034 1.034
0.25 1.045 1.044
0.2 1.053 1.053
0.15 1.058 1.057
0.1 1.050 1.050
0.08 1.039 1.039
0.06 1.017 1.017
0.05 0.9991 0.9987
0.04 0.9726 0.9722
0.03 0.9317 0.9312
0.02 0.8626 0.8621
0.015 0.8070 0.8064
0.01 0.5727 0.5728

3.3.1.2 Numerical Results with Exchange Terms

When computing the electron-hydrogen case, there where some difficulties with conver-

gence for the singlet case for continuum energies 0.03 ≤ EC ≤ 1.0. Table 3.2 shows that

most energies diverged except the continuum energies 0.01 ≤ EC ≤ 0.02. In order to reach

convergence with a relative error of order 6, at at least 50 iterations were required.

The triplet case was convergent for all low energies (0.01 ≤ EC ≤ 1.0). The phase shifts

obtained were exactly the same as those found in [34]. We were able to achieve convergence

with 30 iterations or less. The results for the triplet case can be found in Table 3.3.
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Table 3.2: The phase shifts, δ, for the continuum function with exchange terms of the
singlet case and their corresponding energies. The numerical solutions from [34]
are used to compare with the approximate phase shifts found using Numerov.

k2 Variational Method δ Numerov Method δ
0.02 2.153 2.149
0.015 2.259 2.239
0.01 2.396 2.397

Table 3.3: The phase shifts, δ, for the continuum function with exchange terms of the
triplet case and their corresponding energies. The numerical solutions from [34]
are used to compare with the approximate phase shifts found using Numerov.

k2 Variational Method δ Numerov Method δ
1.0 1.391 1.391
0.8 1.501 1.501
0.5 1.739 1.739
0.4 1.849 1.849
0.3 1.987 1.987
0.25 2.070 2.070
0.2 2.167 2.167
0.15 2.282 2.282
0.1 2.427 2.427
0.08 2.498 2.498
0.06 2.580 2.580
0.05 2.627 2.627
0.04 2.679 2.679
0.03 2.739 2.740
0.02 2.812 2.812
0.015 2.856 2.857
0.01 2.908 2.929
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Chapter 4

GREEN’S FUNCTION METHODS TO CALCULATE THE
SCATTERING WAVE FUNCTION OF

ELECTRON-HYDROGEN

4.1 Overview

In this chapter, an innovative numerical method is explored using the Green’s function

of the Schrödinger equation governing electron-hydrogen scattering. The development of

the method by Zerrad [69] to use the singular value decomposition (SVD) to address the

non-local kernel is discussed as well as the improvements made to achieve more accurate

results for the hydrogen atom.

4.2 Green’s Function Method

The method described here consists of taking the non-local kernel into account pertur-

batively; however, as shown the method fails when the successive iterations diverge when

simple algorithms are applied. The procedure consists in writing equation (2.40) in the form

[
d2

dr22
− V (r2) + EC

]
Ro(r2) = ±

∫ ∞
0

F(r1, r2)Ro(r1)dr1, (4.1)

and then transforming it into the iterative integral equation

R
(n+1)
0 (r2) = f(r2) +

∫ ∞
0

GV (r2, ξ)

(
±
∫ ∞
0

F(ξ, r1)R
(n)
0 (r1)dr1

)
dξ. (4.2)

In the above, f(r2) is the homogeneous solution of

[
d2

dr22
− V (r2) + EC

]
f(r2) = 0, (4.3)
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and GV (r2, ξ) is the Green’s function which corresponds to the left-hand-side of equation

(4.1). It is distorted by the local V , and can be expressed in terms of semi-separable expres-

sions involving two independent solutions f(x2) and g(x2) of equation (4.3),

GV (r2, ξ) =
1

W (r2, ξ)
f(r2)g(ξ) r2 ≤ ξ, (4.4)

GV (r2, ξ) =
1

W (r2, ξ)
f(ξ)g(r2) r2 > ξ. (4.5)

The Wronskian W (r2, ξ) is

W (r2, ξ) =
1

f(r2)g′(ξ)− g(r2)f ′(ξ)
(4.6)

The iteration is started by using the solution in the absence of the exchange terms for the

first (n = 0) guess: R
(0)
o = f(r2).

The rate of convergence of the iterations depends on the norm of

FV (r2, z) =

∫ ∞
0

GV (r2, ξ)F(ξ, z) dξ. (4.7)

This norm in turn depends on the norm of F , and the norm of GV . The latter becomes

large at small incident energies k2, in view of the overt presence of the factor 1/k in equation

(4.5). The convergence also depends on the ± sign in front of the exchange integrals. This

can be seen by writing the iterative series as

R
(n+1)
0 = [1 + (±FV ) + (±FV )2 + (±FV )3 + . . . (±FV )n], (4.8)

which for large values of n is symbolically of the form [1 ± FV ]−1, and hence may converge
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or diverge in the vicinity of the point “one” according to whether the effective sign of the

operator ±FV is positive or negative.

4.2.1 Numerical iteration of the Schrödinger Equation using the SVD Method

to Separate the Non-local Kernel

In what follows in this section, we describe a method which reduces the norm of the non-

local kernel F by decomposing it into a number of fully separable kernels plus a remainder.

The separable terms are placed on the left hand side of equation (4.1), the Green’s function

in the presence of both the local distorting potential V and the separable non-local pieces

of the kernel is obtained, and hence iterations of the form of equation (4.2) can be carried

out, where F is not the residual kernel. This way, the divergence can be shifted to smaller

values k, but it cannot be avoided.

The SVD is utilized to decompose the kernel F(r1, r2) into a number of fully separable

terms plus a remainder. A brief description of the method follows.

A numerical integration algorithm is chosen which divides the range of integration

[0,Rmax] into a set of N discrete points. Correspondingly, the kernel F(r1, r2) is trans-

formed into a N × N matrix K(i, j), with i = 1, 2, . . . N , and likewise for j. We perform

a singular value decomposition on K. The SVD method is based on the following theorem

of linear algebra [31]: Any M × N matrix K whose number of rows M is greater than or

equal to its number of columns N , can be written as the product of an M × N matrix, U ,

an N ×N diagonal matrix, σ, with non-negative elements, and the transpose of an N ×N

matrix, V . The column vectors of U are the orthonormal eigenvectors of the matrix KK>

and the column vectors of V are the orthonormal eigenvectors of the matrix K>K. σ con-

tains the square roots of the singular values (eigenvalues of KK> ordered from greatest to
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smallest along the diagonal. Thus,

M∑
i=1

uisuir = δsr 1 ≤ s, r ≤ N, (4.9)

M∑
i=1

vsivri = δsr 1 ≤ s, r ≤ N. (4.10)

Hence, we can write the matrix K as

K = UσV > (4.11)

with matrix elements

K(i, j) =
N∑
s=1

uisσsv
>
sj (4.12)

As a result, a fully separable piece of rank n can be separated out of the matrix K,

leaving a residual matrix, Kr,

K(i, j) = Ks(i, j) +Kr(i, j). (4.13)

Computing the sum in equation (4.12) to an upper limit n which includes only the n largest

values σs, we obtain

Ks(i, j) =
n∑
s=1

uisσsv
>
sj. (4.14)

and the remainder

Kr(i, j) = K(i, j)−Ks(i, j) =
N∑

s=n+1

uisσsv
>
sj. (4.15)

We utilize the SVD of K in equation (4.1) where F(r1, r2) is computed as K. Hence for
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K = Ks +Kr we obtain,

ψ′′ + (Ec − V )ψ =

∫
(Ks +Kr)ψ, (4.16)

ψ′′ + (Ec − V )ψ −
∫
Ksψ =

∫
Krψ. (4.17)

The homogeneous solution of equation (4.17) is the solution of

ψ′′ + (Ec − V )ψ =

∫
Ksψ (4.18)

which is denoted by ψh where

ψh = f +

∫
GV

∫
Ksψh. (4.19)

Hence, we get

ψ = ψh +

∫
GV+Ks

∫
Krψ (4.20)

ψ = f +

∫
GV

∫
Ksψ +

∫
GV+Ks

∫
Krψ (4.21)

(4.22)

where

ψ =

∫
GV+Ks

∫
Krψ (4.23)

is the non-homogeneous solution to equation (4.17).

Now assume

ψ = f +

∫
GV

∫
Ksψ +GV

∫
Krψ (4.24)
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Dropping the integral signs, we get

ψ = f +GVKsψ +GVKrψ, (4.25)

ψ = f +GV uσ
[
v>ψ

]
+GVKrψ. (4.26)

Multiplying equation (4.26) by
√
σv> and integrating, we obtain

√
σv>ψ =

√
σv>f +

√
σv>GV uσ

[
v>ψ

]
+
√
σv>GVKrψ (4.27)

√
σv>ψ =

√
σv>f +

√
σv>GV uσv

>ψ +
√
σv>GVKrψ (4.28)

√
σv>ψ −

√
σv>GV uσv

>ψ =
√
σv>f +

√
σv>GVKrψ (4.29)

(
I −
√
σv>GV u

√
σ
)√

σv>ψ =
√
σv>f +

√
σv>GVKrψ (4.30)

M
√
σv>ψ =

√
σv>f +

√
σv>GVKrψ (4.31)

where

M = I −
√
σv>GV u

√
σ. (4.32)

This leads to

v>ψ =
√
σ
−1
M−1 (√σv>f +

√
σv>GVKrψ

)
(4.33)[

v>ψ
]

=
√
σ
−1
M−1√σv> (f +GVKrψ) (4.34)

40



Now, substitute the expression for
[
v>ψ

]
from equation (4.34) into equation (4.26) to obtain

ψ = f +GV u
√
σM−1√σv> (f +Krψ) +GVKrψ (4.35)

ψ =
(
I +GV u

√
σM−1√σv>

)
(f +GVKrψ) (4.36)

Hence, the non-homogeneous solution of equation (4.17) can be written as

ψ =

∫
GV+Ks

(
f +

∫
GV

∫
Krψ

)
(4.37)

where

GV+Ks = I +GV u
√
σM−1√σv>. (4.38)

In order to obtain the Green’s function, GV+KS(x, ξ), which is distorted by both the

local potential V and the fully separable kernel KS, we rewrite equation (4.2) symbolically

in the form

ψ′′ + (EC − V )ψ =

∫
(Ks +Kr)ψ (4.39)

Lψ =

∫
(Ks +Kr)ψ (4.40)

Lψ = 0 (4.41)

Lψ =

∫
Ksψ (4.42)

ψ′′ + (k2 − V )ψ −
∫
Ksψ =

∫
Krψ (4.43)

L̄ψ =

∫
Krψ. (4.44)
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4.3 Numerical Results

As expected, using the Green’s Function Method without separating the non-local kernel

was divergent for most low energies. Tables 4.1 and 4.2 show the continuum energies that

were convergent for the singlet and triplet cases.

Tables 4.3 and 4.4 contains phase shifts that utilize the SVD method to separate the

kernel for all low energies for the continuum state. The convergence was achieved in less

than 5 iterations with sixth order accuracy. Comparing our results to those found in [34], for

the triplet case, we were able to get the exact values. The range 0.04 ≤ EC ≤ 1 produced

the exact same phase shifts. For the singlet case, the phase shifts found are acceptable. The

phase shifts are accurate to 3 decimal places.

Tables 4.5 and 4.6 compare all numerical methods used to solve the electron-hydrogen

scattering phase shifts. It is clear that the SVD method performs better than Numerov and

the Green’s function for the triplet and singlet cases.

Table 4.1: The phase shifts, δ, for the continuum function with exchange terms for the
singlet case and their corresponding energies. The numerical solutions from [34]
are used to compare with the approximate phase shifts found using the Green’s
function.

EC Variational Method Green’s Function Method
1.0 0.5429 0.5428
0.8 0.5888 0.5887
0.2 1.135 1.135
0.15 1.270 1.270
0.1 1.460 1.459
0.08 1.563 1.560
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Table 4.2: The phase shifts, δ, for the continuum function with exchange terms for the
triplet case and their corresponding energies. The numerical solutions from [34]
are used to compare with the approximate phase shifts found using the Green’s
function.

EC Variational Method Green’s Function Method
1.0 1.391 1.390
0.8 1.501 1.500
0.25 2.070 2.068
0.2 2.167 2.162
0.15 2.282 2.281
0.1 2.427 2.427
0.08 2.498 2.477

Table 4.3: The phase shifts, δ, for the continuum function with exchange terms for the
singlet case and their corresponding energies. The numerical solutions from [34]
are used to compare with the approximate phase shifts found using SVD.

EC Variational Method SVD Method
1.0 0.5429 0.5428
0.8 0.5888 0.5887
0.5 0.7370 0.7365
0.4 0.8248 0.8247
0.3 0.9488 0.9489
0.25 1.031 1.032
0.2 1.135 1.135
0.15 1.270 1.270
0.1 1.460 1.459
0.08 1.563 1.562
0.06 1.693 1.692
0.05 1.774 1.773
0.04 1.871 1.870
0.03 1.992 1.990
0.02 2.153 2.152
0.015 2.259 2.238
0.01 2.396 2.396
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Table 4.4: The phase shifts, δ, for the continuum function with exchange terms for the
triplet case and their corresponding energies. The numerical solutions from [34]
are used to compare with the approximate phase shifts found using SVD.

EC Variational Method SVD Method
1.0 1.391 1.391
0.8 1.501 1.501
0.5 1.739 1.739
0.4 1.849 1.849
0.3 1.987 1.987
0.25 2.070 2.070
0.2 2.167 2.167
0.15 2.282 2.282
0.1 2.427 2.427
0.08 2.498 2.498
0.06 2.580 2.580
0.05 2.627 2.627
0.04 2.679 2.679
0.03 2.739 2.740
0.02 2.812 2.812
0.015 2.856 2.861
0.01 2.908 2.929
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Table 4.5: The phase shifts, δ, for the continuum function with exchange terms for the
singlet case and their corresponding energies. The analytic solutions from [34]
are used to compare with the approximate phase shifts found using all numerical
techniques in Chapter 3 and this chapter. Note: - - Indicates that convergence
was not achieved at this energy.

EC Variational Method Numerov Method Green’s Function Method SVD Method
1.0 0.5429 - - 0.5428 0.5428
0.8 0.5888 - - 0.5888 0.5887
0.5 0.7370 - - - - 0.7365
0.4 0.8248 - - - - 0.8247
0.3 0.9488 - - - - 0.9489
0.25 1.031 - - - - 1.032
0.2 1.135 - - 1.135 1.135
0.15 1.270 - - 1.270 1.270
0.1 1.460 - - 1.459 1.459
0.08 1.563 - - 1.560 1.562
0.06 1.693 - - - - 1.692
0.05 1.774 - - - - 1.773
0.04 1.871 - - - - 1.870
0.03 1.992 - - - - 1.990
0.02 2.153 2.149 - - 2.152
0.015 2.259 2.259 - - 2.259
0.01 2.396 2.397 - - 2.396
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Table 4.6: The phase shifts, δ, for the continuum function with exchange terms for the
triplet case and their corresponding energies. The analytic solutions from [34]
are used to compare with the approximate phase shifts found using all numerical
techniques in Chapter 3 and this chapter. Note: - - Indicates that convergence
was not achieved at this energy.

EC Variational Method Numerov Method Green’s Function Method SVD Method
1.0 1.391 1.391 1.390 1.391
0.8 1.501 1.501 1.500 1.501
0.5 1.739 1.739 - - 1.739
0.4 1.849 1.849 - - 1.849
0.3 1.987 1.987 - - 1.987
0.25 2.070 2.070 2.068 2.070
0.2 2.167 2.167 2.162 2.167
0.15 2.282 2.282 2.281 2.282
0.1 2.427 2.427 2.427 2.427
0.08 2.498 2.498 2.477 2.498
0.06 2.580 2.580 - - 2.580
0.05 2.627 2.627 - - 2.627
0.04 2.679 2.679 - - 2.679
0.03 2.739 2.740 - - 2.740
0.02 2.812 2.812 - - 2.812
0.015 2.856 2.857 - - 2.861
0.01 2.908 2.929 - - 2.929
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Chapter 5

ENERGY MATCHING METHOD TO SOLVE THE BOUND
STATE WAVE FUNCTION

5.1 Overview

In this chapter, an energy matching method will be implemented to determine energy

eigenvalues and their eigenfuntions. This method will be used to solve bound state electrons.

The radial Schrödinger equation for a static hydrogen atom will be used to illustrate this

numerical method.

5.1.1 Derivation of Energy Matching Method for the Hydrogen Atom

We reference the stationary radial hydrogen atom equation that was mentioned in Chap-

ter 2. [
d2

dr2
− l(l + 1)

r2
− V (r) + ε

]
φ(r) = 0. (5.1)

The boundary conditions are

φ(0) = 0, (5.2)

φ → 0 as r →∞. (5.3)

The normality condition is ∫ ∞
0

φ∗(r′)φ(r′)dr′ = 1. (5.4)

Since the equation is homogeneous, the solution can be determined by solving (5.1)

with the boundary conditions and then normalizing the solution. Equation (5.1) contains a

parameter ε that must be found to satisfy the boundary conditions. This parameter can be
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found by integrating out with the left boundary condition and integrating in with the right

boundary condition. We adjust the energy, ε, until the solutions meet at some intermediate

radius. The solutions to the outward and inward integration are arbitrary to the extent of

a multiplicative constant. The solution of the outward integration will be labeled φout, and

the solution of the inward integration is labeled φin. The outward and inward solutions are

matched at a radius r0 and the matching condition is

d
dr

[φout(r0)]

φout(r0)
=

d
dr

[φin(r0)]

φin(r0)
. (5.5)

The multiplicative constants of the inward and outward solutions are chosen so that the

coordinates φ(r0)out and φ(r0)in of the graphs of the solution at r = r0 are equal and the

slopes of the curves of these solutions at r0 equal also.

The integration of the first trial value of ε will probably not match at r = r0. An

estimate of ∆ε that produces a match can be obtained from the degree of mismatch, as

measured by the difference between the values of
d
dr

[φout(r0)]

φout(r0)
and

d
dr

[φin(r0)]

φin(r0)
. Let φ + ∆φ

be the solution of equation (5.1) and let ε be replaced by ε+ ∆ε. Hence,

[
d2

dr2
− V (r) + (ε+ ∆ε)

]
(φ+ ∆φ) = 0. (5.6)

Then [
d2

dr2
− V (r) + (ε+ ∆ε)

]
∆φ = −φ∆ε. (5.7)

We restrict the equation to contain only first-order terms. The second-order terms are
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neglected. Now the equation can be written as

[
d2

dr2
− V (r) + ε

]
∆φ = −φ∆ε. (5.8)

Multiply (5.6) by φ and (5.7) by −∆φ and add them together. This gives

φ(r)
d2

dr2
∆φ(r)−∆φ(r)

d2

dr2
φ(r) = −φ(r)2∆ε. (5.9)

The left hand side is
d

dr
[φ(r)∆φ′(r) − φ′(r)∆φ(r)] since ∆φ is the difference between the

values of the two solutions at the same value of r. Thus, integration of equation (5.9) gives

φ(r)∆φ′(r)− φ′(r)∆φ(r)|ba = −∆ε

∫ b

a

φ(r)2dr′. (5.10)

For the outward integration, φ = ∆φ = 0 at r = 0 taken at r = r0

(φ(r0)∆φ(r0)
′ − φ′(r0)∆φ(r0))out = −∆ε

∫ r0

0

φ(r0)
2dr′. (5.11)

Next, for the inward integration φ = ∆φ = 0 at r =∞ taken at r = r0

−(φ(r0)∆φ
′(r0)− φ′(r0)∆φ(r0))in = −∆ε

∫ ∞
r0

φ(r0)
2dr′. (5.12)

Let ∆

(
φ(r0)

′

φ(r0)

)
=
φ∆φ′ − φ′∆φ

φ2
so that

∆

(
φ(r0)

′

φ(r0)

)
out

= −∆ε

∫ r0
0
φ(r0)

2
outdr

′

φ(r0)2out
, (5.13)
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∆

(
φ(r0)

′

φ(r0)

)
in

= ∆ε

∫∞
r0
φ(r0)

2
indr

′

φ(r0)2in
. (5.14)

If the inward integration and outward integration have been carried out for some trial value

ε and give values for
(
φ′

φ

)
out

and
(
φ′

φ

)
in

that do not match, we change ∆ε of ε such that

(
φ′

φ

)
out

+ ∆

(
φ′

φ

)
out

=

(
φ′

φ

)
in

+ ∆

(
φ′

φ

)
in

. (5.15)

Utilizing (5.13) and (5.14), the required change of ε is

−

[∫∞
r0
φ(r0)

2
indr

′

φ(r0)2in
+

∫ r0
0
φ(r0)

2
outdr

′

φ(r0)2out

]
∆ε =

[(
φ(r0)

′

φ(r0)

)
out

−
(
φ(r0)

′

φ(r0)

)
in

]
. (5.16)

Then we have

∆ε =

[(
φ(r0)′

φ(r0)

)
in
−
(
φ(r0)′

φ(r0)

)
out

]
[∫∞

r0
φ(r0)2indr

′

φ(r0)2in
+

∫ r0
0 φ(r0)2outdr

′

φ(r0)2out

] . (5.17)

5.2 Numerical Results

The energy matching method was utilized to solve energy eigenvalues for the bound

state hydrogen for n = 4 quantum states. The ground state (1s) orbital energy and the

excited states (2s, 3s, 4s) where computed with accuracy of order 3. The exact eigenvalues

for the hydrogen atom are of the form 1/n2 where n is the principal quantum number that

describes the size of the orbital. Figures 5.1, 5.2, 5.3 and 5.4, show the eigenfunctions and

their corresponding eigenvalues found using the energy matching method.

Table 5.1 shows how choosing the match (r0) has significant effect on the eigenvalue

energies and eigenfunctions. As the match was increased, the solutions were inaccurate

for guesses (EB0) that were in the 3s and 4s energy range. When applying this numerical
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method, the solution was very sensitive when changing the spatial step. Changing the

spatial step required a change in the match, as well. This phenomenon was discovered when

attempting convergence for higher orbitals.
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Figure 5.1: Eigenfunction for the 1s orbital and its corresponding energy eigenvalue with
ε = −0.9984.
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Figure 5.2: Eigenfunction for the 1s orbital and its corresponding energy eigenvalue with
ε = −0.2498.
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Figure 5.3: Eigenfunction for the 1s orbital and its corresponding energy eigenvalue with
ε = −0.1111.
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Figure 5.4: Eigenfunction for the 1s orbital and its corresponding energy eigenvalue with
ε = −0.0625.
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Table 5.1: Viable match points along with their initial guess energies and energy eigen-
functions produced.

Match
EB0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
-0.9 1s 1s 1s 1s 1s 1s 1s 1s 1s
-0.6 1s 1s 1s 1s 1s 1s 1s 1s 1s
-0.4 1s 1s 1s 1s 1s 1s 1s 1s 1s
-0.37 1s 1s 1s 1s 1s 1s 1s 1s 1s
-0.36 2s 1s 1s 1s 1s 1s 1s 1s 1s
-0.35 2s 1s 1s 1s 1s 1s 1s 1s 1s
-0.34 2s 2s 1s 1s 1s 1s 1s 1s 1s
-0.33 2s 2s 2s 1s 1s 1s 1s 1s 1s
-0.32 2s 2s 2s 1s 1s 1s 1s 1s 1s
-0.31 2s 2s 2s 2s 1s 1s 1s 1s 1s
-0.3 2s 2s 2s 2s 2s 1s 1s 1s 1s
-0.29 2s 2s 2s 2s 2s 2s 1s 1s 1s
-0.28 2s 2s 2s 2s 2s 2s 2s 1s 1s
-0.27 2s 2s 2s 2s 2s 2s 2s 2s 1s
-0.26 2s 2s 2s 2s 2s 2s 2s 2s 2s
-0.23 2s 2s 2s 2s 2s 2s 2s 2s 2s
-0.2 2s 2s 2s 2s 2s 2s 2s 2s 2s
-0.18 2s 2s 2s 2s 2s 2s 2s 2s 2s
-0.14 2s 2s 2s 2s 2s 2s 2s 2s 2s
-0.13 3s 3s 3s 2s 2s 2s 2s 2s 2s
-0.12 3s 3s 3s 3s 3s 3s 2s 2s 2s
-0.11 3s 3s 3s 3s 3s 3s 3s 3s 3s
-0.1 3s 3s 3s 3s 3s 3s 3s 3s 3s
-0.09 3s 3s 3s 3s 3s 2s 2s 2s 1s
-0.07 4s 4s 4s 3s 3s 2s 3s 2s 3s
-0.069 4s 3s 3s 4s 3s 2s 3s 2s 2s
-0.066 4s 4s 4s 4s 3s 2s 3s 2s 2s
-0.064 4s 4s 4s 4s 4s 4s 4s 4s 1s
-0.063 4s 4s 4s 4s 4s 4s 4s 4s 4s
-0.0625 4s 4s 4s 4s 4s 4s 4s 4s 4s
-0.062 4s 4s 4s 4s 4s 4s 4s 4s 4s
-0.061 4s 4s 4s 4s 4s 4s 4s 4s 1s
-0.06 4s 4s 4s 4s 4s 4s 4s 1s 1s
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Chapter 6

CALCULATE THE SCATTERING AND BOUND STATE
SOLUTIONS USING AN AMPUTATED WAVE FUNCTION

6.1 Overview

Now we examine the HF technique used by Hahn and Zerrad [67] simultaneously applied

to the bound and scattering states whose solutions are inter-dependent. In Chapter 2, solving

for the scattering state wave equation by using a known bound function was discussed in

detail. This chapter will show how to apply a similar method to solve for the bound state

wave equation. Only the homogeneous equations will be solved, and this will allow the

numerical method from the Chapters 3 and 5 to be used to solve for the wave equations.

6.2 Creating the Amputated Function to Solve for the Bound State Wave Func-

tion for Positron-Hydrogen

In this section, we introduce a method to find the bound state equation in terms of the

scattering equation. Recall the following positron-hydrogen equation for Chapter 2,

[
−52

r1
−52

r2
− 2

r1
+

2

r2
− 2

r12
− EC − EB

]
Ψ(r1, r2) = 0. (6.1)

The Hartree Fock approximation in lowest order without exchange terms is

Ψ(r1, r2) = φ(r1)ψ(r2), (6.2)

and given a potential function for ψ is determined. Asymptotically, ψ behaves as

sin(kr2)

r2
+ tan δ0

cos(kr2)

r2
. (6.3)
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If an attempt is made to construct a set of equations, we would have

< Ψ|Ψ >=< ψ|ψ >→∞. (6.4)

In order to solve for the bound state wave function, the scattering wave function ψ must be

amputated due to its lack of integrability. The amputated function is constructed as follows:

Let

X(r2) = V (r2)ψ(r2). (6.5)

The scattering wave function ψ will be replaced by the amputated wave function X. Then

the Hartree Fock approximation is applied to (6.1). Multiply by X(r2) on the left and

integrating with respect to r2 yields

∫
X(r2)

{
−52

r1
−52

r2
− 2

r1
+

2

r2
− 2

r12
− EC − EB

}
φ(r1)ψ(r2)d

3r2 = 0. (6.6)

Rewrite the integral as

∫
X(r2)

{
−52

r1
− 2

r1
+

2

r12
− EB

}
φ(r1)ψ(r2)d

3r2

+

∫
X(r2)

{
−52

r2
− 2

r2
− EC

}
φ(r1)ψ(r2)d

3r2 = 0. (6.7)

Then we have

−52
r1

+VX(r1)− EB −

〈
X(r2)

∣∣∣∣EC +52
r2

∣∣∣∣ψ(r2)
〉
r2〈

X(r2)|ψ(r2)
〉
r2

+
〈
X(r2)

∣∣∣∣− 2

r2

∣∣∣∣ψ(r2)
〉
r2

φ(r1) = 0.

(6.8)
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where 〈
X|X

〉
r2

=

〈
X(r2)

∣∣∣EC +52
r2

∣∣∣ψ(r2)
〉
r2〈

X(r2)
∣∣∣ψ(r2)

〉
r2

≡ EXX (6.9)

and

VX → EX ≡
〈
X(r2)| −

2

r2
|ψ(r2)

〉
r2
. (6.10)

The potential is VX(r1)

VX(r1) = − 2

r1
+
B

A
(6.11)

where

A =
〈
X(r2)

∣∣∣ψ(r2)
〉

B =
〈
X(r2)

∣∣∣ 2

r12
ψ(r2)

〉
.

For simplicity, the integrals are now written as constants. The equation becomes

{
−52

r1
+VX(r1)− EB − EXX +

Ex
A

}
φ(r1) = 0. (6.12)

If we add and subtract EX , then write the equation as

{
52
r1
− VB(r1) + EDT

}
φ(r1) = 0, (6.13)

and define the strong potential VB to be

VB = VX −
EX
A

+ EX , (6.14)
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and pseudo-false binding energy, EDT as

EDT = EB + EXX − EX . (6.15)

These conditions are necessary to satisfy φ. Even though the energy is shifted, EB should

still be close to -1.

6.2.1 Iteration Process to Solve for Scattering Phase Shift and Bound Energy

1 Choose an arbitrary φ that is the ground state wave function (as an initial guess).

2 Use the initial ground state wave function to compute the static potential (V S) for the

scattering wave function.

3 Solve for the scattering wave function and corresponding phase shift based on the

potential computed and desired scattering energy.

4 Compute the amputated function based off the potential energy and the scattering

wave function.

5 Evaluate the bound potential, VB and approximate the puesdo false energy, EDT .

6 The binding energy EB is found by solving for (6.15).

7 The phase shift and binding energy are compared with the previous iteration. This

process is repeated until the change in EB and δ are below a certain threshold.

6.3 Numerical Results

Figures 6.1, 6.2, 6.3, and 6.4 show the amputated function computed for different quan-

tum states up to n = 4. These amputated functions where used to compute the bound state
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with the effects of the scattering state. Tables 6.1, 6.2, 6.3, and 6.4 show all possible scat-

tering states that yield accurate eigenvalue energies and eigenfunctions. Adding the effects

of the scattering state does effect the energy eigenvalue of the bound state. As continuum

energy increased (EC > 0.1), the accuracy of the eigenvalue energy diminished.
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Figure 6.1: Plot of the amputated function for the 1s for EC = 0.02.

Table 6.1: The phase shifts for a scattering wave functions without exchange and their
corresponding energies.

ε0 = −0.9
EC ε δ
0.1 -0.9807 -0.0997
0.08 -0.9807 -0.0898
0.06 -0.9807 -0.0782
0.05 -0.9807 -0.7166
0.04 -0.9807 -0.0643
0.03 -0.9807 -0.0559
0.02 -0.9807 -0.0458
0.01 -0.9807 -0.0325
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Figure 6.2: Plot of the amputated function for the 2s for EC = 0.02.

Table 6.2: The phase shifts for a scattering wave functions without exchange and their
corresponding energies.

ε0 = −0.2
EC ε δ
0.1 -0.2197 -0.7189
0.08 -0.2214 -0.6602
0.06 -0.2231 -0.5877
0.05 -0.2240 -0.5442
0.04 -0.2249 -0.4939
0.03 -0.2258 -0.4342
0.02 -0.2267 -0.3600
0.01 -0.2276 -0.2586
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Figure 6.3: Plot of the amputated function for the 3s for EC = 0.02.

Table 6.3: The phase shifts for a scattering wave functions without exchange and their
corresponding energies.

ε0 = −0.09
EC ε δ
0.1 -0.0939 -1.753
0.08 -0.0956 -1.655
0.06 -0.0975 -1.520
0.05 -0.0984 -1.432
0.04 -0.0995 -1.323
0.03 -0.1005 -1.186
0.02 -0.1016 -1.004
0.01 -0.1027 -0.7377
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Figure 6.4: Plot of the amputated function for the 4s for EC = 0.02.

Table 6.4: The phase shifts for a scattering wave functions without exchange and their
corresponding energies.

ε0 = −0.06
EC ε δ
0.1 -0.0501 -2.849
0.08 -0.0513 -2.771
0.06 -0.0528 -2.637
0.05 -0.0537 -2.535
0.04 -0.0546 -2.396
0.03 -0.0564 -2.203
0.02 -0.0567 -1.918
0.01 -0.0579 -1.455
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Chapter 7

CONCLUSION

The HFA theory was reviewed to show how the self consistent field approach can be

applied to an atomic system with many electrons. This methodology was applied to hydro-

genic atomic systems (positron-hydrogen and electron-hydrogen) to solve for the scattering

and bound wave equations.

We employed three numerical techniques to solve for the scattering wave function. Nu-

merov was applied to discretize the equations along with the boundary conditions. This

method was successful for positron-hydrogen scattering and the triplet case for electron-

scattering. The rate of convergence for the triplet was less efficient as the energies decreased.

For the singlet case, this method failed to converge for any energy (EC). The Green’s function

method was only successful for certain energies for the singlet and triplet cases. Convergence

improved as the energy was lowered. Using the SVD Method yields convergence for all en-

ergy levels tested for the singlet and triplet case. The rate of convergence was improved

significantly. All energies tested converged in less than 5 iterations for the SVD method.

When applying the Green’s Function methods, two key adjustments were implemented:

(i) computing the Wronskian when constructing computing the Green’s function for both

methods and (ii) for the SVD, the Green’s function that only includes the affect of the

potential (GV ) which acts on the remainder matrix Kr. By making these changes, the rate

of convergence as well as the amount of low energies converging improved.

The energy matching method was applied to solve for the bound state energies and

wave functions with an acceptable level of accuracy. The rate of convergence is dependent

on the match selected and how far the initial guess is from the actual solution. The solution
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was not reliable when the spatial step was lowered to achieve a more accurate solution.

Convergence was achieved when the scattering and bound states were solved simultane-

ously for positron-hydrogen. Computing and applying the amputated function to solve for

the scattering wave function was successful in treating the nonintegrablity of the scattering

states for Ec ≤ 0.1.

In conclusion, we were able to employ several numerical methods successfully for scat-

tering and bound states. We were able to improve the SVD method for electron-hydrogen

scattering to solve singlet and triplet cases for a wide range of lower energies via a self-

consistent field.
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Chapter 8

FUTURE WORK

8.1 Overview

In the future, we plan to use the a HF technique used by Hahn and Zerrad [67] simul-

taneously applied to the bound and scattering states whose solutions are inter-dependent

for electron-hydrogen. In Chapter 2, solving for scattering state wave equation by using a

known bound function was discussed in detail. In this chapter, a similar methodology that

was applied in chapter 6 is developed used to solve electron hydrogen bound state wave

equation. The numerical methods from the Chapters 4 and 5 are to be used to solve for the

wave equations.

8.2 Creating the Amputated Function to Solve for the Bound State Wave Func-

tion for Electron-Hydrogen

In order to create a amputated function to solve for the bound state, we must find the

scattering state for electron-hydrogen. These equations were derived in Chapter 2. The

scattering ordinary differential equation with exchange terms is

[
52
r2
− VS(r2) + EC

]
ψ(r2) = ± 1

A
[(EB − EC)C +D]φ(r2) (8.1)

and the potential is

VS(r1) = − 2

r1
+
B

A
. (8.2)
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For simplicity, label the right hand side of the scattering equation, Kψ. The amputated

function for electron-hydrogen is

X(r2) =
[
V S(r2)±Kψ

]
ψ(r2). (8.3)

Now, that a solution for the scattering wave function ψ is found, the scattering solution

is amputated. This is executed by multiplying the scattering function by the potential

found in (8.2). The amputated wave function for the scattering will be labeled as X. The

amputated wave function replaces the scattering wave function ψ in the HFA. The HFA is

applied to the total wave function by multiplying by the amputated wave function X(r1).

Integrating with respect to r1, will yield

∫
X(r1)

[
−52

r1
−52

r2
− 2

r1
− 2

r2
+

2

r12
− EC − EB

]
[ψi(r1)φi(r2)

±ψi(r2)φi(r1)] d3r2 = 0 (8.4)

or

I3 ± I4 = 0 (8.5)

Here, the integral is split, and I3 is evaluated. Rewrite the integral as

I3 =

∫
X(r1)

{
−52

r2
− 2

r2
+

2

r>
− EB

}
ψ(r1)φ(r2)d

3r1

+

∫
X(r1)

{
−52

r1
− 2

r1
− EC

}
ψ(r1)φ(r2)d

3r1. (8.6)

Then we have

69



I3 =

−52
r2

+VX(r2)− EB −

〈
X(r1)

∣∣∣∣EC +52
r1

∣∣∣∣ψ(r1)
〉
r1〈

X(r1)|ψ(r1)
〉
r1

+
〈
X(r1)

∣∣∣∣− 2

r1

∣∣∣∣ψ(r1)
〉
r1

φ(r2).

(8.7)

where 〈
X|X

〉
r1

=

〈
X(r1)

∣∣∣EC +52
r1

∣∣∣ψ(r1)
〉
r1〈

X(r1)
∣∣∣ψ(r1)

〉
r1

≡ EXX (8.8)

and

VX → EX ≡
〈
X(r1)| −

2

r1
|ψ(r1)

〉
r1
. (8.9)

The potential VX(r2) is

VX(r2) = − 2

r2
+
E

F
(8.10)

and

E =
〈
X(r1)

∣∣∣ψ(r1)
〉

F =
〈
X(r1)

∣∣∣ 2

r12
ψ(r1)

〉
.

The strong potential to solve the for φ is

VB = VX −
EX
E

+ EX , (8.11)

and the puesdo energy is

EDT = EB + EXX − EX . (8.12)
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Hence,

I3 =
[
52

r2
− VB(r2) + EDT

]
φ(r2). (8.13)

Now, I4 is split into a separate integral. It is assumed that

∫
X(r1)

{
−52

r1
− 2

r1
− EB

}
ψ(r2)φ(r1)d

3r1 = 0.

Then, we obtain

I4 =

∫
X(r1)

{
−52

r1
−52

r2
− 2

r1
− 2

r2
+

2

r12
− EC − EB

}
ψ(r2)φ(r1)d

3r1

=

∫
X(r1)

{
−52

r1
− 2

r1
− EB

}
ψ(r2)φ(r1)d

3r1

+

∫
X(r1)

{
−52

r2
− 2

r2
− EC

}
ψ(r2)φ(r1)d

3r1

+

∫
X(r1)

{
2

r12

}
ψ(r2)φ(r1)d

3r2

=

{〈
X(r1)

∣∣∣ 2

r12
φ(r1)

〉
+
(
−52

r2
ψ − 2

r2
− EC

)〈
x(r1)|φ(r1)

〉}
ψ(r2) (8.14)

I4 =

{
H +

(
−52

r2
ψ − 2

r2
− EC

)
G

}
ψ(r2) (8.15)

where

G =
〈
X(r1)

∣∣∣φ(r1)
〉

H =
〈
X(r1)

∣∣∣ 2

r12
φ(r1)

〉
.

Hence, we obtain

[
52
r2
− VB(r2) + EDT

]
φ(r2) = ± 1

E

{
H +

(
−52

r2
ψ − 2

r2
− EC

)
G

}
ψ(r2). (8.16)
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The iteration process is the same as in section 6.2.1.

Solutions to this problem have been attempted. We believe that due to the sensitivity

of the energy matching method, it causes the bound state wave function to be divergent.

We will continue to investigate this method.
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