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ABSTRACT

Image segmentation is to extract objects that are interesting to users that is the most

fundamental and important part in image processing. After decades of development and

change, image segmentation methods based on various theories have been put forward. The

active contour model based on the variational method and the level set method has become

an important method of image segmentation. It demonstrates the superiority of partial

di�erential equation image processing method. It mainly uses the idea of dynamic evolution,

and has important signi�cance in the study of image segmentation technique. For the study

of the image segmentation based on partial di�erential equation, the numerical calculation

good stability in the processing of discretizing the partial di�erential equations, and achieves

high quality image restoration and accurate segmentation of images. In recent years, the

active contour model has become a popular research method, and is widely used in edge

detection, medical image segmentation and object tracking.

This paper introduces the background, research status, the current development the

purpose and the signi�cance of image segmentation based on partial di�erential equations,

the classical active contour model and the related mathematical theory. By studying the

problems that exist in the image segmentation on the active contour model we established a

new model of medical image segmentation based on information entropy. At the same time,

we also studied the method of image segmentation based on clustering analysis (SFCM)

and analyzed its own advantages and disadvantages. Furthermore, we established a fuzzy

c-means clustering image segmentation model based on gray space. The main work and

achievements of this dissertation are as follows:

1. We studied various methods and models of image theory of partial di�erential equa-

tions based on the segmentation, analyzed the theoretical basis and the mathematical

principle of these methods, and compared their respective advantages and disadvan-

tages. On this basis, we established two new models, and the numerical results show

that the new models have prominent advantages.
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2. When there is weak edge, strong noise, or uneven brightness in the image, the tra-

ditional active contour model can not achieve the correct segmentation of the target

boundaries, especially for medical magnetic resonance images and ultrasonic images.

To solve this kind of problems, we propose an active contour model CER based on

CV model and RSF model combined with information entropy. By minimizing the en-

ergy functional and taking into account the internal and external energy of the target

boundaries, the segmentation of the target boundary in the uneven intensity image is

realized. The experimental results show that the algorithm can extract the object with

weak edge and uneven brightness. At the same time, the RSF modelâ��s robustness

to noise is enhanced, and its sensitivity to initial contours is also improved.

3. Image segmentation method based on clustering analysis is one of the popular segmen-

tation methods in recent years. The main feature of the traditional FCM clustering

algorithm is that it is an unsupervised segmentation method with fast computation

speed. However, it is sensitive to outliers. Therefore, we study an improved SFCM

algorithm, whose biggest advantage is that it combines the spatial information of the

image and reduces the sensitivity of the traditional FCM algorithm to noise. Based on

this advantage, we propose to preprocess the image by SFCM, and to take the edge

information of the image after clustering as the initial contour of the CER model. This

method not only improves the CER model's robustness to noise, but also solves the

initial contour selection problem. In addition, the rationality of the initial contour se-

lection is improved and the computational e�ciency is improved to a certain extent. A

large number of experimental data show that this method can not only accurately seg-

ments the strong noise images, but also improves the initial contour selection problem

and reduces the computation time, thus enhances the robustness of the CER model.

Keywords: image segmentation; medical image processing; partial di�erential equations;

level set method; information entropy; spatial fuzzy c-means
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Chapter 1

INTRODUCTION

1.1 Image and image processing

Image is a reproduction or imitation of the form of picture or graph. It is the human visual

perception of the material reproduction. The de�nition of image is very extensive. Image can be

obtained by optical device, such as camera, mirror, telescope and microscope. And image can also be

created by using computer and other equipment. Image can be recorded and be kept on paper and

�lm, and materils which is sensitive to optical signal. With the rapid development of the computer

industry, more and more images are stored as digital form in the computer. Therefore, in some

condition "image" refers to digital image. There are many kinds of images. According to the color

type, image can be divided into grayscale images and color images. According to the movement

type, images can be classi�ed into dynamic images and static images. According to the type of

dimension, images can be classi�ed into two-dimensional images and three-dimensional images. In

this dissertation, we focus on still grayscale images especially medical images.

Digital image processing technology is originated in the 1920s. It includes Image acquirement,

image compression, image-compositing, image enhancement, Image Restoration, image segmenta-

tion and image recognition. Image segmentation is an important research content in image pro-

cessing. Image segmentation can be considered as subdividing the obtained images into meaningful

and non-coincident sub-regions. In image processing, often people interested in certain parts of

images. Usually these parts are divided into foreground or background. In fact, the foreground or

background is the image area with a speci�c property in the image. To achieve the recognition and

the analysis of the target, it is necessary to separate the target by image segmentation. Successful

segmentation is very helpful for the following higher level image application. Therefore, image seg-

mentation is a very important part in entire image processing [23, 76]. In general, the accuracy of

segmentation depends on whether the required areas are accurately segmented or not. For example,

in the automated inspection of electronic assemblies, interest lies in analyzing images of products

with the objective of determining the presence or absence of speci�c anomalies, such as missing
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components or broken connection paths.

Today, the theory of digital image processing has been further developed. Meanwhile, applica-

tions of digital image processing is also a powerful tool for many �elds, all aspects of economy and

human life.

Now we present some de�nitions of digital images and image segmentations [28]. Let Ω ⊂ R2

be a set. then the image I(x, y) can be treated as a mapping that de�ned at set Ω,

I : (x, y) ∈ Ω→ V .

Let range V be a set of all grey value in the image. It contains all the gray values from the

darkest (pure black) to the brightest (white). An image corresponds to a speci�c mapping rule I.

Depends on di�erent mapping, we will get di�erent images. In general, the mapping is continuous.

Since the computer can only accept and process discrete data, we usually need to discretize the

image in space and in grayscale. If Ω is discretized into M rows and N columns and greyscale

is discretized into 256 levels, then the entire image contains M × N pixels of equal size. The

coordinates are (xi, yi), 1 ≤ i ≤M, 1 ≤ j ≤ N . Meanwhile, each pixel corresponds to a unique gray

value I(xi, yi) ∈ [0, 1, 2, · · · , 255]. Now a discrete image can be de�ned as:

I : (xi, yi) ∈ Ω→ [0, 1, 2, · · · , 255].

The discrete image is called digital image. The various operations performed on digital images

are called digital image processing. Image segmentation is to divide image domain Ω into K disjoint

subsets Ω1,Ω2, · · · ,ΩK . Meanwhile, the divided subsets should meet the following �ve conditions:

1. Integrity: UKi=1Ωi = Ω;

2. Independence: ∀i 6= j,Ωi ∩ Ωj = ∅;

3. Homogeneity: P (Ωi) = TRUE, i = 1, 2, · · · ,K;

4. Heterogeneity: ∀i 6= j, P (Ωi ∪ Ωj) = FALSE;

5. Connectivity: Ωi(i = 1, 2, · · · ,K) is a connected region,

where P (·) is a function that measure pixels consistency. The value of P (·) is TRUE or FALSE.

The early image segmentation method is based on the lower level knowledge of the image, such
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as images grayscale (Similarity and Continuity), edge and so on. The most typically segmentation

methods includes thresholding approach [59], region growing method [1], and edge detection method

[10]. With the increasing of the types of images to be segmentation and the improvement of actual

needs, more and more high level knowledge has been used in image segmentation. A clustering-based

[6, 31, 51] segmentation method was developed. Clustering-based segmentation method is to use

certain similarity measure, and to divide the data into multiple subclasses with similar properties, so

that the similarity within the subclasses is greater than the similarity between classes. The method

is based on the graph theory [8, 63]. The image is mapped to the weighted undirected graph, a

pixel is treated as a node. The best image segmentation result is obtained by using the minimum

cut standard. And the method is also based on partial di�erential equations [11, 12, 15, 32, 39,

41]. Those segmentation methods are classical methods for solving complex image segmentation

problems. The modern image processing method mainly includes three categories [58]. The �rst

category is signal analysis methods. Signal analysis mainly includes spatial transformation based

image processing methods. It is applied to image denoising, edge detection and segmentation.

The second category is Stochastic modeling method. The imaging process of digital images is

randomness, so the two-dimensional image domain can be treated as a random �eld. Stochastic

modeling method based on the random �eld theory is to model the image domain and to describe

the conditional distribution of image pixels and their neighborhood pixels, and thus to describe

the statistical features of the image. Stochastic modeling method is a good method to describe

the periodic image texture characteristics. However, the model parameter establishment process

is complex and the stability is poor. The third method is the variational principle and partial

di�erential equation method. Image segmentation methods based on PDE is one of the most

popular image segmentation methods. It is also the main research object of this dissertation. The

method of partial di�erential equation is mainly mathematical methods used in image processing

in spatial domain. Using spatial domain pixel gray value of the �rst or the second order partial

di�erential equations of characterization in the image area boundary edge character. The partial

di�erential equations have anisotropic di�usion properties. They have di�erent di�usion ability
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in di�erent image feature areas. Therefore, it is possible to reconstruct the smooth characteristic

region and preserving the edge feature by equation iterations.

1.2 Research background, signi�cance and development of image segmentation

based on partial di�erential equation

Image segmentation is the most important part of image processing. Partial di�erential equa-

tion method for image segmentation is rapidly developed in recent years. The application of partial

di�erential equations in image processing is originated in the 1980s. The partial di�erential equation

method has been developed rapidly and generated a lot of research results. Due to the fact that

partial di�erential equation, as an important branch of mathematics, has formed a strong theoreti-

cal system and good numerical methods. The partial di�erential equation method is developed by

the improved Gaussian smoothing image, which can balance the elimination of noise and feature

retention.

Partial di�erential equations applied to image segmentation is based on the following theories.

The �rst one is the theory of multiresolution analysis. In 1983 Witkin [73] and in 1984 Koenderink

[35] introduced a rigorous theory of multiresolution analysis in image processing. The theory of

multiresolution analysis has become a basis of partial di�erential equations. The second one is

the Euler-Lagrange equation that is derived from the variational model. Through the analysis

of the problem and the establishment of the corresponding "energy" model, the image processing

problem is transformed into a di�erentiable functional optimization problem. The corresponding

Euler-Lagrange equation is obtained by calculating the extrema of the model by variational model.

Then the stable solution is the solution of the image processing problem. The third one is the curve

evolution theory and the Level-set method. With this method, the image is considered as a set of

horizontal curves or as the surface in high dimensional space the image processing is achieved and

by controlling the evolution of the horizontal lines or the surfaces.

Comparing with the traditional image segmentation method, the image segmentation method

based on partial di�erential equations has the following characteristics [19]:
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1. The partial di�erential equation model is a continuous model of direct analysis of images.

Usually, the image is �ltered by continuous derivatives, and the discrete �ltering is expressed

as a continuous di�erential operator. Using discrete grids, the image of the local processing

and analysis is easier to achieve;

2. The method based on partial di�erential equations has a good mathematical basis. Meanwhile,

it can provide good stability for image segmentation. In numerical calculations, a more

accurate result can be obtained by using the level set method. And it can also solve the

problem of the topology change caused by the merging and the separation of the target;

3. The partial di�erential equation method has stronger local adaptability. The partial di�er-

ential equation is built on a continuous image model, which makes the image of a pixel value

change in the current time only depending on the pixels of a neighborhood.

As a widely applied mathematics, partial di�erential equation has become a hot topic in its

related �elds. So far, it already has a lot of research results. The idea of applying partial di�erential

equations to image processing can be traced back to the research of 1965 Gabor [25] and 1977 Jain

[30]. However, the substantial leap is thanks to Koenderink [35]and Within [73]. Based on the

theory of multi-scale analysis, Koenderink and within proposed the idea that the convolution of

the Gaussian function of the signal and the di�erent scale is equivalent to the thermal di�usion

equation with the signal as the initial value in 1984 and 1985 respectively. In 1993, L. Alvarez et

al. [4] created a rational system through the process of deriving the AMSS (A�ne Morphological

Scale Space) equation, which marked the formal formation of the subject of image processing based

on partial di�erential equations.

In 1987, Kass et al. proposed the Snake model (Active Contour Models or Parametric model)

[32]. It is based on the perspective of dynamics to study the evolution of the curve. The energy

function of the contour curve of the region is established by the internal force of the image and the

external force constraint generated by the image information. The internal forces and the external

forces under the joint action of the continuous movement �nally converge the edge of the target. The

5



boundary of the interested region of the image is obtained, and the precision reaches the sub-pixel

level. This model has the following advantages: (1) No matter how the quality of the image is, we

can always get a smooth and closed target boundary. (2) It is computationally e�cient and suitable

for modeling. And it can also extract any shape of the deformation pro�le. It is suitable for dealing

with individual di�erences in signi�cant structural complex images. With the development of this

model, the active contour model is becoming one of the most successful image segmentation method.

Later, a lot of di�erent characteristics model has been derived, such as surface �ow, Deformable

Model, and deformation surface and so on.

In 1988, Osher and Romeny proposed the Level Set method [54, 57]. They improved the Active

contour model. The method was successfully applied to the �elds of Fluid dynamics, Computer

Graphics and so on. In 1993, Caselles et al. [11], and in 1995, Malladi et al. [50] introduced the

level set method into the active contour model. They use the Level Set to represent Snakes. The

curve was implicitly expressed as a level set of higher dimensions of the surface (level set function).

The method is di�erent from the contour model. Level set method does not track the movement

of the curve at di�erent times. It is just �xed in the coordinate system to update the level set

function at di�erent times to simulate the evolution of the curve. The method e�ectively solved the

problem of the change of topology mechanisms. It also further improved the theory of geometric

contour model [7, 47, 48, 66]. In 1997, Caselles et al. proposed the Geodesic Active Contour model

[12]. The pro�le curve of the Geodesic Active Contour model can only move in a single direction,

and the segmentation results are heavily dependent on the initial position. Once the contour curve

exceeds the image boundary, it will be di�cult to return to the correct position. Finally, the

segmentation fails. To solve the problem of Geodesic Active Contour model, Paragios combined

with Zhu's [78] regional competition idea and proposed the Geodesic Active Area method [55]. The

model has nothing to do with the initial position and is entirely dependent on the prior statistics

for the image area and the boundary. However, when the image is divided into multiple regions,

it is necessary to complete the coupling of the multiple deformation models, and the calculation

process is complicated. In 2004, Chan et al. analyzed that the uniqueness of the existence solution
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conditions of the Total Variation model [14], which is established in L1 space. In the same year, Chan

et al. proposed an algorithm and obtained a global minimum [13]. This algorithm can transform

nonconvex energy functional in image processing into convex energy functional. The authors used

the standard convex functional minimum solution to �nd the global minimum.

In the recent twenty years, the geometric activity pro�le model attracts a wide range of at-

tention its advantages. Thus, a lot of classic segmentation models [5, 12, 15, 39, 41, 52, 71] were

proposed. According to the energy function de�ned by the edge map, the Active Contour model can

be divided into three categories [36]: the Active Contour model based on edge, the Active Contour

model based on area and the mixed Active Contour model. The edge-based active contour model

is a Geodesic Active Contour. The curve evolution is stopped by the edge indicator function of the

image gradient. It has the advantage of detecting multiple di�erent areas at the same time. How-

ever, this model has the disadvantages of being sensitive to noise and it is also needed to manually

set the initial contour curve. This model has limited applications. The region-based active contour

model utilizes the global information of the image area, which can reduce the problem of sensitivity

to noise. But the calculation amount is huge and the calculation costs a lot of time. The mixed

active contour model combines the edge and area information. For di�erent initialization, we get

di�erent segmentation results. In this article, we introduce the details of those classical models in

1.3. Those models have their own advantages and disadvantages. Therefore, it is necessary to select

the corresponding model according to the speci�c image and the actual needs.

The acquirement of medical images is di�erent from the acquirement of ordinary optical images.

Most medical images have the characteristics of ambiguity and uneven grayness [16]: (1) Medical

image has fuzziness of grey scale. The noise and the edge of the ultrasound image have large

grayscale di�erence. Especially because of the nonuniformity of imaging organ or tissue structure

and the interference of acoustic signals, unique spots exist in ultrasound images. (2) Local body

e�ect. Often the boundary of an image, contains both boundary and the object. Due to some of

the diseased tissue intrusion into the surrounding tissue, the edge cannot be clearly de�ned. (3)

Uncertainty. In general, the structures that do not have at a normal tissue or region present in the
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case of a lesion, such as the spurs on the surface of the bone. And the appearance creates di�culties

for building the model. Aimed at the weakness of medical image, we found that in the process of

segmentation, we need to eliminate the noise in the image to get the target area. Therefore, the

elimination of the noise of medical images has a special signi�cance for segmentation. In this paper,

we mainly study medical image segmentation using Partial Di�erential Equation method, because

the Partial Di�erential Equation method has a good balance between eliminating noise and keeping

the characteristics of target characteristics.

In the recent years, the Partial Di�erential Equation method has widely used in di�erent

kinds of image processing area, such as image denoising, image magni�cation, image inpainting

and segmentation. Not only because the model established by partial di�erential equations is more

intuitive and easy to understand, but also because partial di�erential equations are easy to be

integrated with the classical segmentation theory. So, it is easy to create new model.

With the communications during international conferences and massive publications on the

famous international journals, the image segmentation methods based on partial di�erential equation

have been developed quickly. At present, the United States has invested a lot of manpower and

material resources to study the subject. Major research centers are established at Brown University,

UCLA, Florida University, and other places. At these research centers, researchers not only work on

theory, but also directly work on speci�c image processing projects. In addition, the study of image

segmentation technology based on partial di�erential equation, promotes interdisciplinary research,

such as biomedicine and computer vision. The methods of using partial di�erential equations, not

only solve many problems in image segmentation, but also promote the development of partial

di�erential equation theory. Therefore, the research of this subject has great application value and

very important scienti�c signi�cance.

1.3 Segmentations based on partial di�erential equation

Many of the physical laws in nature usually can be described by mathematical language.

Partial di�erential equations re�ect the restrictive relation between the unknown variables and the

derivatives with respect to the time variable and the derivative with respect to the spatial variables.
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The segmentation method based on partial di�erential equation has the following advantages:

1. Partial di�erential equation method is a method that directly analyzing on image. It is

implemented on the continuous condition. Thus the resulting image edge can be obtained

with higher precision;

2. It has an important e�ect on the shape analysis and the recognition of an object to use a

smooth closed curve to represent the edges of an object;

3. The partial di�erential equation method can make the fusion of various image processing

methods more e�ectively;

4. The partial di�erential equation method is convenient for establishing of various �exible math-

ematical models. The mature theory of numerical analysis and partial di�erential equations

can be used to get good image quality and stable results.

Partial di�erential equation (PDE) image segmentation is a nonlinear image segmentation

method which was developed in 1980s. Its basic idea is to make the continuous mathematical model

of the image to follow with a partial di�erential equation, and the corresponding segmentation result

is obtained when the stable solution of the equation is obtained. The most important advantage of

this technique is that the curve is continuous and smooth in the process of evolution. The classical

model of image segmentation based on PDE is the active contour model which is based on the

deformable model. The basic idea of Deformable model is that the energy functional of the region

contour curve is established by using the internal force and external force constraint of the image

edge. The Euler equation is obtained using variational method to minimize the energy function.

This equation is generally a nonlinear partial di�erential equation. Its stable solution corresponds

to the segmentation result of the image. More precisely, the basic principle of the deformable

model is that the curve moves and changes under the action of the driving forces including the

internal and the external forces, in which the internal force is based on the geometric characteristics

of the curve and keeps the smoothness of the curve; external force drives curve to move to the
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boundary of the object through prior information of the target and the image information. Under

the action of the internal force and the external force, the curve moves to the boundary of the target

under the smoothness condition. The active contour model makes deformation of the curve through

minimizing the energy. In the active contour model, an energy function of the curve is de�ned

�rstly, and then the given energy function is minimized to make the curve evolving to the boundary

of the target. In the recent ten years, the image segmentation technology that based on partial

di�erential equations has been greatly developed. And it is successfully applied to the medical and

other areas.

1.3.1 Segmentation models based on edges

1. Snake model

The earliest variational mode applied to image segmentation is the Snake model introduced

by Kass et al. [32]. The idea of Snake model is derived from the physical Deformable Model. It is

assumed that the edge of the object is elastic and can be deformed under the combined action of

the internal force and the external force. It has milestone signi�cance of image segmentation �eld.

The model is to get the following energy function by constructing a parametric energy curve C(p),

p ∈ [0, 1]:

E(C(p)) = α

∫ 1

0
|C ′(p)|2dp+ β

∫ 1

0
|C ′′(p)|2dp− λ

∫ 1

0
|∇I(C(p))|dp. (1.1)

The basic idea of Snake model is that the curve C(p) is evolved along the fastest decreasing

direction of the function. When it reaches the target boundary, it will stop at the local minimum

point of the function.

2. Geodesic Active Contour (GAC) [12]

The Geographic Activity Contour Model is a generalization of the Snake model. Caselles et

al assumed that the rigid coe�cient β = 0 in Equation (1.1) and the length in Euclidean space is

replaced by the length of authority in Riemannian space [33, 34].

10



An active contour model which is independent of the curve parameter is proposed. It is

named as the Geodesic Active Contour model [12]. The essence of this model is to use the surge

of curvature and the force generated by the monotone decreasing edge indicator function g(∇I) to

make the evolution curve C to stop and to stay on the edge of the target object, where

g : [0,+∞]→ R+, g(0) = 1, lim
s→∞

g(s) = 0.

In image segmentation, we usually choose function g(r) = 1/(1 + r2). By selecting the appro-

priate weighting factors α and λ, the energy functional of this model is equal to solve the Geodesic

Curves in Riemannian Spaces [33, 34],

min

∫ 1

0
g(|∇I(C(p))|)|C ′(p)|dp. (1.2)

Let ds = |C ′(p)|dp, then the energy functional becomes to
∫ 1

0 g(|∇I(C(p))|)ds for Equation

(1.2), where C(p) is the arc length of a curve. Then the above equation can be interpreted

as the weighted arc length in the Euclidean space, and the weight is the Riemannian distance

g(|∇I(C(p))|). Riemannian distance is about the image information, while the Euclidean distance

is about the distance between the two points in space.

Using variational method and gradient descent �ow, we get the energy functional (1.2) corre-

sponding curve evolution equation:

∂C

∂t
= −g(I)kN − (∇g ·N)N, (1.3)

where k is the curvature, and N is the outward unit normal vector.

From above, Geodesic Active Contour model has a serious limitation. Since the curve with a

curvature less than zero will cause the curve move to outward, when the target to be segmented

contains a deeper recessed boundary, the curve evolution of the GAC model may cease in a local

minimum, not at the edge of the target. To solve this problem, we add a Ballon Force in Equation

(1.3) [18]. Thus the direction of the evolution curve always points to the inside of the curve, and is
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controlled by g(|∇I|). The improved model is shown in below:

∂C

∂t
= g(I)(k +m)N − (∇g ·N)N, (1.4)

where m is a �xed constant.

Meanwhile, V.Caselles et al. proposed a similar equation to (1.4). But it is also based on the

idea of the evolution of the average curvature of the movement, and uses level set function. It deals

with changes in the topology freely. The model can be presented as the following:


∂φ
∂t = g(|∇Gσ| ∗ I)

(
div( ∇φ|∇φ|

)
+ ν)|∇φ|

φ(0, x, y) = φ0(x, y),
(1.5)

where v ≥ 0 is a coe�cient, and Gσ is the σ standard deviation of Gaussian kernel function.

As the earliest Geometric Active Contour Model, the basic idea of the GAC model image

segmentation is to couple the image data and the curve of the deformation speed, and to make

the curve evolution to eventually stop at the target edge position. To maintain the validity of the

numerical algorithm and the stability of the level set function in the evolution process, we choose an

initial and periodically reinitialize the Signed Distance Function. Since the initial signed distance

function needs to be de�ned by an initial curve in the image area, we choose a suitable initial

pro�le, usually required to enclose the target area or to use multiple initial contours. Therefore,

GAC model has the following disadvantage, such as implement complex, great amount calculation

and initialization [27].

3. No-need reinitialization model

Aimed at the reinitialization problem in the GAC model, Li et al. proposed a level set model

that does not need reinitialization [41]. It is named as the Distance regularized level set model

[38]. This model has improved the shortcomings of the GAC model. The model arises from the

perspective of functional, with the addition of an internal energy functional P (φ). This functional

is called no-need reinitialization item or distance regularization item, which is used to measure the
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deviation between the level set function and the Signed distance function. Thus, this model solves

the periodic initialization problem of the level set function. The energy functional is:

E(φ) = µP (φ) + λLg(φ) + νAg(φ) (1.6)

=
1

2
µ

∫
Ω

(|∇φ| − 1)2dxdy + λ

∫
Ω
gδ(φ)|∇φ|dxdy + ν

∫
Ω
gH(−φ)dxdy,

where, µ, λ > 0, ν is constant, g is edge indicator function, Lg(φ) and Ag(φ) are the weight lengths

of the zero level set (φ = 0) and the weighted area, respectively. They are collectively called the

external energy. Their role is to force the level set to move toward to the target boundary. In

addition, H(·) and δ(·) are one-dimension Heaviside function and the one-dimension Dirac function

respectively.

H(z) =

 0, z < 0

1, z ≥ 0
, δ(z) = d

dzH(z).

Use the variational principle [5] and the steepest decent method, we can get the minimized

energy functional E(φ) which is corresponding to the gradient descent �ow equation:

∂φ

∂t
= µ

(
4φ− div

(
∇φ
|∇φ|

))
+ λδ (φ) div

(
g
∇φ
|∇φ|

)
+ νgδ (φ) . (1.7)

To solve Equation (1.7), we use the regularized functions δε(φ) to approximate functions δ(φ):

δε(φ) =


1
2ε

[
1 + cos

(
πx
ε

)]
, |x| ≤ ε

0, |x| > ε.
(1.8)

Compared with the traditional level set method, the no need reinitialization level set model

has the following advantages [72]:

1. It is not necessary to periodically initialize the level set function in the evolutionary process,

which saves a signi�cant amount of time. Meanwhile, it avoids a series of problems caused by

repeated initialization of the level set functions, such as the complexity of algorithm.

2. Due to the introduction of the distance regularization P (φ), in the evolution process, the level
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set function can always maintain the stability form the numerical calculation. In addition,

due to the use of the simple �nite di�erence scheme and the signi�cantly larger time step, the

speed of evolution of the level set was greatly improved.

3. The initialization level set function does not have to be a Signed Distance Function. It can

be more �exible de�ned as a simple piecewise constant function. Comparing with the signed

distance function, this initialization method is widely used in practical problems because of

its simplicity, e�ectiveness and �exibility [38, 41]. But the model still has the disadvantage

in de�ning the initial contour. It is means that it still cannot avoid the problems caused by

the contour initialization, such as how and where to de�ne an initialization contour de�ne the

initialization contour.

1.3.2 Segmentation models based on area

Compared with the segmentation models based on edge, the area based segmentation model

de�nes the energy functional by using internal and external or global information of the active

contour and it does not use the edge detection operator. Therefore, it is more suitable for image

segmentation for the increased-noise images.

1. Mumford-Shah (MS) model

In the 1980s, Mumford and Shah proposed an e�ective active contour model which uses curve

evolution method for solving image segmentation or target detection problems. This model is named

as the Mumford-Shah (MS) model. The model created an important �eld of image segmentation

which is based on edge partial di�erential equations. MS model uses a speci�c law of a closed curve

or surface deformation to de�ne an energy function of a curve or surface:

EMS(u,C) = µ

∫
Ω\C
|∇u|2dxdy +

∫
Ω

(u− I)2dxdy + ν|C|, (1.9)

where I : Ω ⊂ R2 → R is the image with noise, Ω is the area of image I, µ, ν > 0 are the �xed

weighting parameters, C is a unknown curve, |C| is the length of the curve, and u is the Piecewise
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Smooth function which is used to approximate the grayscale distribution of image I, and to allow the

discontinuity when acrossing the curve C. The �rst item is the regularization term which keeps the

function u not changing dramatically in each sub-region, and the function u as smooth as possible.

The second term is used to measure the degree of similarity between the function u and the image

I, add to keep the function u as close to the image I as possible. The third item makes the curve

C short and smooth.

The MS model transforms the image segmentation problem into the optimization problem.

When minimizing the energy functional EMS(u,C), we get the piecewise smooth function u and its

boundary C at the same time, where u is the image without noise and the curve C is the bound-

ary of the image segmentation area. Although the MS model has a good theoretical basis from

mathematics, but this model contains an unknown discontinuous set, which makes the functional

minimization and the numerical solution of the model very di�cult. Therefore, the implementa-

tion of the MS model becomes more complex, computationally intensive, and di�cult to apply to

practical image processing.

2. Chan-Vese (CV) model

From the above MS model, we know that the model has some defects in the practical applica-

tions. Since the image segmentation model depends on the gradient as a stop condition. Aimed at

this problem, Chan and Vese [15] proposed the Chan-Vese model which uses the variational level

set method without using the gradient as the stopping condition. CV model e�ectively improves

the defects of the MS model, which greatly promotes the application of MS model with a great

in�uence [67, 71].

The basic idea of the CV model is to search a closed curve C. This closed curve divides

the image area into in(C) and out(C), i.e. the target and the background. The closed curve C

maximizes the di�erence average gray value of the image in in(C) and the image in out(C). This

closed curve can be seen as the contour of the target area which is the edge of the image. Given

an image I : Ω ⊂ R2 → R for segmentation. C is an evolving curve. The CV model does the
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segmentation by minimizing the following energy functional:

ECV (c1, c2, C) =ν · Length(C) + µ ·Area (inside(C)) (1.10)

+ λ1

∫
inside(C)

|I − c1|2dxdy + λ2

∫
outside(C)

|I − c2|2dxdy,

where ν, µ ≥ 0, λ1, λ2 > 0 are weight coe�cients, in general, ν = 0, c1 and c2 are de�ned as the

average gray values of the image in area of in(C) and out(C) respectively.

Assume φ(x, y, t) is the level set function, δ(x) is the function of Dirac, H(x) is the function of

Heaviside. For e�cient numerical calculation, the regular Heaviside function Hε(z) is usually used

to approximate H(z):

Hε(z) =
1

2

(
1 +

2

π
arctan

(z
ε

))
,

where ε is a minimum value selected for numerical calculation. Then the energy functional (1.10)

can be expressed in level set as the following:

ECVε (c1, c2, φ) =ν

∫
Ω
δε(x)|∇φ|dxdy + µ

∫
Ω
Hε(φ)dxdy (1.11)

+ λ1

∫
Ω
|I − c1|2Hε(φ)dxdy + λ2

∫
Ω
|I − c2|2(1−Hε(φ))dxdy.

By using the variational principle as the steepest descent �ow, we derive the Euler-Lagrange

equation which controls the evolution of level set:

∂φ

∂t
= νδε(φ)div

(
∇φ
|∇φ|

)
+ δε(φ)

(
λ2 (1− c2)2 − λ1 (1− c1)2

)
. (1.12)

The expression of the average gray value of c1 and c2 is shown in below:

c1 =

∫
Ω I(x, y)Hε (φ(x, y)) dxdy∫

ΩHε (φ(x, y)) dxdy
, c2 =

∫
Ω I(x, y) (1−Hε (φ(x, y))) dxdy∫

Ω (1−Hε (φ(x, y))) dxdy
. (1.13)
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Chan and Vese's Chan-Vese model is a special case of the Mumford-Shah functional. Since the

existence of the minimum value of the MS functional has already been proved, the minimum value

of the energy functional ECV (c1, c2, C) must also exist. The main advantage of Chan-Vese model

is that the initial curve does not need to be completely located at inside or outside of homogeneous

region. Meanwhile, CV model does not use gradient information, so it has good global optimization

characteristics. And it also reduced the impact of noise on the image. However, the CV model only

uses global area information to optimize c1 and c2. It does not take care of the image grey values

changed at the target and background area.

Therefore, the CV model cannot segment uneven grayscale images. It can be used for the

images which contains two di�erent mean regions of objects and backgrounds. Thus the scope of its

application is limited. In addition, to ensure the stability of the numerical solution of the level set

[22], the level set evolution process requires periodic initialization signed distance function which

costs a lot of computation time.

3. Region-scalable Fitting (RSF) model

To solve the problem of segment with uneven grayscale images, Li proposed a local region level

set model which is based on variational framework. It was named as RSF model [40] or LBF model

[39]. This model �rstly de�ned two Region-scalable Fitting Energy f1(x) and f2(x), not using c1

and c2, as the local averages of the gray values of the image on the two sides of the contour line. It

can be obtained by minimizing the energy functional. For any point x ∈ Ω, the energy functional

of RSF is as follows:

ERSF (f1, f2, φ) =λ1

∫
in(C)

Kσ(x− y)|I(y)− f1(x)|2dy (1.14)

+ λ2

∫
out(C)

Kσ(x− y)|I(y)− f2(x)|2dy,

where K(x) is a kernel function that satis�es the local nature. It is usually selected as a Gaussian

kernel function. Therefore, f1(x) and f2(x) are mainly determined by the gray value near x with

local characteristics. The RSF model transforms two value global �tting energy functional of the
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CV model into the local binary �tting energy with the Gaussian function as the kernel function. The

RSF model has e�ectively solved the problem that CV model cannot deal with gray scale image.

However, RSF model is very sensitive to the selection of the initial contour. We need to choose a

suitable initial contour manually. Because of the improvement of the RSF model and the existence

of CV model is the focus of this dissertation we will introduce the details of the RSF model in

Chapter 3.

1.3.3 The existing problem of image segmentation method based on partial

di�erential equation

Although in recent years, the image segmentation methods based on partial di�erential equa-

tions have been developed rapidly. Even though we already have a lot of research results, there are

still some issues need to be solved. The problems are shown in below:

1. Evolution speed problem

As described earlier in this dissertation, most models such as GAV, MS and CV have evolution-

ary speed problems. This is mainly because of that most theoretical results of level set are based on

the smoothness of the surface. However, in practical applications, the singular value surface often

appears in the evolution process. In order to ensure the smoothness conditions and the stableness

and e�ectiveness of the level set evolution, it is necessary to periodically repeat the reinitialization of

the level set function. This process costs a lot of calculation time. To solve this problem, researchers

proposed many new methods. But these methods are limited to applications, since they are just the

improvement to the speci�c needs of each mode. Thus these improved acceleration algorithms is

lack of extensive adaptability. Therefore, it is necessary to �nd an algorithm that does not depend

on certain speci�c environment, but enhances the scope of adaptation, and e�ectively improves the

speed of segmentation.

2. Contour initialization problem

Similar to the sensitiveness of the RSF model in selecting the initial contour, the essence of most

models is to �nd the numerical solution of partial di�erential equations with initial conditions and
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boundary conditions. The segmentation results are often dependent on the given initial conditions.

Most of the existing models need to manually de�ne the initial contour. Therefore, it is created the

problems of how to initialize and where to initialize the contours. Traditional level set segmentation

model GAV needs to de�ne the initialization level set as a signed distance function. No-initialization

model needs to de�ne a piecewise constant function. Although they need to de�ne di�erent types

of functions, they need to de�ne the initial contour in advance. Therefore, solving the problem of

contour initialization is a hot topic in the recent years.

3. Segmentation of complicated background images

Most of the existing models can only handle simple images. It means that there is a clear

boundary between the target and the background. Because of the imaging system and many un-

certainty factors in real world, real images are often more complex. For example, medical images

contain a lot of noise, have weak edge in the image and intensity inhomogeneity. Most of the existing

research involved less in complex image. Therefore, applying the partial di�erential equations to

image �ltering, image restoring and image deniosing becomes a major research topic in the recent

year. We hope that these preprocessing can be applied to image segmentation to e�ectively solve

the problem of images with complex background.

1.4 Main work and the structure arrangement of this paper

1.4.1 Main work of this dissertation

Image segmentation is an important part of image processing, and is also a di�cult part. The

key issues of segmentation are manifested in two aspects: (1) Image segmentation problem involves

much uncertainty and the solution is often not unique. Image contain a wealth of information, such

as edge, color, and texture. But it is di�cult to use a uni�ed segmentation method. Therefore,

although the partial di�erential equation method has many advantages, there is still no uniform

segmentation algorithm. Meanwhile, a lot of research is still in its infancy, particularly in the areas

related to the sensitivity of contour initialization, the robustness to strong noise and the evolutionary

19



speed. In this dissertation, we aim to solve these problems by combining the local entropy and the

clustering in the research. The main work is shown as below:

1.) By combining with the local entropy, we propose CER model for improving the famous

RSF (LBF) model and CV model. The CER model enhanced the robustness of the original model to

contour initialization and to strong noise, and in the meanwhile increased the velocity of evolution.

The RSF model is a recently-proposed variational segmentation model that e�ectively segments

the grayscale image, such as magnetic resonance images of the brains. For any point x ∈ Ω, the

energy functional is de�ned as:

ERSF (f1, f2, φ) =λ1

∫
in(C)

Kσ(x− y)|I(y)− f1(x)|2dy

+ λ2

∫
out(C)

Kσ(x− y)|I(y)− f2(x)|2dy.

In RSF model, f1(x) and f2(x) are the �tting energy of the image at point x. It is a local

energy associated with variance. Therefore, RSF model is based on the local information of the

image. It is precisely due to the introduction of this local energy that the RSF model has a good

segmentation result for gray uneven images. However, the model is more sensitive to the contour

initialization with poor noise immunity.

The CV model is a classical geometric active contour model that is based on the region. Its

energy functional is shown as below:

ECV (c1, c2, C) =ν · Length(C) + µ ·Area(inside(C)) + λ1

∫
inside(C)

|I − c1|2dxdy

+ λ2

∫
outside(C)

|I − c2|2dxdy.

For CV model, c1 and c2 are the average gray values of the image in the internal and the external

contour curves, respectively. They are all global variables. Therefore, CV model is a segmentation

model based on global information. Although the CV model has advantage in anti-noising and

simplicity for calculation, it cannot be used to segment the image of uneven gray.
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Based on the above analysis, this dissertation considers combining the above two models,

utilizing their respective advantages and disadvantages, to achieve complementarity. It's energy

functional is shown as below:

ENLGF (c, f1, f2) = ωEGIF + (1− ω)ENLIF + νL(φ) + µP (φ).

Meanwhile, we use the local entropy EI(x) to de�ne the below weighted energy functional:

E(c, f1, f2) =

∫
Ω
EI(x)Ex(c, f1(x), f2(x))dx.

This dissertation uses the �nite di�erence algorithm. The proposed CER model is simulated by

MAELAB programming. The result shows that the CER model has a very good result. The CER

model improved the noise sensitivity and the poor noise immunity of the RSF model. Meanwhile,

the CER model also resolved the problem of the CV model, in failing the segmentation of images

with uneven gray. CER improved the speed of curve evolution.

2.) The traditional FCM clustering algorithm is a fast image segmentation method with no

monitoring. However, it cannot accurately segment the image with strong noise or image with

weak edge. Therefore, in this dissertation, we adopted SFCM clustering algorithm that combines

image gray features and the association of the neighbor pixel. This method takes into account the

image space information, so it has strong robustness to noise. This dissertation proposed to use

SFCM to pre-process the image and at the same time extract the image edge information of the

segmentation result. We use the extracted edge information as the initial model of the CER model,

which improves the problem in choosing the initial model. The accurate choice of the initial model

also increases the evolution speed of the CER model, thereby enhances the calculation e�ciency.

More importantly, thanks to the SFCM clustering algorithm's strong robustness to noise, the SCER

model enjoys strong robustness than the CER model, thus segments the image more accurately.
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1.4.2 Structure arrangement

The main contributions of the dissertation are shown as below:

Chapter 1: Introduction. Firstly, we introduce the basic concept of image and image processing,

background, signi�cance, and development of Partial Di�erential Equation Image Segmentation.

Secondly, we focus on some classical Partial Di�erential Equation image segmentation models.

Thirdly, we introduce our main research work.

Chapter 2: This chapter introduces mathematical principle of image segmentation method

based on partial di�erential equations, including partial di�erential equations (PDE) and the basic

knowledge of the variational method; plane curve and the characteristics of mathematical represen-

tation and curve evolution and the variational level set method and so on.

Chapter 3: Since the Chan-Vese and RSF models have the problems of sensitivity to the

initialization contours, poor noise immunity and inability to segment the grayscale images, we

proposed the CER model using a local entropy weight.

Chapter 4: Based on the SFCM method, we improved the CER model and proposed SCER

model.

Chapter 5: Conclusion. This chapter summarizes our main work and our research results, and

proposed the future development of the application partial di�erential equation to image segmen-

tation.

22



Chapter 2

FUNDAMENTALS OF MATHEMATICS

It has been pointed out in the �rst chapter that the main work of this dissertation is to use

partial di�erential equations for image segmentation. This chapter introduces the mathematical

principle of this work, including the partial di�erential equation (PDE) and the basic knowledge of

the variational method, plane curve, mathematical representations of the characteristics and curve

evolution, the variational level set method and so on.

2.1 Introduction to partial di�erential equations and variational methods

The basic idea of image processing method based on partial di�erential equations is that in the

continuous image model, we make the image the follow a designated partial di�erential equation,

and solving the partial di�erential equation is to obtain the processing results. Therefore, the �rst

step of the image processing method based on partial di�erential equations is to establish a partial

di�erential equation that meets the requirements, namely, to establish a mathematical model. The

commonly used modeling methods are: (1) Establishing the "energy" functional by variational

method, through which the Euler-Lagrange equation [29] is the needed partial di�erential equation;

(2) Carrying out analogy among the image changes expected to achieve with a certain physical

process (such as, analogy among smoothing the image and impurity di�usion) to establish the

corresponding partial di�erential equation. This dissertation mainly adopts the �rst method to

establish models. We start with partial di�erential equations and variational methods to discuss

the mathematical basis of this paper.

2.1.1 Partial di�erential equation and its de�nite solution condition

1. Partial di�erential equation [58]

We know that an equation involving derivatives or di�erentials with unknown functions is

called di�erential equation. When the unknown function is a univariate function, the di�erential
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equation is called an ordinary di�erential equation (ODE). When the unknown function is a multi-

variate function, the di�erential equation is called a partial di�erential equation (PDE). The partial

di�erential equation of a space-time di�erentiable function u(x, y, z, t) is one mathematical relation

between u and its partial derivatives,

F

(
x, y, z, t, u,

∂u

∂x
,
∂u

∂y
,
∂u

∂z
,
∂u

∂t
,
∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂z2
,
∂2

∂t2
,
∂2u

∂x∂y
,
∂2u

∂y∂z
,
∂2u

∂z∂x
, . . .

)
= 0, (2.1.1)

where F represents the functional relation, (x, y, z) is called the space independent variable, t is

called the time independent variable, and u is the unknown function of (x, y, z) and t. The highest

order of partial derivatives in the equation is called the order of the partial di�erential equation, for

example, �rst order partial di�erential equations:

F

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0; (2.1.2)

second order partial di�erential equation:

F

(
x, y, u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂x∂y
,
∂2u

∂y2

)
= 0, (2.1.3)

and so on. When F is linear, the equation is called linear equation. The general form of the second

order linear partial di�erential equations of the two independent variables is

A(x, y)uxx + 2B(x, y)uxy + C(x, y)uyy +D(x, y)ux

+ E(x, y)uy + F (x, y)u = f(x, y). (2.1.4)

Linear partial di�erential equations contain only the �rst power of unknown function and its deriva-

tives, and the partial di�erential equations that do not satisfy this condition are collectively referred

to as nonlinear partial di�erential equations.

The classical linear partial di�erential equations include:
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(1) Wave Equation

∂2u

∂t2
− a2∇2u = 0, (2.1.5)

where ∇2 is called Laplace, and in the 3D rectangular coordinate system ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

Wave equations mainly describe the propagation of waves, such as vibration of strings, vibrations

of thin �lms, acoustics and propagation of electromagnetic waves, etc.

(2) Heat Conduction Equation

∂u

∂t
− k∇2u = 0, (2.1.6)

where k is the coe�cient of thermal conductivity. The equation describes heat conduction, quantum

�ow, and the growth and di�usion processes in biology; it also describes vortices, di�usion and so

on.

(3) Laplace Equation

∇2u = 0. (2.1.7)

The equation is used to describe the potential, gravitational �eld, translational motion of the elastic

�lm, �uid velocity �eld and the temperature distribution of the steady heat conduction in the passive

electrostatic �eld.

(4) Poisson Equation: the non-homogeneous form of Laplace equation is called Poisson equation,

which represents the phenomenon of Laplace equation in active or leaky conditions, and the

general form of Poisson equation is as follows

∇2u = f(x, y). (2.1.8)
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(5) Helmholtz Equation:

∇2u+ λu = 0, (2.1.9)

where λ is the constant and this equation represents sound radiation �eld in acoustics.

(6) Telegraph Equation: the telegraph equation is shown as follows:

∂2u

∂t2
+ a

∂u

∂t
+ bu =

∂2u

∂x2
, (2.1.10)

where a and b are constants that describe the law of propagation of electrical signals in the cable

as well as the propagation of blood pressure waves in the arteries.

The second-order linear partial di�erential equation (2.1.4) has mathematical classi�cation be-

sides the above physical division. In equation (2.1.4), we regard ∆(x, y) = B2(x, y)−A(x, y)C(x, y)

as a discriminant. If ∆(x, y) > 0, in D ∈ R2 then we say (2.1.4) within D is a hyperbolic equation;

if ∆(x, y) ≤ 0, in D ∈ R2 we say that (2.1.4) in D is parabolic a equation; if ∆(x, y) < 0, in D ∈ R2

then we say that (2.1.4) in D is an elliptic equation.

In most cases, the general solutions of partial di�erential equations contains arbitrary functions

and have certain uncertainties. Thus they are not very useful. Therefore some de�nite solution

conditions must be added to obtain a particular solution. The de�nite solution conditions are

divided into the initial condition and/or boundary condition. The partial di�erential equation and

these de�nite solution conditions together form the de�nite solution problem.

The initial condition, also known as Cauchy condition, is the initial displacement and initial

velocity condition

u(x, y, z, t)|t=0 = ϕ(x, y, z) and ut(x, y, z, t)|t=0 = ψ(x, y, z), (2.1.11)

where ϕ and ψ are known functions. Boundary conditions can be categorized as the following three

conditions:
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The �rst kind of boundary condition, also called di Reeh Lai (Dirichlet), directly gives the

distribution of the physical quantity u on the boundary,

u(M, t)|M∈∂Ω = f1(M, t). (2.1.12)

The second kind of boundary condition, also known as Neumann condition, gives the distribu-

tion of the gradient of the physical quantity u on the boundary

∂u

∂n

∣∣∣∣
M∈∂Ω

= f2(M, t), (2.1.13)

where ~n is the outer normal direction on the boundary ∂Ω.

The third kind of boundary condition, also called Robin condition, gives the linear relation

between the physical quantity u and its normal derivative on the boundary

(
u+ σ

∂u

∂n

) ∣∣∣∣
M∈∂Ω

= f3(M, t) (2.1.14)

where σ is constant.

In fact, the three types of boundary conditions can be written uniformly

(
αu+ β

∂u

∂n

) ∣∣∣∣
M∈∂Ω

= f(M, t). (2.1.15)

The function f in equation (2.1.15) and the functions fi(i = 1, 2, 3) in equation (2.1.12), (2.1.13)

and (2.1.14) are known functions

2. Nonlinear partial di�erential equations

A nonlinear partial di�erential equation that can not be written as equation (2.1.4) form, i.e.,

at least one the powers of the unknown equations or its partial derivative is not one, is called a

nonlinear partial di�erential equation. The general form is shown as in equation (2.1.1) or (2.1.2).
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Typical nonlinear partial di�erential equations include KdV equation:

ut + uux − µuxxx = 0; (2.1.16)

Sine-Gordon equation

uxx − utt = sinu; (2.1.17)

And nonlinear Schrodinger equation

iut + uxx + βu|u|2 = 0 (2.1.18)

and so on

2.1.2 Calculus of variations�Euler-Lagrange equation

1. Functional and functional extreme value

Functional is the generalization of the concept of function. We will give an example to explain the

problem.

We look into the Branchistochrone problem in mechanics. As shown in Figure 2.1, A and B are

two points neither in the same vertical line nor in the same horizon line. The goal is to look for such

a curve between A and B, when a particle under the action of gravity moves without friction along

this curve from A to B, such that the time required T is minimum. Since there are countless lines

that connect A and B, this is a problem about extreme value. Here is a mathematical expression

for this problem. By kinematic knowledge, we know that the velocity of a particle is ds
dt =

√
2gy.

So the time needed to slip from A to B is

T =

∫ t(B)

t(A)
dt =

∫ B

A

ds√
2gy

=

∫ B

A

1 + y
′2

√
2gy

dx, namely T [y(x)] =

∫ B

A

1 + y
′2

√
2gy

dx. (2.1.19)
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Figure 2.1: Branchistochrone.

We call the above T as the functional of u(x), and all such functions u(x) as a desirable

function class, called the de�nition domain of functional T [u(x)]. To make it simply, functional is

the function of a function (not the meaning of a composite function). Let C be a set of functions,

and E be a set of real or complex numbers. If each element of C has an corresponding element J

in E, then we say J is the functional of u(x), and

J = J [u(x)]. (2.1.20)

It must be noted that functional is di�erent from the normally stated function. The factor

determining the value of the usual function is the value of the independent variable, while the factor

determining the functional value is the shape of the function. For example, the change of functional

T in the above example is caused by the change of the function itself (that is, the di�erent curves

from A to B). Its value depends neither on a value nor on a value , but rather on the functional

relationship in the entire C set.

Functional usually appears in integral form, such as the formula for the Branchistochrone

problem equation (2.1.19) described above. In general, the simplest and typical functional can be

described as

J [u(x)] =

∫ b

a
F (x, u, u′)dx, (2.1.21)

where F (x, u, u′) is called the kernel of a functional.
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2. Variations and Calculus of Variations

After the concept of functional is introduced, the above Branchistochrone becomes a minimal-

ization problem of the functional T [y(x)]. The extreme value problem of functions is very common

in physics. The image processing based on partial di�erential equation is solved by partial di�eren-

tial equations deduced from energy extreme value theorem. The method of �nding the extremum

of function is called variational method. Therefore we introduce the variational of function.

Assume there is continuous function u(x), and we change it into u(x) + tη(x), where t is a

small parameter. We say tη(x) is the variation of u(x), namely

δu = tη(x), (2.1.22)

then u′(x) will change accordingly lim
∆x→0

∆(u+tη)
∆x = u′(x) + tη′(x). Thus we have

δu′ = tη′(x) =
d

dx
(δu). (2.1.23)

This shows that for a given function, the order of variation and di�erentiation can be inter-

changed.

Assume in equation (2.1.21), F is second order continuous function to x, u, u′. Therefore,

when u(x) has variation δu, then the change of J is shown as below

∆J = J [u(x) + tη(x)]− J [u(x)]

=

∫ b

a
[F (x, u+ tη, u′ + tη′)− F (x, u, u′)]dx

=

∫ b

a

[
∂F

∂u
tη +

∂F

∂u′
tη′ + higher power terms of t

]
dx.

We call the linear principal part of the upper right (that is, omitting the higher order in�nites-

imal part) as the �rst variation of the functional, namely
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δJ =

∫ b

a

(
∂F

∂u
δu+

∂F

∂u′
δu′
)
dx. (2.1.24)

3. Necessary conditions for the extreme value of functional�Euler-Lagrange function

Assume the extreme value of J [u(x)] has a solution

u = u(x). (2.1.25)

The di�erential equations satis�ed by this solution are derived. Assume this solution has

variation tη(x), then J [u(x) + tη(x)] can be regarded as the function of parameter t : Φ(t) =

J [u(x) + tη(x)]. When t = 0, u(x) + tη(x) = u(x) is corresponding to equation (2.1.25), namely the

extreme value of J [u(x)+ tη(x)]. Thus, the extreme problem of the original functional is reduced to

the extreme problem of a general function. The necessary condition of extreme value from function

is dΦ
dt

∣∣
t=0

= 0. We have ∂J [u(x)+tη(x)]
∂t

∣∣
t=0

= 0. Substituting the formula equation (2.1.21), that is

∫ b

a

[
∂

∂t
F (x, u+ tη, u′ + tη′)

]
t=0

dx = 0 ⇒
∫ b

a

(
∂F

∂u
η +

∂F

∂u′
η′
)
dx = 0

multiply the two sides with t and we have

∫ b

a

(
∂F

∂u
δu+

∂F

∂u′
δu′
)
dx = 0. (2.1.26)

Comparing with equation (2.1.24), the solution equation (2.1.25) of the function equation

(2.1.21) must satisfy δJ = 0. This is the necessary condition for the extreme value of the functional.

That is, the extreme function u(x) of functional J must be the functional class u(x) that satis�es the

variational function δJ = 0. Therefore, the extreme value problem of functional is called variational

problem. Therefore, we regard the extreme value problem of function as a problem of variation.

Note that both δu and δu′ exist in equation (2.1.26). Appling the partial integration method to the
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second term, we have only δu under the integral sign,

∫ b

a

∂F

∂u′
δu′dx =

∫ b

a

∂F

∂u′
d

dx
(δu)dx =

∂F

∂u′
δu

∣∣∣∣b
a

−
∫ b

a

d

dx

(
∂F

∂u′

)
δudx.

In the simple variation, we keep δu|x=a = 0 and δu|x=b = 0, that is, the function value of the

endpoint is �xed. So the �rst item on the upper right is zero, and the equation (2.1.26) becomes

∫ b

a

[
∂F

∂u
− d

dx

(
∂F

∂u′

)]
δudx = 0. (2.1.27)

The above equation is valid with the given (a, b) and any δu. Therefore

∂F

∂u
− d

dx

(
∂F

∂u′

)
= 0. (2.1.28)

That is, the functional equation (2.1.21) has the necessary condition for extreme values, and

can be expressed as equation equation (2.1.28). This equation (2.1.28) is called the Euler-Lagrange

equation of the extreme value problem of functional equation (2.1.21). Therefore, the extremum

problem of functional equation (2.1.21) can be solved by solving the corresponding Euler-Lagrange

equation.

Now we will discus the solution of Euler-Lagrange (2.1.27). The equation (2.1.28) is expanded

to

∂F

∂u
− ∂2F

∂u′′∂x
− ∂2F

∂u′′∂u
u′ − ∂2F

∂u′∂u′
u′′ = 0.

When ∂2F
∂u′∂u′ 6= 0, the above equation is a second order ordinary di�erential equation about u(x).

But it is not necessarily a linear di�erential equation to have only constant coe�cients. So it is not

easy to obtain its general solution. In some cases, however, it can be simpli�ed.

(1) When the kernel function F (x, u, u′) in equation (2.1.21) does not contain u explicitly, namely

F = F (x, u′), so obviously we have
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∂F

∂u′
= C. (2.1.29)

(2) When the kernel function F (x, u, u′) in equation (2.1.21) does not explicitly contain x, namely

F = F (u, u′), because

d

dx
(F − u′Fu′) = Fx + Fuu

′ + Fu′u
′′ −

(
u′′Fu′ + u′

dFu′

dx

)
Fx=0

===== u′
(
Fu −

dFu′

dx

)
(2.1.28)

====== 0

thus we have

F − u′ ∂F
∂u′

= C, or u′
∂F

∂u′
− F = C, (2.1.30)

where C is the integral constant. Here are two examples.

Example 2.1.1. Solving the Branchistochrone problem, is the variational problem,

δ

∫ B

A

√
1 + y′2√

2gy
dx = 0.

Solution:

Since F =

√
1+y′2√
2gy

does not explicitly contain x, then from equation (2.1.30), Euler-Lagrange-

Lagrange equation is

y′
∂

∂y

√
1 + y′2

y
−

√
1 + y′2

y
=

y′2√
y(1 + y′2)

−

√
1 + y′2

y
= c ⇒ 1

y(1 + y′2)
= c2.

Let 1
c2

= c1 , after separating variables, we get
√
ydy√
c1−y = dx (c1 is arbitrary constant). Then

let y = c1 sin2 θ
2 . Substituting it into the above equation, we have

dx = c1 sin2 θ

2
dθ =

c1

2
(1− cos θ)dθ ⇒

 x = c1
2 (θ − sin θ) + c2

y = c1
2 (1− cos θ).
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This is the parametric equation of the cycloid, and the integral constant can be determined by

the positions A and B.

Example 2.1.2. Solving the shortest part of the curve between two points on the connection

plane.

Solution:

This is about variation. Assume (x0, y0) and (x1, y1) are two �xed points on a plane, then the

length of the curve connecting the two points can be expressed as

s[y(x)] =

∫ (x1,y1)

(x0,y0)
ds =

∫ (x1,y1)

(x0,y0)

√
(dx)2 + (dy)2 =

∫ (x1,y1)

(x0,y0)

√
1 + y′2dx.

Therefore, to get the minimum of the desired curve requires the extreme value of this functional.

Here

F =
√

1 + y′2,
∂F

∂y
= 0,

∂f

∂y′
=

y′√
1 + y′2

.

So its Euler-Lagrange is

d

dx

y′√
1 + y′2

= 0 ⇒ y′√
1 + y′2

= C ⇒ y′2 = C2(1 + y′2) ⇒ y(x) = C1x+ C2.

It is a geometric axiom that the straight line between two points is the shortest line.

4. Euler-Lagrange Equation of complex functional

The Euler-Lagrange equation of the most simple functional equation (2.1.21) is equation (2.1.28)

and the Euler-Lagrange equation of the relatively complex functional can be derived by referring to

the above method. But the form can be even more complex.

(1) Euler-Lagrange that depends on the functional of multivariate function.

Functional that depends on the binary function u(x, y)
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J(u) =

∫∫
G
F (x, y, u, ux, uy)dxdy, (2.1.31)

where F is the given function. On the boundary ∂G of G, we have

u(x, y)|∂G = u0(x, y) (2.1.32)

What we need to do is under the condition equation (2.1.32), to get u(x, y) and the obtain the

extreme value of the functional J(u) in equation (2.1.31).

Assume the function u(x, y) makes the functional J(u) get extreme value and that this solution

has variation αη(x, y), in which α is the minimum parameter, that is to get comparative function

in a neighborhood of u(x, y).

Let

u∗(x, y) = u(x, y) + αη(x, y) and η(x, y)|∂G = 0. (2.1.33)

Then the J value corresponding to u∗(x, y) is

J(u∗) =

∫∫
G
F (x, y, u∗, u∗x, u

∗
y)dxdy

=

∫∫
G
F (x, y, u+ αη, ux + αηx, uy + αηy)dxdy ≡ J(α). (2.1.34)

Since J(u) gets extreme value in u(x, y), namely when α = 0, then J(α) gets extreme value.

Therefore from the necessary condition of the extreme value, we get

dJ(α)

dα

∣∣∣∣
α=0

=

∫∫
G

(Fuη + Fuxηx + Fuyηy)dxdy =

∫∫
G

(
Fu −

∂

∂x
Fux −

∂

∂y
Fuy

)
η(x, y)dxdy

+

∫∫
G

(
∂(Fuxη)

∂x
+
∂(Fuyη)

∂y

)
dxdy. (2.1.35)
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The second integral can be formula into integral on boundary ∂G by plan Green's Formula,

∫∫
G

(
∂(Fuxη)

∂x
+
∂(Fuyη)

∂y

)
dxdy =

∫
∂G
η(Fuydy − Fuxdx). (2.1.36)

From equation (2.1.33), we know this integral is 0. Substituting it into equation (2.1.35), we

have

∫∫
G

(
Fu −

∂

∂x
Fux −

∂

∂y
Fuy

)
η(x, y)dxdy = 0. (2.1.37)

Since both G and η(x, y) are arbitrary, so satis�ed with the following

Fu −
∂

∂x
Fux −

∂

∂y
Fuy = 0. (2.1.38)

This formula is the necessary condition of the extreme value of the functional (2.1.31) of the

binary function (Euler-Lagrange). It is obviously a partial di�erential equation.

The same, the variational problem of the functional J(u) which is depends on ternary function

u(x, y, z) is δ
∫∫∫

v F (x, y, z, u, ux, uy, uz)dxdydz = 0. The corresponding Euler-Lagrange is the

partial di�erential equation

∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

)
− ∂

∂z

(
∂F

∂uz

)
= 0. (2.1.39)

For the case of n independent variables, the functional is

J(u) =

∫∫
G
F (x1, x2, . . . , xn, u, ux1 , ux2 , . . . , uxn)dx1dx2 · · · dxn. (2.1.40)

Its �rst order variation is

δJ(u) =

∫∫
G

(
∂F

∂u
δu+

∂F

∂ux1
δux1 . . .+

∂F

∂uxn
δuxn

)
dx1dx2 · · · dxn
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=

∫∫
G

{[
∂F

∂u
−

n∑
i=1

∂

∂xi

(
∂F

∂uxi

)]
δu+

n∑
i=1

∂

∂xi

(
∂F

∂uxi
δu

)}
dx1dx2 · · · dxn. (2.1.41)

Using the Green's Formula in n-dimensional space

∫∫
G

n∑
i=1

∂

∂xi

(
∂F

∂uxi
δu

)
dx1dx2 · · · dxn =

n∑
i=1

∫
∂G

∂F

∂uxi
cos θδudS.

If δu|∂G = 0, then

δJ(u) =

∫∫
G

[
∂F

∂u
−

n∑
i=1

∂

∂xi

(
∂F

∂uxi

)]
δudx1dx2 · · · dxn. (2.1.42)

Through the arbitrariness of G and δu, we get the Euler-Lagrange equation of (2.1.42),

∂F

∂u
−

n∑
i=1

∂

∂xi

(
∂F

∂uxi

)
= 0. (2.1.43)

Example 2.1.3. Write the Euler-Lagrange equation of functional J [u(x, y)] =
∫∫
D[u2

x + u2
y +

2uf(x, y)]dxdy.

Solution:

For functional

J [u(x, y)] =

∫∫
D

[u2
x + u2

y + 2uf(x, y)]dxdy ⇒ F = u2
x + u2

y + 2uf(x, y),

from equation (2.1.37), we obtain

Fu −
∂

∂x
Fux −

∂

∂y
Fuy = 2f(x, y)− 2uxx − 2uyy = 0.

So the Euler-Lagrange equation is uxx +uyy = f(x, y). This is a two dimensional Poisson equation.
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When the mathematical model is established, solving the resulting partial di�erential equa-

tions becomes the most important problem. The inherent discontinuity of the image function, the

nonlinearity of the partial di�erential equation obtained by the mathematical model and the large

amount of image data all together make it di�cult to solve the equation. So, the partial di�erential

equation in image processing, numerical implementation and the establishment of the model are all

challenging tasks. This chapter focuses on the mathematical foundation of mathematical modeling

and numerical methods, and mainly considers the numerical stability, accuracy and e�ciency in

numerical implementations.

2.1.3 Numerical solution of partial di�erential equation

For the image segmentation, the partial di�erential equations obtained from the energy func-

tional are often nonlinear which complex forms. It is di�cult to obtain analytic solutions, and thus

numerical solutions are often needed. The common numerical methods for solving partial di�erential

equations include the �nite di�erence method, the �nite element method and the boundary element

method. The �nite di�erence method is the main application in our thesis. Brief introduction is as

follows.

Finite di�erence method (FDM) is a numerical method for solving di�erential equations by

approximation them with di�erence equations, in which �nite di�erences are used to approximate

the derivatives. For example, forward di�erence is used to approximate the partial derivatives (∂u∂t )

with respect to time, namely

∂u

∂t

∣∣∣∣n
i

≈
un+1
i − uni

∆t
= D

(+)
t u|ni . (2.1.44)

The �rst derivative ∂u
∂x with respect to space x has the following choices, such as


∂u
∂x

∣∣n
i
≈ uni+1−uni

∆x = D
(+)
x u|ni

∂u
∂x

∣∣n
i
≈ uni −uni−1

∆x = D
(−)
x u|ni

∂u
∂x

∣∣n
i
≈ uni+1−uni−1

∆x = D
(0)
x u|ni .

(2.1.45)
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They are called the forward di�erence, the backward di�erence and the central di�erence, respec-

tively. Using the Taylor expansion, we obtain

u(x+ ∆x) = u(x) +
∂u

∂x
∆x+

1

2

∂2u

∂x2
(∆x)2 + . . . ,

and

∂u

∂x
=
u(x+ ∆x)− u(x)

∆x
− 1

2

∂2u

∂x2
∆x− . . . = D(+)

x +O(∆x).

It is known that the forward di�erence and the backward di�erence are of �rst order accuracy.

From the Taylor's expansion, we have

u(x+ ∆x) = u(x) +
∂u

∂x
∆x+

1

2

∂2u

∂x2
(∆x)2 + . . . ,

and

u(x−∆x) = u(x)− ∂u

∂x
∆x+

1

2

∂2u

∂x2
(∆x)2 − . . . .

We get

u(x+ ∆x) =
u(x+ ∆x)− u(x−∆x)

2∆x
+O(∆x)− . . . .

We can be know that central di�erence is of second order accuracy. When partial di�erential

equations contain second order derivatives, they can also be approximated by �nite di�erence. The

�rst derivative of the central di�erential of the two half points can be obtained �rst

∂u

∂x

∣∣∣∣n
i+ 1

2

≈
uni+1 − uni

∆x
and

∂u

∂x

∣∣∣∣n
i− 1

2

≈
uni − uni−1

∆x
.

And then using these two �rst order di�erence to do a central di�erence for the second derivative,
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we have

[
∂2u

∂x2

] ∣∣∣∣n
i

≈

(
∂u

∂x

∣∣∣∣n
i+ 1

2

− ∂u

∂x

∣∣∣∣n
i− 1

2

)/
∆x =

uni+1 − 2uni + uni−1

(∆x)2
= D(0)

xx |ni . (2.1.46)

In the two-dimensional case, we also need the approximate expression of the second order partial

derivatives ∂2u
∂x∂y , which can be obtained by the least number of central di�erence of the half points,

namely

[
∂2u

∂x∂y

] ∣∣∣∣n
i,j

=
∂u

∂y

∣∣∣∣n
i,j+ 1

2

− ∂u

∂y

∣∣∣∣n
i,j− 1

2

≈
(ui+1,j+ 1

2
− ui−1,j+ 1

2

2∆y
−
ui+1,j− 1

2
− ui−1,j− 1

2

2∆y

)/
∆x.

The half points can be approximated as

ui±1,j+ 1
2
≈ 1

2
(ui±1,j+1 + ui±1,j) and ui±1,j− 1

2
≈ 1

2
(ui±1,j−1 + ui±1,j).

Thus

[
∂2u

∂x∂y

] ∣∣∣∣n
i,j

= D(0)
xy u|ni,j =

u|ni+1,j+1 + u|ni−1,j−1 − u|ni+1,j−1 − u|ni−1,j+1

4∆x∆y
. (2.1.47)

2.1.4 Gradient descent �ow method

From the above discussion we can see that the extreme value problem of the energy functional

becomes a problem of solving the corresponding Euler-Lagrange equation. In general, the Euler-

Lagrange equation is nonlinear PDE, and the discretization will lead to a nonlinear simultaneous

algebraic equations. Numerical calculation is di�cult. By introducing a "time" auxiliary variable,

the static nonlinear PDE problem can be transformed into a dynamic PDE problem. When the

evolution reaches the steady state, we obtain the solution of the Euler-Lagrange equation of the

variational problem. This is the gradient descent �ow method that will be discussed in the next

section.
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1. Gradient descent �ow

Assume that the solution we look for changes over time, that is, it can be expressed as u(·, t), and

this change with time always reduces the energy J(u(·, t)). How should u(·, t) change to meet this

requirement? Again we take one-dimensional variation as an example, and the variation δu(·) in the

equation (2.1.27) is caused by the amount of change in u(·, t) from t to t+ ∆t. Namely δu = ∂u
∂t∆t.

Then equation (2.1.27) can be written as J(·, t + ∆t) = J(·, t) + ∆t
∫ b
a
∂u
∂t

[
∂F
∂u −

d
dx

(
∂F
∂u′

)]
dx. So,

only by making

∂u

∂t
= −

[
∂F

∂u
− d

dx

(
∂F

∂u′

)]
=

d

dx

(
∂F

∂u′

)
− ∂F

∂u
, (2.1.48)

we can make J(y(·, t)) gradually reduce because

∆J = J(·, t+ ∆t)− J(·, t) = −∆t

∫ b

a

[∂F
∂u
− d

dx

(
∂F

∂u′

)]2
dx ≤ 0.

So we call equation (2.1.48) as the gradient descent �ow corresponding to the variational problem

equation (2.1.21).

In this way, we use an properly selected initial function u0 and carry out iteration calculation

based on equation (2.1.48) until u reaches a stable solution, and then ∂u
∂t = 0⇒ d

dx

(
∂F
∂u′

)
− ∂F

∂u = 0.

It can be see that the stable solution of the descending gradient is the soliton of the Euler-Lagrange

equation equation (2.1.28).

Similarity for two-dimensional variational problems, a gradient descent �ow can be obtained

∂u
∂t = d

dx

(
∂F
∂ux

)
+ d

dy

(
∂F
∂uy

)
− ∂F

∂u . It is worth noting that only when J(u) is convex, it has a

unique minimum value, so that the gradient descent �ow can be obtained with the unique solution

independent of the initial conditions. When J(u) is non-convex, the gradient descent �ow may

obtain di�erent local minima due to di�erent initial conditions instead of the global minimum.

Example 2.1.4. When we discuss an alternating projection method, which uses the edge in-

formation to characterize signals, the basic idea is that the reconstructed two dyadic wavelet coef-

�cients satisfy the value of |g(x)| should be as small as possible and at the same time g(x) should
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be as smooth as possible under the condition that at two endpoints g(x0) = a, g(x1) = b (a, b

are known). This leads to a typical one-dimensional variational problem with �xed endpoints:

J [g(x)] =
∫ x1
x0

[
g2 +

(
∂g
∂x

)2
]
dx. From F [g, g′] = g2 +

(
∂g
∂x

)2
, we have Euler-Lagrange equation

g − d2g
dx2

= 0. This is a second order linear ordinary di�erential equation with constant coe�cients,

and its general solution is g = αex + βe−x, where α and β can be ascertained from boundary con-

dition g(x0) = a, g(x1) = b. However, it is very rare for the Euler-Lagrange equation to obtain the

analytical solution directly as in this case. The following example illustrates the necessity of using

the gradient descent �ow to obtain numerical solutions.

Example 2.1.5. If F = ρ(|∇u|) = ρ(u2
x + u2

y)
1
2 in equation (2.1.31), then the corresponding

Euler-Lagrange equation is (see equation (2.1.38))

d

dx

(
∂F

∂ux

)
+

d

dy

(
∂F

∂uy

)
= 0 ⇒ d

dx

(
ρ′|∇u| ux

|∇u|

)
+

d

dy

(
ρ′|∇u| uy

|∇u|

)
= 0

⇒ div

(
ρ′|∇u| ∇u

|∇u|

)
= 0. (2.1.49)

In this way, we obtain a static nonlinear second order PDE. Finding numerical solutions of the direct

equation (2.1.49) leads to the solution of a nonlinear simultaneous algebraic equations. It is relatively

simple to solve the problem using the gradient descent �ow method. Taking the gradient descent

�ow ∂u
∂t = div

(
ρ′|∇u| ∇u|∇u|

)
, we transform the same variational problem into a initial boundary

value problem. So it is possible to realize numerical calculation conveniently by explicit scheme.

Now we discuss two speci�c cases of signi�cance in this case: 1) If ρ(r) = r, then the gradient

descent �ow is simpli�ed as ∂u∂t = div
(
∇u
|∇u|

)
. This equation is closely related to the "total variation"

image restoration model. 2) If ρ(r) = r2, then ρ′(r)2r. We neglect the constant factor, and then the

gradient descent �ow can be reduced to ∂u
∂t = div∇u = ∇2u. So in this case, the gradient descent

is linear heat �ow.
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2.1.5 The extremum principle of partial di�erential equations

In the partial di�erential equation (PDE) theory, the maximum principle is a very important

basic concept, which can be generally expressed as: for certain types of PDF, its solution's maximum

(small) value can only appear on the (time and space) de�ned boundary. For example, a continuous

function u(x) de�ned in [a, b] intervals, if it satis�es the below in the open interval (a, b)

u′′ + g(x)u′ > 0, x ∈ (a, b), (2.1.50)

where g(x) is any bounded function, and then the maximum value of u is only possible at the

endpoints a and b. If at an internal point c the function reaches the maximum value, then u′(c) = 0,

and u′′(c) < 0, a < c < b. But this obviously contradicts equation (2.1.50), so equation (2.1.50)

follows the extremum principle. We apply the above inference method to Laplace equation ∇2u = 0.

If solution u reach the maximum in the strict sense at any point c inside range Ω, then ∇u(c) = 0,

∇2(c) < 0, which contradicts the requirement of ∇2u(c) = 0. Thus we reach the conclusion: if the

solution u of a Laplace equation reaches the maximum (minimum) value at any point c in range Ω,

then u = C (constant) in Ω.

The principle of extreme value can often be used to prove the uniqueness of solutions of partial

di�erential equations. For example, let us consider the Poisson equation

 ∇
2u = f, x ∈ Ω

f = g, x ∈ ∂Ω.
(2.1.51)

Let u1 and u2 be two solutions, and u := u1 − u2. Then u satis�es

 ∇
2u = 0, x ∈ Ω

u = 0, x ∈ ∂Ω.

Since u is continuous on Ω ∪ ∂Ω, then according to the above theory, u ≡ 0, that is u1 = u2. This

proves the uniqueness of the solution of Poisson equation with the �rst kind of boundary condition.
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The extreme value principle also has important applications in the study of other basic prop-

erties of partial di�erential equations. For example, in the study of two closed curve according to a

partial di�erential equation. If in the initial time, one curve is strictly contained inside the another

curve, then in order to prove the inclusion relation always established in the process of evolution, we

only need to prove that the distance between the two curves meets the maximum principle. Similar

methods can be used to detect the two images according to whether order is kept between the two

images during the evolution following a certain PDE. For example, if the initial image has u1 < u2,

then whether this relationship maintains during the evolution.

2.1.6 Variational and partial di�erential equations in image processing

Partial di�erential equations were introduced into image processing in 1980s and have witnessed

sound development in the 90s. The partial di�erential equations in the image domain are represented

as: F (x, y, I, ∂I∂x ,
∂I
∂y ,

∂2I
∂x2

, ∂2I
∂x∂y ,

∂2I
∂y2

, . . .) = 0, where, x, y represent two-dimensional coordinates of

the image, and I represents the gray values of pixels. From the above analysis we can see that the

partial di�erential equation has the following advantages:

1. Linear superposition property

If F is a linear operator, then superposition principle is established, that is if F (I1) = 0, F (I2) = 0,

I = αI1 + βI2, α, β are constant, then

F (I) = αF (I1) + βF (I2) = 0.

2. Uniqueness of solutions of partial di�erential equation model

By setting the initial conditions and di�usion coe�cients of partial di�erential equations, the exis-

tence, uniqueness and stability of the model solution in the image domain can be guaranteed.

3. Local feature preserving performance

Partial di�erential equations can be used to process images according to local features, and preserve

geometric features such as region boundaries. Partial di�erential equations can model the geometric
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information of the gradient, curvature, tangent direction and normal direction of the image directly,

so the visual e�ect of the image after processing is good. For di�erent image processing tasks,

scientists proposed a large number of di�erent partial di�erential equations models. For example:

Di�erent energy functionals were applied to image de-noising, enhancement, segmentation, ampli-

�cation, repair and compression. Such models include tensor di�usion partial di�erential equation

model, di�usion equation models based on the theory of manifold, Mumford-Shah free boundary

model, parabolic hyperbolic model, based on Euler (Euler-Lagrange) energy functional high order

partial the di�erential equation model, and gradient vector and gray information di�usion model.

In the �eld of image processing, partial di�erential equations have achieved remarkable results,

mainly in the areas of PDE image de-noising, PDE image zooming, PDE image segmentation and

PDE image restoration.

In this dissertation, we mainly study the PDE segmentation, and adopt the high order partial

di�erential equation model based on the Euler-Lagrange energy functional.

In the following sections, we will present the basics of partial di�erential equations and varia-

tional methods, and the relationship to image segmentation techniques.

2.2 Mathematical representation of plane curves and their characteristics

2.2.1 Di�erential properties of plane curves

A mapping from one-dimensional real domain to two dimensional real domain C(p) : [a, b] ∈

R → R2 de�nes plane curve [68], in which the p is the parameter of the curve, that is a point on

the curve is obtained for any p ∈ [a, b],

C(p) = (x(p), y(p)). (2.2.1)

Therefore, C(p) actually can be regarded as a vector, and its derivative of P is also a vector

Cp = (xp, yp). Its direction is the tangent direction of the curve, so it is called the tangent vector

and its length is |Cp| =
(
(xp)

2 + (yp)
2
) 1

2 . It can be understood that the position of the point on

the curve increases with the increase of p, so Cp is also called the velocity vector.
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Now we consider the distance traveled from the starting point p0 = a to the point p, i.e. the

length of the arc:

s(p) =

∫ p

a
|Cp(τ)|dτ. (2.2.2)

So we have

ds

dp
= |Cp|.

When we use arc length as the parameter of the curve, the leftside is 1 and the rightside is |Cs|.

Thus |Cs| = 1. That is to say, if the arc length s is the parameter, the tangent vector is always the

unit length. Let T = Cs. Then

|T | ≡ 1. (2.2.3)

At this point, the arc length between any two points on the curve can be expressed as

L(p1, p2) =

∫ s(p2)

s(p1)
ds =

∫ p2

p1

√
x2
p + y2

pdp. (2.2.4)

Another fundamental concept of plane curves is curvature. Since it is a unit vector, its inner

product is 1, that is 〈Cs, Cs〉 = ‖Cs‖2 = 1. Taking the derivative to both sides, we obtain 〈Cs, Css〉 =

0. It is obvious that the vector Css and the unit tangent vector Cs are orthogonal. We de�ne the

unit vector that constitutes the right coordinate system with T as the normal vector N . Then we

can see that Css and T are collinear, and

Css = κN. (2.2.5)

The scale factor κ in the equation is called curvature. When Css and N are parallel, κ > 0 and

conversely, when Css and N antiparallel, κ < 0. However, the direction of N is determined by T in
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the right-hand coordinate system, while the direction of T is the direction of the parameter going,

depending on the starting point of the curve. Therefore, for an open curve, plus or minus of the

curvature depends on the position of the starting point. For a closed curve, the starting point and

the end point is the same. We prescribe the direction of the curve counterclockwise and let N point

to the inside of the closed curve. So when the curve is concave out, the curvature is positive; the

other way around, if the curve is concave in, the curvature is negative.

According to the equation (2.2.3), the equation (2.2.5) can also be expressed as

Ts = κN. (2.2.6)

This means that the geometric meaning of curvature κ(s) is the change rate of the tangent vector

T with the arc length. This point can be seen more clearly from Figure 2.2. Assume that the

tangent vectors and normal vectors on a point s of a curve can be represented respectively as

T (s) = (cos θ, sin θ) and N(x) = (− sin θ, cos θ), where θ represents the inclination angle between

the T and the X axis. When the curve moves to s+ ∆s, we have

T (s+ ∆s)− T (s)

∆s
∼=
(
− sin θ

∆θ

∆s
, cos θ

∆θ

∆s

)
=

∆θ

∆s
N(s).

Let ∆s→ 0, and compare with equation (2.2.6). We have

κ =
dθ

ds
. (2.2.7)

This shows that the curvature is the angular velocity of the tangential vector (see �gure 2.2(a)), as

well as the normal vector of the angular velocity of rotation (see �gure (2.2(b)). Furthermore when

the curve moves counter clockwise from N(s) to N(s + ∆s), the curvature is positive, otherwise

curvature is negative. In addition, we can further have

N(s+ ∆s)−N(s)

∆s
∼=
(
− cos θ

∆θ

∆s
,− sin θ

∆θ

∆s

)
= −∆θ

∆s
T (s). (2.2.8)
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So

N(s) = −κT.

Equation (2.2.6) and equation (2.2.8) are called the Frenet equations.

Figure 2.2: Interpretation of geometric meaning of curvature.

Now letus consider a circle with a radius of a. From s = aθ ⇒ dθ
ds = 1

a ⇒ κ = 1
a . It can be

seen that a circle is a closed curve whose curvature is constant, and the curvature is the reciprocal

of its radius.

For an arbitrary curve, C : y = f(x), and a point M on the C. We �nd another point D, on

the normal of C direction with a distance of 1/κ(s) from M . We make a circle whose center is on

M with a radius of 1/κ(s). Then the circle is tangent to the curve at the point M , and it has a

same curvature with curve C. Such a circle is called an Osculating Circle of the curve C at its point

M. It can be said that curvature is the reciprocal of the radius of the close curve (see Figure 2.3).

Figure 2.3: Osculating Circle.
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In addition, from

Cp = (xp, yp)
dp

ds
=

(xp, yp)√
(x2
p + y2

p)
,

we have

dCp
dp

=
xpypp − xppyp√

(x2
p + y2

p)
3

(−yp, xp),

and

Css =
dCp
dp

dp

ds
=
xpypp − xppyp√

(x2
p + y2

p)
3

(−yp, xp)√
(x2
p + y2

p)
=
xpypp − xppyp
(x2
p + y2

p)
3/2

N.

Then another expression of curvature is obtained

κ =
xpypp − xppyp
(x2
p + y2

p)
3/2

. (2.2.9)

Next, we derive another important curvature expression. Let unit normal vectorN = (n1, n2) =

(− sin θ, cos θ). Then

∂n1

∂x
=
∂n1

∂θ

∂θ

∂s

∂s

∂x
= − cos θ · κ · ∂s

∂x
,

∂n2

∂y
= − sin θ · κ · ∂s

∂y
. (2.2.10)

Since ds = dx cos θ + dy sin θ, comparing with ds = ∂s
∂xdx+ ∂s

∂ydy, we have

∂s

∂x
= cos θ,

∂s

∂y
= sin θ.

From equation (2.2.10), obtain ∂n1
∂x = −κ cos2 θ, ∂n2

∂y = −κ sin2 θ. Thus

κ = −
(
∂n1

∂x
+
∂n2

∂y

)
= −div(N). (2.2.11)
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It can be proved that the arc length and the curvature are two Euclidean invariants, and the

curvature and the arc length of the plane curve remain unchanged from rotation and translation

motion.

2.2.2 A level set representation method for plane closed curves

For plane closed curves, besides using equation (2.2.1) and C(a) = C(b) as the explicit equation,

we can also use the implicit equation: C = {(x, y), u(x, y) = c}, where u(x, y) is a binary function,

that is to say, C satis�es the point set of u(x, y) = c, called a level (line) set of u(x, y). At this

point, we call the u(x, y) as an embed function of C. Figure 2.4 gives a sketch of the level set.

When the constant c = 0, it is called the zero level set.

Figure 2.4: Embedded functions and level sets.

If a direction derivative is taken to the function u(x, y) in the tangent direction of the level set

at a point p, since u(x, y) remains unchanged along the level set, then du
dT = ∂u

∂x cos θ+ ∂u
∂y sin θ = 0,

where θ represents the inclination angle between the vector T and the axis x. The descendant

gradient of u

∇u =

(
∂u

∂x
,
∂u

∂y

)
(2.2.12)

is perpendicular to the tangent vector T = (cos θ, sin θ) of the level set, that is, parallels to the
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normal vector of the level set. On the other hand, according to the de�nition (2.2.12), the direction

of the gradient always points to the direction in which the value of the function u(x, y) increases.

Therefore, the unit normal vectors of level sets can be represented as

N = ± ∇u
|∇u|

. (2.2.13)

If u(x, y) is positive inside the zero level set, and negative outside the zero level set, we let the sign

in equation (2.2.13) be plus, and otherwise minus. In this way, N always points to the interior of

the closed curve, which is consistent with the de�nitions of the closed curve law vector N in the

last section.

In the next section when discussing the level set method for curve evolution, the zero level

set of the embedded function u(x, y) is always speci�ed. For the curve we are concerned with, it

is stipulated that u(x, y) < 0 inside the zero level set, and u(x, y) > 0 outside the zero level set.

Therefore, under this agreement, equation (2.2.13) takes negative. Substituting equation (2.2.13)

into equation (2.2.10), the curvature of the embedded function u(x, y) level set can be obtained

κ =
uxxu

2
y − 2uxuyuxy + u2

xuyy

(u2
x + u2

y)
3/2

. (2.2.14)

It is worth noting that equation (2.2.14) can not only be used to compute the curvature of zero

level set u(x, y), but also to compute the curvature u(x, y) of all levels set.

2.2.3 Global properties of plane curves

For plane closed curve (namely C(a) = C(b)), we have the below global properties:

1. A circle is a unique closed curve with constant curvature;

2. Each closed curve has at least four vertices. The so-called vertices means that the �rst

derivatives of the curvature at these points are zeros. Obviously, in this de�nition, every

point on the circle is a vertex;

3. The total curvature of a closed curve is an integral multiple of 2π, i.e.
∫
κ(s)ds = 2πk;
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4. Perimeter inequality. Let A and L be the area and perimeter of the closed curve, respectively.

Then we have L ≥ 2
√
πA. If and only if the closed curve is round, the equal sign in the upper

form is valid.

2.3 Curve evolution and variational level set method

2.3.1 A general equation for geometric evolution of curves

First we consider a closed curve sequence C(p, t), t ≥ 0 that follows the following PDE evolu-

tion:

∂C(p, t)

∂t
≡ V = α(p, t)T + β(p, t)N, C(p, 0) = C0(p), (2.3.1)

where α and β are the tangential velocity and the normal velocity respectively. The value of y of

a curve can be expressed as a function of x, y = r(x). That is, the curve C is represented by x as

a parameter, C(x) = (x, r(x)). So, the tangential vector is Cx = (1, rx). The unit tangent vector

and the normal vector are T = (1,rx)√
1+r2x

, and N = (−r,1)√
1+r2x

. Therefore, when the curve C is evolved

according to the equation (2.3.1), x and y at any point will move in accordance with the following

equations

dy

dt
= α

rx√
1 + r2

x

+ β
1√

1 + r2
x

,

dx

dt
= α

1√
1 + r2

x

+ β
−rx√
1 + r2

x

.

Given that

dy

dt
= rx

dx

dt
+ rt

⇒ rt =
dy

dt
− rx

dx

dt
= α

rx√
1 + r2

x

+ β
1√

1 + r2
x

− α rx√
1 + r2

x

+ β
r2
x√

1 + r2
x

= β
√

1 + r2
x,

this formula shows that the change of the geometric shape of the curve is only related to the normal

β of V , not to the tangential α of the velocity of motion. Therefore, when we discuss the evolution
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of geometric curves, we only need to consider the normal velocity (Figure 2.5). In this way, the

general equation of curve evolution can be simpli�ed as

∂C

∂t
= βN. (2.3.2)

Figure 2.5: Curve evolution is independent of tangential velocity in geometry.

2.3.2 Level set method for curve evolution

1. Basic concept

It has been pointed in section 2.2.2 that a closed plane curve can adopt implicit expression, which

is de�ned as a level set of a two-dimensional function u(x, y), i.e. C = {(x, y), u(x, y) = c}. Then,

if C has any kind of changes, then we can say function u(x, y) has corresponding changes. More

precisely, the closed curve that changes with time can be expressed as a level set of a 2D function

u(x, y) that changes with time, namely C(t) = {(x, y).u(x, y, t) = c}. So, how does the embedding

function u(x, y, t) evolve when the curve C(t) evolves as in equation (2.3.1)? Taking the derivative

du
dt for the function u in the above equation, using the chain rule of the composite function, we have

du
dt = ∂u

∂t +∇u · ∂(x,y)
∂t = 0. Using equation (2.3.1), we obtain

∂u

∂t
= −∇u · ∂(x, y)

∂t
= −∇u · V = −|∇u| ∇u

|∇u|
· V = |∇u|N · V = β|∇u|, (2.3.3)

53



where β = V · N is the normal component of the motion velocity. equation (2.3.3) is the basic

equation of curve evolution level set method.

In above derivation, we used equation (2.2.13) with negative sign, which means that it has

been assumed that u(x, y) > c, for (x, y) outside the closed curve C; u(x, y) < c, for (x, y) inside

the closed curve C; u(x, y) = c, for (x, y) on the closed curve C. In addition, it is noted that the

derivation of equation (2.3.3) is independent of the value of constant C. So c = 0 is often taken for

convenience, that is, the curve we are concerned with is the zero level set of the embedded function.

We can see that the evolution of equation (2.3.2) under the initial condition C0 of the closed

curve C, according to is equivalent to the evolution of the embedding function u(x, y) according to

the equation (2.3.3) under the given initial value u0 condition (the zero level of u0 corresponds to

C0). That is to say the current curve C(t) can be determined at any time t by taking the level set

of u(x, y, t) = 0.

2. Variational level set method

When the curve evolution is applied to image processing problems, an curve motion equation often

comes from an energy functional for minimized a closed curve C. For example the very famous

geodesic active contour model for image segmentation is to minimize the following functional,

E(C) =

∮
g(|∇I[C(s)]|)ds. (2.3.4)

Now we will describe this theory and prove [68] that the descent gradient of equation (2.3.4) is

∂C

∂t
= [g(c)κ−∇g ·N ]N. (2.3.5)

(1) Selection of energy functional

The Fermat theorem in optics tells us that when light travels in an inhomogeneous medium, the

light will not be a straight line; rather its path is determined by the shortest path of the light. If

the refractive index of the medium is n(x, y, z), then the route of light propagation from A to B
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should satisfy a optical path such that

LR =

∫ B

A
n(s)ds (2.3.6)

reaches minimum, where ds in the formula represents the Eulidean arc length. That is to say that

light is always transmitted through the local minimum of n. The principle of Fermat can explain

the phenomena of optical phenomena such as refraction and re�ection in geometrical optics. The

idea of this principle is consistent with the idea that the local minima on active contour should be

obtained by the local minimization of g(∇I) in image segmentation snake model [32]. Therefore it

is put forward in [12] to determine the active contour by minimizing the energy functional:

LR(C) =

∫ L(C)

0
g(|∇I[C(s)]|)ds, (2.3.7)

where L(C) represents the arc length of the closed curve C and LR(C) is the weighted arc length.

This equation can also be written as

E(C) =

∮
g(|∇I[C(s)]|)ds. (2.3.8)

(2) Prove equation (2.3.5).

Using the parametric representation of a curve, the closed curve C is expressed as C(p) : [0, 1]→ R2,

C(0) = C(1). Given that ds = |Cp|dp, equation (2.3.8) can be rewritten into

E(C(p)) =

∫ 1

0
g(C(p))|Cp(p)|dp. (2.3.9)

In order to deduce the gradient descent �ow of this formula, the auxiliary variable t is introduced

into C, and the formula is further rewritten into

E(C(p, t)) =

∫ 1

0
g(C(p, t))|Cp(p, t)|dp. (2.3.10)
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So we have

dE

dt
=

∫ 1

0

{
d

dt
g(C(p, t))

}
|Cp(p, t)|dp+

∫ 1

0
g(C(p, t))

{
d

dt
|Cp(p, t)|

}
dp

=

∫ 1

0
{∇g(C(p, t)) · Ct(p, t)}|Cp(p, t)|dp+

∫ 1

0
g(C(p, t)){Cpt(p, t) · T}dp. (2.3.11)

In the formula, T represents the unit tangent vector of C. The partial integration method is applied

to the second item of equation (2.3.11) and we take into account that C is a closed curve, then we

have

∫ 1

0
g(C(p, t)){Cpt(p, t) · T}dp = −

∫ 1

0
{g(C(p, t))T}pCt(p, t)dp

= −
∫ 1

0
{∇g(C(p, t)) · Cp(p, t)}[T · Ct(p, t)]dp−

∫ 1

0
{g(C(p, t))}Tp · Ct(p, t)dp.

Substituting it into equation (2.3.11) and using s to replace the parameters p in the above equation,

and |Cs(s, t)| ≡ 1, we have

dE

dt
=

∫ L(C)

0
{{∇g(C(s, t)) · Ct(s, t)} − {∇g(C(s, t)) · T}[T · Ct(s, t)]} ds

−
∫ L(C)

0
{g(C(s, t))}Tp · Ct(p, t)ds

=

∫ L(C)

0
{∇g(C)− [∇g(C) · T ]T − g(C)Ts} · Ctds.

Because ∇g(C)− [∇g(C) · T ]T = [∇g(C) ·N ]N , Ts = κN and Ts = κN , we have

dE

dt
=

∫ L(C)

0
{∇g(C) ·N − g(C)κ}N · Ctds.

In order to make dE
dt < 0, Ct should satisfy Ct = g(C)κN −∇g(C) ·N . Now the equation (2.3.5) is

approved.
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(3) Variational level set representation

If the level set method discussed above is used, then the corresponding PDE for the embedded

function is

∂u

∂t
= [gκ−∇g ·N ]|∇u| = |∇u|div

(
g
∇u
|∇u|

)
. (2.3.12)

A new level set method, called variational level set method, is proposed in the literature [77]

for the curve evolution problem, derived from the energy functional minimization of curves.

First, we use the special function de�ned below (called Heaviside functions),

H(z) =

 1, z ≥ 0

0, z < 0.

The loop integral formula equation (2.3.4) along the C can be rewritten as an area division
∮
C g(C)ds =∫∫

Ω

g(x, y)|∇H(u)|dxdy. Because ∇H(u) = δ(u)∇u, δ(z) = d(H(z))
dz , equation (2.3.4) can be rewrit-

ten as the functional of imbed function u

J(u) =

∫∫
Ω

g(x, y)δ(u)|∇u|dxdy. (2.3.4a)

Using the variational method, the gradient descent �ow of the upper type can be obtained

∂u

∂t
= δ(u)div

(
g
∇u
|∇u|

)
. (2.3.13)

In order to make it a computable PDE, δ in the formula needs to be approximated by regularization

δε, that is equation (2.3.13) can be rewritten as

∂u

∂t
= δε(u)div

(
g
∇u
|∇u|

)
, δε(z) =

dHε(z)

dz
. (2.3.14)
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Here, Hε(z) is called the regularized Heaviside function. In principle, it can be any function that

satis�es the following conditions: Hε(z)
z→0−−−→ H(z).

For example, the following functions can be used as regularized Heaviside functions:

H(1)
ε (z) =


1, z > ε

0, z < −ε
1
2

(
1 + z

ε + 1
π sin πz

ε

)
, other

, H(2)
ε (z) =

1

2

(
1 +

2

π
arctan

z

ε

)
. (2.3.15)

They are all odd symmetric functions, in which the arguments are used to control the speed of the

function from 0 to 1. Figure 2.6(a) is an image of these two regularized Heaviside. The image of

their derivative dH
(1)
ε
dz and dH

(2)
ε
dz are shown as in Figure 2.6. They can be regarded as εz(u) function

in equation (2.3.14).

PDEs (2.3.12) and (2.3.14) look like the same. The di�erence is just |∇u| and εz(u). However,

mathematically, the two PDEs have an essential di�erence. Equation (2.3.12) belongs to the hyper-

bolic type, while equation (2.3.14) belongs to the parabolic type. The stability of the later one is

higher than the former one. Thus, a larger time step is needed in numerical implementations and

often without the need for re-initialization of the embedded function.

(a) (b)

Figure 2.6: Regularized Heaviside graphs, and dH
(1)
ε

dz
and dH

(2)
ε

dz
graphs

However, this does not mean that the variational level set method can replace the level set method,

because the premise of using the variational level set method to solve the problem of curve evolution

is: the problem is derived from minimizingthe "energy" functional J(C) of the C curves. This is
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done by introducing the embedded function u and using the Heaviside function to transform J(C)

into J(U). The PDE of u is obtained by calculus of variations. The level set method is: �rst, the

variational method is used to minimize the energy functional of C, and the equation of motion of C

is obtained. Then the embedded function is introduced to obtain the PDE of u. The problem is that

not all the evolution of curves and surfaces is derived from minimization of the energy functional.

There are many kinds of interface evolution problems in �uid mechanics, material science and many

other �elds. In these cases, the evolution equation (PDE) of the interface is derived directly from

the laws of physics. In these cases, level set methods may be applied. Therefore, the level set

method is more suitable than the variational level set method.

3. Improved variational level set method

In order to completely avoid re-initialization, an improved variational level set method is proposed

in literature [41] by adding an item in the "energy" functional related to the embedded function u,

i.e. P (u) =
∫∫
Ω

1
2(|∇u| − 1)2dxdy. Its gradient descent �ow is ∂u

∂t =
[
∇2u− div

(
∇2u
|∇u|

)]
. Obviously,

minimizing P (u) means that the requirement of |∇u| = 1, that is, the embedded function u should

be kept as a distance function as far as possible in the evolution process. The above equation can

be rewritten as

∂u

∂t
= div

[(
1− 1

|∇u|

)
∇u
]
. (2.3.16)

This is a nonlinear heat conduction equation with a conductivity rate of α = 1 − 1
|∇u| . Obviously

when |∇u| > 1 and α > 0, the heat is conducted to the outside, and |∇u| is reduced; The other

way around, when |∇u| > 1 and α < 0, |∇u| is increased. As a result, any deviation from the local

|∇u| = 1 will be corrected in the subsequent evolution. Thus, re-initialization is not necessary at

all.

For example, after adding P (u) to the functional of equation (2.3.4a), we have

J(u) = µ

∫∫
Ω

1

2
(|∇u| − 1)2dxdy +

∫∫
Ω

g(x, y)δ(u)|∇u|dxdy. (2.3.4b)
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The Corresponding gradient descent �ow is

∂u

∂t
= µ

(
∇2u− div ∇u

|∇u|

)
+ δε(u)div

(
g
∇u
|∇u|

)

where µ is a chosen constant.

The advantage of the improved variational level set method is that it not only completely

avoids the problem of re-initialization, but also simpli�es the work of initializing the embedded

function u0(x, y). Since the model itself has the ability to automatically approximate the embedded

function u as a distance function, initialization does not necessarily strictly require that u0(x, y) be

a distance function C0. Based on this consideration, literature [32] proposed the below initialization

scheme

u0 =


−α, (x, y) ∈ int ernal of C0

0, (x, y) ∈ C0

α, (x, y) ∈ external of C0,

where α ≈ 2ε, and ε is the parameter of regularized Heaviside function (see equation (2.3.15)).
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Chapter 3

THE MEDICAL IMAGE SEGMENTATION MODEL BASED ON

ENTROPY

In 2001, Chan and Vese assumed that the image consists of two homogeneous regions of the

target and the background and proposed the famous CV model [15]. As described in Section 1.3.2,

CV model is a Geometric Activity Contour Model Based on Region. The model has the advantages

of low computational complexity, strong anti-noise and insensitivity to the initial contour. Since

the CV model depends on the grayscale homogeneity of the to-be segmented region. Therefore,

the segmentation speed is very slow for the image with intensity inhomogeneity and sometimes

the image cannot even be segmented. In addition, CV model evolution requires the periodical re-

initialization of the level set function to ensure the stability of the computation [56]. It costs a lot

of time.

In order to improve segmentation processing speed, many excellent algorithms are proposed

[9, 13, 26]. Good segmentation results have been achieved. But for those intensity inhomogeneity

images, these algorithms still cannot get a good result. Aimed at this problem, Vese proposed

a complicated Piecewise Smooth (PS) model [67]. The PS model uses two smooth functions to

approximate the grayscale of the to-be segmented image, which solves the problem of that the CV

model cannot segment the uneven grayscale image. However, the PS model calculation is more

complex and the evolution time is too long. In order to improve the existing problems of the CV

model, Li proposed the famous RSF model [40]. The RSF model transforms the two-value global

�tting energy functional of the CV model into the local binary �tting energy with the Gaussian

function as the kernel function. The RSF model has e�ectively solves the problem that CV model

cannot deal with uneven grayscale image. However, RSF model is very sensitive to the selection

of the initial contour. When the initial contour selection is not appropriate, it is easy to fall into

the local minimum. Meanwhile, RSF model is sensitive to noise. In 2009, Wang et al proposed the

LGIF (Local and Global Intensity Fitting) model [69]. For the �rst time, they integrated the global

and local information of the image into an energy functional. The LGIF model used the CV model
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is not sensitive to the initial position and noise and the RSF model can deal with gray scale image.

Based on the LGIF model, we proposed CER model by using information entropy in this paper.

Numerical experiments show that CER model improved the problems that the CV model cannot

segment uneven grayscale image and that RSF model is sensitive to initial contours and has poor

noise immunity. Meanwhile, CER model also improved the speed of curve evolution.

3.1 Chan-Vese model and Region-scalable Fitting model

3.1.1 CV model [15]

The CV model can be de�ned as that the image set I de�ned in Ω is divided into two parts by

the active contour C, and the two parts are recorded as inside(C) and outside(C). We use c1 and

c2 to represent the average value of the internal gray level of the curve and the average value of the

external gray level of the curve respectively. The �tting energy functional is de�ned as follows:

ECV (c1, c2, C) =ν · Length(C) + µ ·Area(inside(C))

+ λ1

∫
inside(C)

|I − c1|2dxdy + λ2

∫
outside(C)

|I − c2|2dxdy, (3.1)

where Length(C) is the length of the contour curve which plays a role of regularization, Area(inside(C))

is the internal area of the contour curve, µ, ν ≥ 0 are two parameters, λ1, λ2 are two weight coef-

�cients, and λ1, λ2 > 0. The �rst two terms on the right hand side of the formula are called the

"�tting" terms which are mainly used to control the �tting error for the contour curve �t edge. The

other two terms are called the "smooth" terms for getting a smooth curve in the process of evolution.

The �nal position of the contour curve can be obtained by minimizing the energy functional.

Let the level set function u be represented by the following formula:


u(x, y) = 0, (x, y) ∈ C

u(x, y) > 0, (x, y) ∈ inside(C)

u(x, y) < 0, (x, y) ∈ outside(C).
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In order to apply the level set method, the Heaviside function is introduced

H(x) =

 1, x ≥ 0

0, x < 0.

The Dirac function is

δ(x) =
d

dx
H(x).

In this method, the Heaviside function is used to divide the region of evolution, and the Dirac

function is used to de�ne the value of evolution around the zero level set function. Here,

Length(C) =

∫ L(C)

0
ds =

∫
Ω
δ(u)|∇u|dxdy,

Area(inside(C)) =

∫
Ω
H(u)dxdy,∫

inside(C)
|I(x, y)− c1|2dxdy =

∫
Ω
|I(x, y)− c1|2H(u)dxdy,∫

outside(C)
|I(x, y)− c2|2dxdy =

∫
Ω
|I(x, y)− c2|2(1−H(u))dxdy.

The regularized Heaviside function is often used in the numerical calculation as

Hε(x) =
1

2

[
1 +

1

π
arctan

(x
ε

)]
.

For the constant ε, the corresponding Dirac function is

δε(x) =
1

π

ε

ε2 + x2
.

The goal is to expand the capture range and to prevent the occurrence of singular cases. Thus, the
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energy functional of the level set function is obtained as

ECVε (c1, c2, u) =ν

∫
Ω
δε(x)|∇u|dxdy + µ

∫
Ω
Hε(u)dxdy

+ λ1

∫
Ω
|I − c1|2Hε(u)dxdy + λ2

∫
Ω
|I − c2|2(1−Hε(u))dxdy. (3.2)

At this point, the level set of the image I(x, y) is

I(x, y) = c1Hε(u) + c2(1−Hε(u)).

Fixing u and minimizing the energy functional ECVε (c1, c2, u), one has

c1 =

∫
Ω I(x, y)Hε(u(x, y))dxdy∫

ΩHε(u(x, y))dxdy
, c2 =

∫
Ω I(x, y)(1−Hε(u(x, y)))dxdy∫

Ω(1−Hε(u(x, y)))dxdy
. (3.3)

In the CV model, we usually set ν = 0. The energy functional ECVε (c1, c2, u), is minimized

using the variation method and the gradient descent �ow technique and Euler-Lagrange equation

is obtained as

∂u

∂t
= νδε(u)div(

∇u
|∇u|

) + δε(u)(λ2(1− c2)2 − λ1(1− c1)2). (3.4)

The literature [44] points out that the Dirac function is narrowly de�ned, which limits the

globality of the edge of the image, and it cannot be detected stably since the target edge away from

the closed curve. CV model is only using global area information to optimize c1 and c2. It does not

take care of the grey value changed in target and the background area of the image. Therefore, CV

model cannot segment the image with uneven greyscale. Equation (3.4) contains a curvature term,

and it is really complex to achieve. We must use a speci�c numerical method to maintain numerical

stability. In addition, to maintain numerical stability in CV model, the level set function u(x, y, t)

needs to be initialized as a symbol distance function, and it need to be reinitialized after each

update. Meanwhile, reinitialization may cause the position of zero level set shift. It also increases
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the amount of computation and consumes a signi�cant amount of time. The iterative equation is

shown in below:

H(x) =

 ψt = sign(u(t))(1− |∇ψ|)

ψ(0, ·) = u(t, ·).

(a) Initial contour (b) CV, 200 iterations (c) CER, 200 iterations

Figure 3.1: Results of both CV model and our model for image with low contrast.

Figure 3.1 showes the segmentation result for low contrast (edge blur) images by using CV [42]

model and our CER model in the same initial conditions respectively. The results show that the CV

model cannot get the correct segmentation results for gray-scale images. Sometimes, it cannot even

complete the segmentation. But our CER model can quickly and accurately get the segmentation

results.

3.1.2 RSF model

Aimed at the problems of the CV model, Li et al proposed the famous RSF model which is

based on variable region �tting energy functional [40]. It is also called LBF (Local Binary Fitting)

model [39]. The RSF model uses two local �tting functions f1(x) and f2(x) to approximate the

average gray-value of the local area on both sides of the target.
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For any point x ∈ Ω in the image area and contour curve C, and the �tting energy is

ERSFx (f1, f2, C) =λ1

∫
inside(C)

Kσ(x− y)|I(y)− f1(x)|2dy (3.5)

+ λ2

∫
outside(C)

Kσ(x− y)|I(y)− f2(x)|2dy.

where λ1 and λ2 are two positive constant numbers (usually �xed to constant 1), f1(x) and f2(x)

are gray �tting values of the image at the point of x. Grey value I(y) is limited to a local area

centered on the point x, and the size of this area is controlled by the kernel function K. Thus,

equation (3.5) is also referred, in the literature [40], as a regional scale variable �tting (RSF) energy

of contour C at point x. K : R2 → R is a kernel function [2, 3]. It is satis�ed the local property.

1. K(u) = K(|u|);

2. If |u| < |v|, then K(u) ≥ K(v), meanwhile lim|u|→∞K(u) = 0;

3.
∫
R2 K(u)du = 1.

Because the kernel functionK(u) has locality (property 2), so f1(x) and f2(x) are mainly determined

by the nearby gray values. It has "local" characteristics. Obviously, in the RSF model, it is very

important to choose the right kernel function. There are many kernel functions that satisfy these

local properties. The Gaussian kernel function is used in the original literature [39, 40],

Kσ(u) =
1√
2πσ

e
|u|2

2σ2 , u ≥ 0,

where, σ > 0 is a scale parameter.

Let u be the level set function of the contour curve C. Using the level set method, one has

ERSFx (f1, f2, C) =λ1

∫
inside(C)

Kσ(x− y)|I(y)− f1(x)|2H(u)dy (3.6)

+ λ2

∫
outside(C)

Kσ(x− y)|I(y)− f2(x)|2(1−H(u))dy.
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The total �tting energy function is

ERSF =

∫
Ω
ERSFx dx.

In order to avoid periodic initialization of the level set, the RSF model combines the methods

that do not need reinitialization [41]. Adding the set regularization
∫

Ω
1
2(|∇u| − 1)2dσ term, the

total energy functional of the RSF model is

ERSFx (f1, f2, u) =λ1

∫
inside(C)

Kσ(x− y)|I(y)− f1(x)|2H(u)dydx (3.7)

+ λ2

∫
outside(C)

Kσ(x− y)|I(y)− f2(x)|2(1−H(u))dydx

+ ν

∫
Ω
|∇H(u(x))|dx+ µ

∫
Ω

1

2
(|∇u(x)| − 1)2dx.

Firstly �xing u in above formula, after minimizing the energy functional ERSFx (f1, f2, u) with respect

to f1(x) and f2(x), we have

f1(x) =

∫
ΩKσ(x− y)I(y)H (u(y)) dy∫

ΩKσ(x− y)H (u(y)) dy
, f2(x) =

∫
ΩKσ(x− y)I(y) (1−H (u(y))) dy∫

ΩKσ(x− y) (1−H (u(y))) dy
.

In fact, the �tting function f1(x) and f2(x) are the weighted averages of the image grey values

I(y) in area inside(C) and outide(C). The weight is Kσ(x− y). Due to the local character of the

Gaussian kernel Kσ, the e�ect of the gray value I(y) on f1(x) and f2(x) decreases as the distance

between y and x increases. When |x−y| > 3σ, the e�ect of I(y) is almost reduced to zero. Therefore,

the values of the �tting functions f1(x) and f2(x) are determined primarily by the gray value of

point y in {y : |x− y| ≤ 3σ} .

Then �xing the �tting factors f1(x) and f2(x), after minimizing the energy functional ERSF

with respect to u, the evolution equation of the energy functional ERSF is obtained using a gradient
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descent �ow:

∂u

∂t
= −δε(u)(λ1e1 − λ2e2) + µ

[
∇2u− div

(
∇u
|∇u|

)]
+ νδε(u)div

(
∇u
|∇u|

)
, (3.8)

where

e1 =

∫
Ω
Kσ(x− y)|I(x)− f1(y)|2dy, e2 =

∫
Ω
Kσ(x− y)|I(x)− f2(y)|2dy.

The RSF model is the energy functional, which is de�ned by the local binary �tting energy

based on Gaussian kernel function. The functions f1(x) and f2(x) are a local energy which are

related to variance. Therefore, the RSF model can better segment the image with intensity inho-

mogeneity. In addition, to avoid periodic initialization of the level set function, the RSF model has

combined models with no reinitialization [41]. It greatly accelerates the evolution rate.

Although the RSF model can better segment the image with intensity inhomogeneity, the

RSF model is still very sensitive to the initial position of active contour. When the initial contour

selection is not appropriate, it is easy to fall into the local minimum value. Then it will produce the

wrong segmentation result. This phenomenon is essentially caused by the local characteristics of

the RSF model. The �tting functions f1(x) and f2(x) in the model are �tted to the local grayscale

of the image. Therefore, the di�erent �tting values obtained at di�erent locations results in that

the RSF model being sensitive to the initial contour position.

Figure 3.2 is a X-ray vessel image. When the initial contour is chosen as the red rectangle in

Figure 3.2(a), the RSF [43] model has the right segment result of the red curve shown in Figure

3.2(b). Meanwhile, we also have the correct segmentation curve (red curve). It is the local minimum

value of the energy functional ERSFx (f1, f2, u). The corresponding �tting functions f1(x) and f2(x)

for each point on the red curve are the best grayscale approximations of the two regions where

the neighbourhood is divided by the curve, except that the two �tting functions are very close.

However, when we move the initial contour slightly to the left, we get the red rectangle shown in

Figure 3.2(c). The segment result by using RSF model is shown in the red curve in Figure 3.2(d)
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that some of the evolved contours are stuck in the background area and we cannot get the correct

target boundary. However, if we change the coordinate (47 : 60, 86 : 99) of the initial contour in

Figure 3.2(a) to (47 : 60, 77; 90) in Figure 3.2(c), we get a di�erent result. It is also explained the

sensitivity of the RSF model to the initial contour position.

(a) Initial contour (b) 220 iterations (c) Initial contour (d) 500 iterations

Figure 3.2: Sensitivity of the RSF model to the initial contour locations.

RSF model is very sensitive to the noise. When the noise intensity in the image is high, it is

di�cult to get the correct segmentation result, as shown in Figure 3.3 of the four real T-type images.

Figure 3.3(a) is the original uneven grayscale image. Figure 3.3(b), (c) and (d) are the images that

obtained by adding salt & pepper, poission with noise density of 0.02 and the Gaussian noise with

mean value of 0 and variance of 0.01. The initial contour is selected as the rectangle with the same

size and same location (as shown in the red line). From the segmentation result we can see that for

Figure 3.3(a) without noise, the RSF model can obtain the correct result as shown in Figure 3.3(e);

For Figure 3.3(b) with weaker noise, the RSF can obtain the approximate correct segmentation

result shown in Figure 3.3(f); However, for Figure 3.3(c) and Figure 3.3(d) with strong noises, the

contours evolving stays at the non-target boundary because of the noise interference or even the

segmentation cannot be completed, as shown in the red curves in Figure 3.3(g) and Figure 3.3(h).

There is not a clear conclusion of the reason for the problem caused by RSF model shown in above.

One of the possible reasons is that energy ERSFx (f1, f2, C) only considers the spatial information of

the image pixel without considering its grayscale variation information.
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(a) Original (b) Salt&pepper noise (c) Poission noise (d) Gaussian noise

(e) 300 iterations (f) 300 iterations (g) 300 iterations (h) 300 iterations

Figure 3.3: Sensitivity of the RSF model to noise.

Based on the advantages and disadvantages analysis of the CV model and the RSF model

above, we combined with information entropy and created a new local �tting energy functional to

replace the ones in the CV and the RSF models. Finally, we proposed a new CER model to improve

the CV model in which it cannot segment the image with uneven gray scale and the RSF model in

which it is sensitive to the initial position and strong noise.

3.2 The CER model based on information entropy

3.2.1 The de�nition of information entropy

Entropy is the degree of chaos in the system. It has important applications in the �elds of

cybernetics, number theory, astrophysics, life sciences and so on. There are also more speci�c

de�nitions in di�erent disciplines. Entropy is an important parameter in various �elds. Entropy is

proposed by Rudolf Clausius. It is �rst applied in thermodynamics. Later Shannon proposed the

concept of information entropy by generalizing Boltzmann's formula [61]. The information entropy

is described the uncertainty of the source. It is the average amount of information for all targets

in the source. The amount of information is the central concept of information theory, the entropy
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as a random event of uncertainty or the amount of information measurement. The information

entropy is considered from the statistical characteristics of the whole source, and it is the totality of

the information source from the mean. The greater the uncertainty of the variable, the greater the

entropy. The introduction of entropy has established the scienti�c theoretical foundation of modern

information theory, which greatly promoted the development of information theory. In 1972, Freden

�rst introduced the concept of entropy into image processing [24]. It has become a powerful tool in

image segmentation right now. The image entropy is expressed as the number of bits of the image

gray set, and it is described the average information of the image information source. Based on

Shannon's information theory, if pi is a given distribution of a given image I = (Ii), then image

entropy is:

EI = −
∑
i

pilog2pi, (3.9)

where the distribution function pi of the image is the probability that a certain gray scale appears

in the image. The distribution function pi can be de�ned in a variety of ways, it is depending on the

method used to segment the image. For example, in the edge extraction, in order to consider the

gray scale of the image, Shiozaki [64] de�ned the pi as the grey scale distribution pi = Ii/
∑

j Ij in

the image, where Ii is the greyscale of pixel i. In the image thresholding method [60], distribution

function pi can be approximately obtained from a given histogram. In this section, our distribution

function is obtained through the image histogram.

The image segmentation method based on entropy is to minimize the loss of image information.

Therefore, we can use image entropy to repair background. Meanwhile, the image entropy re�ects

the degree of dispersion of the image gray scale. When the gray distribution of the image is relatively

even, the value of entropy is large. However, the entropy is small when the image gray distribution

has bigger discreteness. Entropy is the result of the interaction of all the pixels in the image. It is

not sensitive to single point noise. Therefore, it has a certain anti-noise and �ltering capabilities.

While the image entropy is a value, the local entropy is a matrix. Compared to the convolution

operation on the matrix, the image entropy saves a lot of time.
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3.2.2 The e�ect of adding information entropy to RSF model

As already pointed out before, the CV model is a model based on the global property of the

image. The main problem of the CV model is that it cannot segment the uneven grey scale image.

The main reason is that the CV model does not consider the grey value changed in the target and

the background area of the image. However, the RSF model (LBF model) is a model based on

local information of the image. It can e�ectively segment the uneven grey scale image. Such as

MRI image. But the localized property of the model makes the model easy to fall into the local

extremum, which leads to the model being very sensitive to contour initialization. Meanwhile, RSF

model does not have a strong robustness to noise. The main reason for these problems is that the

gray value change of the image is not considered when the local �tting energy ERSFx (f1, f2, C) is

de�ned. In order to overcome the above shortcomings of the RSF model, we introduce the concept

of information entropy (see equation (3.9)) in this paper, the energy functional in the RSF model

is rewritten as follows:

EZRSF (C, f1, f2) =

∫
Ω
Er(x)Ex(C, f1(x), f2(x))dx. (3.10)

A new model is formed by combining the global energy and the local energy. In equation (3.10),

Er(x) = E(x,B(x, r)) is the local information entropy of point x ∈ Ω, where B(x, r) = {y : |x−y| ≤

0}, r > 0 is the circle centered on point x with radius r.

In addition, the smoothness of the image contour C is ensured by controlling its length |C|,

So combining with the above formula, the new energy functional can be written as the following:

EZRSF1(C, f1, f2) = EZRSF (C, f1, f2) + ν|C| (3.11)

=
2∑
i=1

λi

∫
Ω
Er(x)

(∫
Ω
Kσ(x− y)|I(y)− fi(x)|2dy

)
dx+ ν|C|.
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Using Heaviside function, the energy function can be expressed as follows:

EZRSF1(u, f1, f2) = EZRSF (u, f1, f2) + ν

∫
Ω
|∇H(u(x))|dx (3.12)

=

2∑
i=1

λi

∫
Ω
Er(x)

(∫
Ω
Kσ(x− y)|I(y)− fi(x)|2Mi(u(y))dy

)
dx

+ ν

∫
Ω
|∇H(u(x))|dx,

where M1 = H(u), M2 = (1−H(u)),
∫

Ω |∇H(u(x))|dx is the length of the contour C (i.e. the zero

level set of u), and δ(·) is the derivative of H(·).

Meanwhile, in order to avoid the periodic initialization of the level set function, we consider an

internal energy term for the level set function in the energy functional EZRSF1(u, f1, f2) of equation

(3.12):

P (u) =

∫
Ω

1

2
|∇u(x)− 1|2 dx. (3.13)

When |∇u(x)| = 1, P (u) is minimized. That is the level set function is required to remain as a sign

distance function as much as possible during the evolution. Thus the level set of energy functional

based on information entropy is

EZRSF1(u, f1, f2) = EZRSF (u, f1, f2) + ν

∫
Ω
δ(u(x))|∇u(x)|dx+ µ

∫
Ω

1

2
|∇u(x)− 1|2 dx (3.14)

=
2∑
i=1

λi

∫
Ω
Er(x)

(∫
Ω
Kσ(x− y)|I(y)− fi(x)|2Mi(u(y))dy

)
dx

+ ν

∫
Ω
δ(u(x))|∇u(x)|dx+ µ

∫
Ω

1

2
|∇u(x)− 1|2 dx,

where µ > 0 is weight parameter.

3.2.3 CER model

The weighted ZRSF model based on local entropy is proposed above to enhance the robustness

of the original model to the initial contour position and strong noise. In fact, In the image with
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uneven grayness, due to the heterogeneity of gray scale, the gray scale di�erence between di�erent

regions is often di�erent. Therefore, in order to better deal with the intensity inhomogeneity phe-

nomenon, considering the advantages and the disadvantages of the CV model and the RSF model

[69], we create a new local �tting energy functional to replace the ones in the CV and the LBF

models. The new energy functional is de�ned as:

ECER(C, c1, c2, f1, f2) = ωECV (C, c1, c2) + (1− ω)EZRSF (C, f1, f2), (3.15)

where the range of ω is 0 ≤ ω ≤ 1. constants c1 and c2 are the average gray values in the inside and

the outside of evolution curve of the original image area, respectively, and f1 and f2 are the �tting

value of the image at the point x. Using Heaviside function H(u), the level set of energy function

is:

ECER(u, c1, c2, f1, f2) = ωECV (u, c1, c2) + (1− ω)EZRSF (u, f1, f2) (3.16)

+ ν

∫
Ω
δ(u(x))|∇u(x)|dx+ µ

∫
Ω

1

2
|∇u(x)− 1|2 dx

= ω

[
λ1

∫∫
insides(C)

|I(x, y)− c1|2dxdy + λ2

∫∫
outside(C)

|I(x, y)− c2|2dxdy

]

+ (1− ω)
2∑
i=1

λi

∫
Ω
Er(x)

(∫
Ω
Kσ(x− y)|I(y)− fi(x)|2Mi(u(y))dy

)
dx

+ ν

∫
Ω
δ(u(x))|∇u(x)|dx+ µ

∫
Ω

1

2
|∇u(x)− 1|2dx.

3.2.4 Euler-Lagrange equation in CER model

We will use the variational idea to transfer the energy functional minimization problem to

�nding the steady�state solution of the corresponding Euler - Lagrange Equation.

Based on the information entropy in equation (3.14), the energy functional is about u, f1 and

f2 variables, and the functions f1 and f2 are de�ned by the inner and outer regions determined by

u. Therefore, when the energy function is minimized, u, f1 and f2 will be �xed respectively.
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First, in the case of �xed u, the following theorem holds for the functions f1 and f2.

Theorem 3.1, for the �xed u, the necessary condition for the energy function EZRSF (u, f1,

fe) to reach the minimum is that f1 and f2 satisfy the following: For a.e. x ∈ Ω, fi(x)
∫

ΩKσ(x −

y)Mi(u(y))dy =
∫

ΩKσ(x− y)I(y)Mi(u(y))dy, i = 1, 2. Thus

fi =

∫
ΩKσ(x− y)I(y)Mi(u(y))dy∫

ΩKσ(x− y)Mi(u(y))dy
, i = 1, 2. (3.17)

Proof: For �xed u and f2, taking the derivative of f1 for the energy functional E
ZRSF (u, f1, f2),

we have,

∂EZRSF

∂f1
= −2

∫
Ω
Kσ(x− y)[I(y)− f1(x)]M1(u(y))dy.

The necessary condition for obtaining the minimum value of the function is ∂EZRSF

∂f1
= 0, therefore,

∫
Ω
Kσ(x− y)[I(y)− f1(x)]M1(u(y))dy = 0

⇒ f1(x)

∫
Ω
Kσ(x− y)M1(u(y))dy =

∫
Ω
Kσ(x− y)I(y)M1(u(y))dy

⇒ f1(x) =

∫
ΩKσ(x− y)I(y)M1(u(y))dy∫

ΩKσ(x− y)M1(u(y))dy
.

The same, the expression for a function f2 can be proved similarly.

Now in the case of �xed f1 and f2, the model (3.14) can be transformed into a form represented

by only the level set function u,

EZRSF2(u) = EZRSF (u) + νL(u) + µP (u) (3.18)

=

2∑
i=1

λi

∫
Ω
Er(x)

(∫
Ωi

Kσ(x− y)|I(y)− fi(x)|2Mi(u(y))dy

)
dx

+ ν

∫
Ω
δ(u(x))|∇u(x)|dx+ µ

∫
Ω

1

2
|∇u(x)− 1|2dx.

In order to solve the minimization problem (3.18), we �rst deduce the Euler-Lagrange equation

75



corresponding to the function, as follows:

Theorem 3.2, assume W 1,2(Ω), the necessary conditions for the energy functional (3.18) to

reach the minimum is δε(u)(λ1e1 − λ2e2)− νδε(u)div
(
∇u
|∇u|

)
− µ

[
∇2u− div

(
∇u
|∇u|

)]
= 0, u ∈ Ω

∂u
∂n = 0, u ∈ ∂Ω

(3.19)

where

ei = ei(x) =

∫
Ω
Kσ(x− y)Er(y)|I(x)− fi(y)|2dy, i = 1, 2. (3.20)

The second equation is called the Neumann boundary condition, and n is the outer normal vector

of the boundary ∂Ω.

Proof: The necessary condition for obtaining the extremum from the function is known, the

necessary condition for EZRSF2(u) minimization is that the corresponding functional's Gâteaux

derivative is zero. For any test function h ∈ C∞(Ω),

dEZRSF2(u)

du
= lim

τ→0

EZRSF2(u+ τh)− EZRSF2(u)

τ
= 0.

Considering the linear property of the derivative of the Gâteaux, we can rewrite the Gâteaux

derivative of the energy functional EZRSF2(u) to the following:

dEZRSF2(u)

du
=
dEZRSF (u)

du
+ ν

dL(u)

du
+ µ

dP (u)

du
. (3.21)

Now we derive the Gâteaux derivative of the energy functional EZRSF2, L(u), P (u), respec-

tively. Firstly, we derive the Gâteaux derivative of the energy functional EZRSF (u) in the h direction

at u. So we �rst exchange the variables x and y in the functional, that is x = y, y = x. Then we
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have

EZRSF (u) =
2∑
i=1

λi

∫
Ω
Er(y)

(∫
Ωi

Kσ(y − x)|I(x)− fi(y)|2Mi(u(x))dx

)
dy.

Changing the order of the integral and pay attention to that Kσ(−u) = Kσ(u), we obtain

EZRSF (u) =
2∑
i=1

λi

∫
Ω
Mi(u(x))

(∫
Ωi

Er(y)Kσ(y − x)|I(x)− fi(y)|2dy
)
dx

=

2∑
i=1

λi

∫
Ω
Mi(u(x))ei(x)dx.

Therefore, we have

dEZRSF (u)

du
= lim

τ→0

EZRSF (u+ τh)− EZRSF (u)

τ
(3.22)

= lim
τ→0

2∑
i=1

λi

∫
Ω

Mi(u+ τh)(x)−Mi(u(x))

τh
hei(x)dx

=

∫
Ω
δε(u)[e1(x)− e2(x)]hdx.

And then derive the Gâteaux derivative of the energy functional L(u). The detail is show in

the following.

dL(u)

du
= lim

τ→0

L(u+ τh)− L(u)

τ

= lim
τ→0

∫
Ω

δε(u+ τh)|∇(u+ τh)| − δε(u)|∇u|
τ

dx

= lim
τ→0

{
[δε(u+ τh)− δε(u)]|∇u+ τ∇h|

τh
h+

δε(u)|∇u+ τ∇h| − ∇u
τ∇h

∇h
}
dx

=

∫
Ω
δ′ε(u)h|∇u|dx+

∫
Ω
δε
∇u
|∇u|

∇hdx

=

∫
Ω
δ′ε(u)h|∇u|dx+

∫
∂Ω
δε(u)

∇u
|∇u|

h · ndS −
∫

Ω
div

(
δε(u)

∇u
|∇u|

)
hdx.

Since second term of the above equation is zero by the zero Neumann boundary condition, so

77



that the above equation can be simpli�ed as

dL(u)

du
=

∫
Ω
δ′ε(u)h|∇u|dx−

∫
Ω
div

(
δε(u)

∇u
|∇u|

)
hdx (3.23)

=

∫
Ω
δ′ε(u)h|∇u|dx−

∫
Ω
δ′ε(u)∇u ∇u

|∇u|
hdx−

∫
Ω
δε(u)div

(
∇u
|∇u|

)
hdx

=

∫
Ω
−δε(u)div

(
∇u
|∇u|

)
hdx.

Finally, we derive the Gâteaux derivative of the energy functional P (u).

dP (u)

du
= lim

τ→0

P (u+ τh)− P (u)

τ

= lim
τ→0

1

2

∫
Ω

(|∇(u+ τh)| − 1)2 − (|∇u| − 1)2

τ
dx

= lim
τ→0

1

2

∫
Ω

{
(|∇(u+ τh)| − |∇u|)(|∇(u+ τh)|+ |∇u| − 2)

τ

}
dx

= lim
τ→0

1

2

∫
Ω

(|∇(u+ τh)|+ |∇u| − 2)
(|∇(u+ τh)| − |∇u|)

τ∇h
∇hdx

=

∫
Ω

(|∇u| − 1)
∇u
|∇u|

∇hdx =

∫
∂Ω

(|∇u| − 1)
∇u
|∇u|

h · ndS −
∫

Ω

(
∇2u− div ∇u

|∇u|

)
hdx.

Since the �rst term of the above equation is zero by the zero Neumann boundary condition, so that

the above equation can be simpli�ed as

dP (u)

du
= −

∫
Ω

(
∇2u− div ∇u

|∇u|

)
hdx. (3.24)

Combining the equation (3.22), equation (3.23) and equation (3.24), the Gâteaux derivative of

EZRSF2(u) can eventually be expressed as

dEZRSF2(u)

du
=
dEZRSF (u)

du
+ ν

dL(u)

du
+ µ

dP (u)

du
(3.25)

=

∫
Ω

{
δε(u)[e1(x)− e2(x)]− νδε(u)div

(
∇u
|∇u|

)
− µ

(
∇2u− div ∇u

|∇u|

)}
hdx.
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To make all h ∈ C∞(Ω), the value of the above formula is zero. Thus

δε(u)[e1(x)− e2(x)]− νδε(u)div

(
∇u
|∇u|

)
− µ

(
∇2u− div ∇u

|∇u|

)
= 0.

Theorem 3.2 is proved.

Then we use the steepest descent method to convert the Euler-Lagrange equation (3.19) into

the corresponding gradient descent �ow equation. Introducing the "time" auxiliary variable t ≥ 0,

and based on the variational method (see section 2.1.2), the gradient descending �ow equation

corresponding to the variational problem equation (3.18) is

∂u

∂t
= −dE

ZRSF2(u)

du
(3.26)

= −δε(u)[e1(x)− e2(x)] + νδε(u)div

(
∇u
|∇u|

)
+ µ

(
∇2u− div ∇u

|∇u|

)
,

where e1(x) and e2 are shown as equation (3.20). This is the gradient down�ow equation that

considers the information entropy of the model (3.14). It is also the level set evolution equation.

Combining with the gradient descent �ow equation (3.4) of the CV model and the gradient

descent �ow equation (3.26) which considers the information entropy model (3.14), the level set

evolution equation of the CER model (3.16) in this dissertation is:

∂u

∂t
= −δε(u)(F1 + F2) + νδε(u)div

(
∇u
|∇u|

)
+ µ

(
∇2u− div ∇u

|∇u|

)
, (3.27)

where

F1 = ω(λ1(I(x)− c1)2 − λ2(I(x)− c2)2)

F2 = (1− ω)

(
λ1

∫
Ω
Kσ(x− y)Er(y)(I(y)− f1(y))2dy − λ2

∫
Ω
Kσ(x− y)Er(y)(I(y)− f2(y))2dy

)
.

It considers the image boundary and the regional in�uences at the same time.
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3.3 Research result

With this model, several groups of images are segmented by using the �nite di�erence method

and MATLAB. The experimental results show that the proposed CER method not only segment

the image with uneven gray scale better and faster, but also has stronger robustness to the initial

contour position and strong noise than the original RSF model.

3.3.1 Segmentation time

(a) Initial contour (b) RSF, 300 iterations (c) CER, 200 iterations

(d) Initial contour (e) RSF, 150 iterations (f) CER, 50 iterations

Figure 3.4: Segmentation results of RSF and CER model for two typical images with

intensity inhomogeneity.

Figure 3.4 shows the segmentation results of two typical gray inhomogeneous images which

both are used in the literature [24]. Figure 3.4(a) is a human brain Magnetic Resonance Imaging

(MRI) (119 × 78). Due to the nonuniform magnetic �eld generated by the radio-frequency coil,

the gray scale is uneven. From Figure 3.4(a) we can see that the brightness of some places above

the white matter is lower than the brightness of some places below the gray matter. Figure 3.4(d)
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is the x-ray blood vessel image (111 × 110). We can see that the brightness of some parts of the

background is even higher than the brightness of certain parts of the blood vessels, and some of

the margins of the blood vessels are weak. The presence of these grayscale inhomogeneity increases

the di�culty of segmentation. In Figure 3.4(a) and Figure 3.4(d) show the two original images and

initial contours. The initial contour is selected as the position shown by the red box in the image.

The Figure 3.4(b) and Figure 3.4(e) is the segmentation result by using RSF model. Figure 3.4(c)

and Figure 3.4(f) are the segmentation results by using new CER model shown by the red curve.

In order to qualitatively evaluate the performance of RSF model and CER model [74], we

use the Dice similarity coe�cient (DSC) [62], FNR, FPR [20] and RES [49] four regional overlap

measures. Assume that S1 represents a reference foreground area for a given image (such as the

real boundaries), and S2 represents the foreground area obtained by model segmentation. Then the

above four measures can be de�ned as

DSC =
2N(S1 ∩ S2)

N(S1) +N(S2)
, FNR =

N(S1 \ S2)

N(S1)
,

FPR =
N(S2 \ S1)

N(S2)
, RSE =

N(S2 \ S1) +N(S1 \ S2)

N(Ω)
,

where N(·) represents the number of pixels in a closed area, and Ω is the area of the image. The

more the value of DSC is closer to 1, the closer the value of FNR, FPR, and RSE are to 0, the

better the segmentation results we have. The segmentation results of the two images are obtained

Table 3.1: DSC, FNR, FPR, and RSE values for the images in Figure 3.4.

Image DSC FRN FPR RSE
Figure 3.4(a) 0.9705 0.0572 0 0.0053
Figure 3.4(d) 0.9923 0.0142 0 0.000

from the CER model and the RSF model respectively using the same parameters of λ1 = λ2 = 1,

µ = 1, ∆t = 0.1, h = 1, σ = 3, and ω = 0.01 and 0.065 for CER model. It is not di�cult to see that

the CER model achieves almost the same segmentation results as the RSF model from the �gures.

Table 3.1 is further con�rmed that the CER model has almost the same segmentation result as the
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RSF model. However, the CER model used fewer iterations and less segmentation time. The speed

of the CER model is approximately 1/2 of the RSF model. It is shown that the CER model has

greatly improved the speed of segmentation while ensuring the accuracy.

3.3.2 The comparison of initial contour position

In this section, we will compare the robustness of the RSF model and the CER model to the

initial contour position. In each set of experiments, we will select the initial contours of the same size

at di�erent locations (As shown in Figure 3.5(a) and the red rectangle of section 3.6(a)). Although

the computational speed of the CER model is signi�cantly higher than that of the RSF model,

but in order to compare the robustness of the two models, we select the same number of iterations

to get the results for comparison. We selected an arti�cial �sh image (Figure 3.5). The graph

consists of only two di�erent gray scale levels, representing the target (�sh) and the background,

respectively; and picture of salpingogram (Figure 3.6). These two images are typical images with

grayscale unevenness and low contrast.

Figure 3.5 shows the segmentation results of an arti�cial �sh image using the RSF and CER

models at �ve di�erent initial contour positions. The �rst line shows the original image and the

initial contours of the �ve di�erent positions (shown in the red rectangle). The second and third

line represent the segmentation results of the RSF model and the CER model, respectively. From

the above experimental results, it can be seen that the RSF model is sensitive to the initial contour

position. It only gets the correct segmentation results in the �rst initial contour (Figrue 3.5(a))

position. In the other four initial contour position, it cannot get the correct segmentation results.

In contrast, the CER model improves the problem that RSF model is sensitive to the initial contour

position. CER model achieved satisfactory segmentation results in �ve di�erent positions. But at

the di�erent initial contour position, the evolution speed is di�erent. For example, at the �rst initial

contour position the iteration is 40 times. At the 2-4 initial contour position the iteration is 200

times. At the �fth initial contour position the iteration is 500 times.
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(a) Initial contour (b) Initial contour (c) Initial contour (d) Initial contour (e) Initial contour

(f) 40 iterations (g) 200 iterations (h) 200 iterations (i) 200 iterations (j) 500 iterations

(k) 40 iterations (l) 200 iterations (m) 200 iterations (n) 200 iterations (o) 500 iterations

Figure 3.5: The segmentation result by using RSF model and CER model for an arti�cial

synthetic image with di�erent initial contours.

Figure 3.6 is the segmentation result by using RSF model and CER model for a real salp-

ingographic image, respectively. The �rst line is the original image and the initial contour. The

second and third line represent the segmentation results of the RSF model and the CER model,

respectively. This image is a typical low contrast image, the target is very close to the background,

and the target edge is very weak. The same as in Figure 3.5, we selected �ve initial contours of the

same size and at the di�erent position, as shown in the red rectangle in Figure 3.6. The second line

shows the segmentation result of the RSF model. It only gets approximate correct segmentation

results in the �rst initial contour position. In the other four initial contour position, it cannot get
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the correct segmentation results. Even in the �fth initial contour position, it cannot complete the

segmentation. However, CER model were successfully in extracting the target image in the �ve

initial contour positions and in getting the correct segmentation results.

(a) Initial contour (b) Initial contour (c) Initial contour (d) Initial contour (e) Initial contour

(f) 200 iterations (g) 200 iterations (h) 200 iterations (i) 350 iterations (j) 200 iterations

(k) 200 iterations (l) 200 iterations (m) 200 iterations (n) 350 iterations (o) 200 iterations

Figure 3.6: The segmentation result by using RSF model and CER model for a real salp-

ingographic image with di�erent initial contour.

From the two sets of experiments above, it is easy to see that the CER model improves the

problem that RSF model is sensitive to the initial contour position. Meanwhile, the CER model can

obtain a better segmentation result even for the uneven grey scale image or low contrast grayscale

image. Because most of the medical images are uneven grayscale or low contrast images, so our
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method has a better segmentation e�ect on this type of medical images. We will make more

explanation in the following chapters.

3.3.3 Noise sensitivity degree

In this section, we test the robustness to noise of the CER model. As described in 3.1.2, we

know that the RSF model is sensitive to noise. Therefore, we proposed a CER model to improve

this problem. The experimental results show that the CER model has strong robustness to noise.

(a) Initial contour (b) CER, 200 iterations (c) CER, 200 iterations

(d) Initial contour (e) RSF, 300 iterations (f) RSF, 300 iterations

Figure 3.7: The segmentation result by using RSF model and CER for a real magnetic

resonance images of the brains with noise.

Figure 3.7(a) and Figure 3.7(d) are the original image with the initial contour position (as

shown in the red rectangle). Figure 3.7(b) and Figure 3.7(e) are the segmentation results of human

brain magnetic resonance imaging (MRI) (119× 78) using the CER and the RSF model under the

same parameters. It is easy to see that the results are same under both models without noise;

Furthermore, the CER model is faster than RSF. Figure 3.7(c) and Figure 3.7(f) are segmentation

results with Poisson noise using the two models. We can see from the results that noise has some
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e�ect for both models, but it has more e�ect for the RSF model.

(a) Initial contour (b) CER, 200 iterations (c) CER, 200 iterations

(d) Initial contour (e) RSF, 200 iterations (f) RSF, 200 iterations

Figure 3.8: The segmentation result by using RSF model and CER for a synthetic image

with noise.

Figures 3.8(a) and Figure 3.8(d) are the original synthetic images and the initial contours, as

shown by the red circular curve. Figure 3.8(b) and Figure 3.8(e) are segmentation results for a simple

synthetic image (64 × 61) using the two models. This image is relatively simple for segmentation

because of the target and the background have obvious contrast. Therefore, both two models

achieve good results. But CER model is faster than the RSF model. Figure 3.8(c) and 3.8(f) are

segmentation results for the image with Gaussian noise (mean value is 0, variance is 0.005). Even

though we have segmented some part of the target. It is obvious that CER model obtained less

unnecessary segmentation. It means that CER greatly reduces the sensitivity to noise.
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3.4 Segmentation for magnetic resonance imaging (MRI)

(a) CER, 60 iterations (b) RSF, 60 iterations (c) RSF, 200 iterations (d) RSF, 500 iterations

(e) CER, 80 iterations (f) RSF, 80 iterations (g) RSF, 200 iterations (h) RSF, 500 iterations

Figure 3.9: The segmentation result by using RSF model and CER for a medical image.

Segmentation methods are widely used for dealing with MRI images. Figure 3.9(a) (189×164×

3) and 3.9(e) (157× 141) are two real human brain magnetic resonance images. The segmentation

results of the two images are obtained from the CER model and the RSF model with the same

parameters of λ1 = λ2 = 1, µ = 1, ∆t = 0.1, h = 1, σ = 3, and ω = 0.35 in our CER model. Figure

3.9 (b, c, d) and Figure 3.9 (f, g, h) are segmentation results obtained by using the RSF model

with 60, 200 and 500 iterations respectively. The segmentation results show that our CER model

has better segmentation ability for complex brain MRI images. Our model ensures the accuracy

of segmentation and improves segmentation speed. RSF model cannot get accurate segmentation

results on complex images, and therefore it shows that the CER model works well with variance of

grayscale level of the image to a certain extent.
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(a) Original (b) 1% Gaussian noise (c) 2% Gaussian noise

Figure 3.10: The segmentation result by using CER model (60 iterations) for medical

image with noise.

Figure 3.10(a) shows the segmentation result of a human brain MRI (189×163×3) for the CER

model. Figure 3.10(b) and 3.10(c) show the results with Gaussian noise with standard deviations

of 0.01 and 0.02, respectively. All of these three images were accurately segmented. It can be seen

from the experimental results that the noise has a certain impact on our model, but the impact is

minimal. It also shows that our CER model not only deals with uneven grayscale images, but also

has strong robustness to the initial contour position and noise.

The experimental results illustrate further that the CER model has more advantages on medical

images with gray inhomogeneity, weak edge images and complex background images. CER has

strong robustness to noise.
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Chapter 4

THE IMAGE SEGMENTATION MODEL SCER BASED ON

GRAY - SPACE FUZZY C - MEANS CLUSTERING

Clustering is the process of organizing physical or abstract objects into groups consisting of

similar objects. Cluster is a collection of data objects. The objects in the same cluster have

similarity, and the objects in the di�erent clusters are di�erent. Clustering �rst classi�es objects in

a multi-dimensional space, and then automatically divides them into clusters according to character

of the degree of a�nity between the samples. There are usually two ways to describe the degree

of a�nity between samples. One is to consider each sample as a point at multidimensional space.

In multidimensional coordinates, we determine the distances between points, classes, and use the

distances between points to describe the degree of a�nity between the samples. The other one

is to calculate the similarity coe�cient between the samples, and to use a similarity coe�cient to

describe the degree of a�nity between the samples.

4.1 Traditional fuzzy c-means clustering algorithm

Fuzzy c-means is a classic gray-based unsupervised image segmentation clustering algorithm.

Meanwhile, it is widely used. It optimizes the objective function, then obtains the membership

degree of each sample point to each cluster center, and �nally achieves the purpose of automatically

classifying the data samples [53].

4.1.1 Fuzzy theory

Fuzzy theory consists of fuzzy set theory, fuzzy logic, fuzzy reasoning, fuzzy control and so

on. In 1965, Zadeh put forward the classical fuzzy set theory, and created a new science�fuzzy

mathematics. Fuzzy set theory is a generalization based on traditional set theory. In the traditional

set theory, an element either belongs to this collection or not. However, for a fuzzy set, each element

belongs to a set with relative membership, or it can belong to multiple sets at the same time. For

example, "young people", "middle-aged" and "old" are three fuzzy concept. Which class should
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50-year-old person should belong to? We can think that the 50-year-old belongs to the "young"

level is 0, to "middle-aged" is 0.8, and to "old" is 0.2. Therefore, a 50-year-old person belong to

both the "middle-aged" and the "old" [45].

The fuzzy set theory re�ects the degree of uncertainty that the object belongs to di�erent

categories, thus objectively re�ecting the real world. In order to describe the fuzzy phenomenon,

the discrete points 0 and 1 can be extended to the continuous state interval [0, 1]. In this way, the

feature function in the general set is extended into the membership function of the fuzzy set. Thus,

we can give the de�nition of fuzzy sets: Give a domain U , then a mapping µA : x ∈ U → [0, 1] from

U to unit interval [0, 1] is called a fuzzy set on U , denoted as A. The mapping µA(·) or A(·) is called

the membership function of the fuzzy set A. µA(x) is called the membership degree of element x to

fuzzy set A.

From the above de�nition, we can see that the fuzzy set A is all described by its membership

function. The membership function µA maps each element x in U to a value on [0, 1], indicating the

degree of the element belongs to A, the greater the value is the better the degree of membership.

When the value of µA(x) is only 0 or 1, the fuzzy set A becomes an ordinary set. In general, if the

domain is discrete and �nite U = {x1, x2, . . . , xn}, its fuzzy sets have the following representations:

1. Zadeh's: A =
n∑
i=1

µA(xi)
xi

. Denominator xi is the element of the domain, the numerator µA(xi)

is membership degree of the element xi to A. Sometimes, if the membership is 0, the item

can be ignored;

2. Ordered pair method: A = {(x1, µA(x1)), (x2, µA(x2)), . . . , (xn, µA(xn))}, the former is the

element of the domain, the latter is the membership degree of the element;

3. Vector Method: To specify the elements of a �nite �eld an order of expression, the above

ordered pair method can be abbreviated as a vector of membership: A = (µA(x1), µA(x2), . . .,

µA(xn)).
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4.1.2 Theoretical basis of c-means clustering algorithm

C-means clustering is also called k-means clustering. It has been successfully applied to various

�elds. The main idea is shown in below: Suppose that the samples in the sample set can be

divided into c clusters; Select c initial cluster centers; Assign each sample to a cluster according

to the minimum distance principle; Iterate through the calculation of various types of clustering

centers and according to the new cluster center to adjust the clustering situation until the iterative

convergence.

Assume the sample set is {x1, x2, . . . , xn}, clusters are ω1, ω2, . . . , ωc, cluster centers arem1,m2, . . . ,mc.

Then the objective function (is a function that re�ects the order relation of the elements in the set)

of this method is:

J =
c∑
i=1

Ji =
c∑
i=1

∑
xj∈ωi

‖xj −mi‖2, (4.1)

where Ji =
∑

Xj∈ωi
‖xj − mi‖2 is the objective function within cluster ωi. Thus, the value of Ji

depends on the geometric properties of ωi and the position of mi.

In general, the class ωi after classi�cation is de�ned by a two-dimensional membership matrix

U of c × n. If the j data point xj belongs to class ωi, then element uij in U is 1. Otherwise,

the element is 0. Once the clustering center mi is determined, we can derive the minimize uij in

equation (4.1),

uij =

 1, ∀k 6= i, ‖xj −mi‖2 ≤ ‖xj −mk‖2

0, otherwise.
(4.2)

If mi is the nearest clustering center of xj , then xj is belong to cluster ωi. Since a given data can

only belong to a cluster, the membership matrix U has the following properties.

c∑
i=1

uij = 1, ∀j = 1, 2, . . . , n and

c∑
i=1

n∑
j=1

uij = n. (4.3)

The algorithm repeats the following steps, to determine the clustering center mi and the
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membership matrix U , the processing is show in below:

1. Initial clustering center mi, i = 1, 2, . . . , c, the typically way is taking any c points from all

the data, set the iteration stop threshold ε and the iteration counter;

2. Use equation (4.2) to determine the membership matrix U , measure the distance of each

element to the cluster center mi,then put it to the nearest cluster ωi;

3. Use equation (4.1) to calculate objective function. If it is less than the threshold set in step 1,

or it is less than a certain threshold relative to the value of the last objective function, then

the algorithm stops;

4. According to equation (4.3) recalculate and �x each cluster center which was obtained;

5. Repeat steps 2-4 until the new cluster center is equal to or less than the speci�ed threshold.

The algorithm ends.

For the �rst step initial cluster center, if the number of cluster c cannot be determined by prior

knowledge, it can be approximated by graphing method. The c-mean algorithm is used to cluster

c from small to large, in di�erent c value to obtain a di�erent J value, and then do J − c curve. If

there is an in�exion point on the curve, the number of cluster corresponding to the in�exion point

is the optimal number of cluster. If the in�ection point is not obvious, then the method fails.

Meanwhile, from the above processing we can see that the algorithm is iterative and does not

ensure that it converges to the optimal solution. The property of c-means algorithm is based on

the initial position of cluster center. Therefore, in order to get the better result, we need either use

some prior knowledge to determine the initial center or use a di�erent initial center for multiple

operations. In addition, the above algorithm is only a representative method. For example, we can

also initialize an arbitrary membership matrix, and then do the iterative process.

4.1.3 The theoretical basis of fuzzy c-means clustering algorithm

In 1973, Bezdek proposed the Fuzzy C-Means clustering algorithm. As an improvement of

the early hard C-means clustering (HCM) method, the algorithm has been widely applied and
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developed. The fuzzy c-means algorithm is a clustering algorithm that uses membership degrees to

determine the degree of each data point belonging to a cluster.

Assume a sample setX = {x1, x2, . . . , xn} is the whole cluster analysis object. Each element xi,

i = 1, 2, . . . , n in X can be represented by a �nite number of parameter values. And each parameter

value represents a property of the element xi [65]. The clustering process is to analyze the similarity

of n elements in the domain, to divide c fuzzy cluster according to the degree of a�nity between

the elements, and then �nd the clustering center of each cluster, so that the objective function of

non-similarity index is minimized.

The main di�erence between FCM and HCM is that the FCM is divided by fuzzy, i.e. each

given element uses the degree of membership between [0, 1] to determine the degree of belonging

to each cluster. So that the membership matrix U allows elements with values between [0, 1], not

just 0 and 1. With the normalization of the provisions, the sum of the membership of a data set is

always equal to 1 (equation (4.3)).

Then the objective function of FCM can be de�ned as

J =

c∑
i=1

n∑
j=1

uhij‖xj −mi‖2, (4.4)

where n is the number of sample set, c is the given number of cluster, 1 < c < n, h is the weighted

power exponent, mi is the clustering center of cluster i, and uij is the degree of sample j belonging

to the cluster i.

The FCM algorithm is a clustering result that requires J to reach the minimum value. There-

fore, the mathematical model of FCM algorithm is a conditional extreme value problem, i.e. taking

the derivative of J with respect to uij andmi respectively, making their derivatives to be 0, and sub-

stitute into
c∑
i=1

uij = 1. In order to solve the problem of conditional extreme value, we need to refer

to Lagrange multiplier method to convert it to unconditional extreme value problem. Therefore, we
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introduce n Lagrange factors, then equation (4.4) becomes

J =
c∑
i=1

n∑
j=1

uhij‖xj −mi‖2 +
n∑
j=1

λj

(
c∑
i=1

uij − 1

)
. (4.5)

Taking derivative with respect to mi:

∂J

∂mi
=

c∑
i=1

n∑
j=1

∂uhij‖xj −mi‖2

∂mi
− ∂

∂mi

n∑
j=1

λj

(
c∑
i=1

uij − 1

)
, (4.6)

where

∂

∂mi

n∑
j=1

λj

(
c∑
i=1

uij − 1

)
= 0.

Then

∂J

∂mi
=

c∑
i=1

n∑
j=1

∂uhij‖xj −mi‖2

∂mi
=

c∑
i=1

n∑
j=1

uhij
∂

∂mi
‖xj −mi‖2

=

n∑
j=1

uhij
∂

∂mi
‖xj −mi‖2 = −2

n∑
j=1

uhij(xj −mi) = 0.

Therefore

n∑
j=1

uhijmi −
n∑
j=1

uhijxj = 0.

Hence

mi =

n∑
j=1

uhijxj

n∑
j=1

uhij

, i = 1, 2, . . . , c. (4.7)
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Taking the derivative with respect to uij :

∂J

∂uij
=

∂

∂uij

n∑
j=1

c∑
i=1

uhij‖xj −mi‖2 +
∂

∂uij

n∑
j=1

λj

(
c∑
i=1

uij − 1

)
(4.8)

=
n∑
j=1

c∑
i=1

∂

∂uij
uhij‖xj −mi‖2 +

∂

∂uij

n∑
j=1

(
c∑
i=1

λjuij − λj

)

=

n∑
j=1

c∑
i=1

huh−1
ij ‖xj −mi‖2 +

n∑
j=1

c∑
i=1

∂

∂uij
λjuij

=

n∑
j=1

c∑
i=1

huh−1
ij ‖xj −mi‖2 +

n∑
j=1

c∑
i=1

λj

=
n∑
j=1

c∑
i=1

huh−1
ij ‖xj −mi‖2 +

n∑
j=1

cλj

=
n∑
j=1

(
c∑
i=1

huh−1
ij ‖xj −mi‖2 + cλj

)
= 0.

Therefore

c∑
i=1

huh−1
ij ‖xj −mi‖2 +

c∑
i=1

λj =

c∑
i=1

(huh−1
ij ‖xj −mi‖2 + λj) = 0.

Then

huh−1
ij ‖xj −mi‖2 + λj = 0, ∀i = 1, 2, . . . , c.

Hence

uij =

(
−λj

h‖xj −mi‖2

) 1
h−1

, (4.9)

and

c∑
k=1

ukj = 1, ∀i = 1, 2, . . . , c.
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Then we have

c∑
k=1

(
−λj

h‖xj −mk‖2

) 1
h−1

=
(−λj)

1
h−1

c∑
k=1

(h‖xj −mk‖2)
1

h−1

= 1.

So

(−λj)
1

h−1 =

c∑
k=1

(h‖xj −mk‖2)
1

h−1 . (4.10)

Combining equation (4.10) and equation (4.9), we get the following

uij =


c∑

k=1

h‖xj −mk‖2

h‖xj −mi‖2


1

h−1

=

 ‖xj −mi‖2
c∑

k=1

‖xj −mk‖2


−1
h−1

. (4.11)

If the number of clusters of known domain X clustering is c and the weight value is m, then

equation (4.7) and equation (4.11) can achieve the best fuzzy clustering matrix [75] and clustering

center.

The fundamental method of using Alternate optimization of iterative methods to solve these

problem is gradient descent. By continuously iterative operating the fuzzy cluster matrix U and

the clustering center matrix M , we obtain the correcting the value of clustering center and the

membership degree of each element with each cluster center. We �nally �nd the property of the

cluster of the sample data set and divide the elements into the largest cluster of its membership.

When J has the minimized value, the parameters of the sample set can be expressed as the matrix

and the clustering center matrix. The speci�c iterative optimization process [70] is show in below:

1. Initialization. Given the class number for clustering c(1 < c < n), set the iteration stop

threshold ε and the iteration counter;

2. Using the random value at [0, 1] to initialize the membership matrix U , such that it satis�es

the constraint of equation (4.3);
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3. Using equation (4.7) to calculate c cluster centers mi;

4. Calculating the objective function based on equation (4.4) . If it is less than the threshold

seted in step 1, or it is less than a certain threshold relative to the value of the last objective

function, then the algorithm stops;

5. Using equation (4.11) to recalculate the membership matrix U , back to step 2.

Of course, the above algorithm can also initialize the cluster center �rst, and then do the

iterative calculation.

The advantages of the fuzzy c-means clustering algorithm as described in Section 4.1 are the

unsupervised classi�cation method, which does not require any human intervention in the clustering

process, and the e�ciently. It is suitable for automatic segmentation area. However, fuzzy c-means

algorithm still has some disadvantage. For example, the fuzzy c-means clustering algorithm requires

a prior knowledge of the number c of the clustering class. But for most data, there is not much prior

knowledge about the spatial distribution and the structure of the data, and most do not. Therefore,

on the one hand the algorithm a�ects the unsupervised performance of clustering algorithm, on the

other hand it has the problem of e�ectively judging the clustering results, such as the correctness

of the cluster and the rationality of the number of clusters and so on. In addition, once a cluster

number c is given, the classi�cation of c clustering must be obtained. So even if we cannot cluster all

the data in the data set, we can still cluster using of fuzzy c-means clustering algorithm. Therefore,

it is di�cult to correctly reveal the structural information contained in the data.

4.2 Improvement of fuzzy c-means algorithm combined with spatial feature of

gray image

The main purpose of the FCM algorithm is to divide the sample points of the vector space into

c subspaces according to distance measure. Because the standard FCM algorithm does not consider

the gray scale property of each point and the degree of correlation of its neighborhood pixels in

image segmentation, and even in the same cluster the gray scales of the pixels and the noise for two

pints with the same membership are very di�erent, so the algorithm's anti-noise function is poor
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or we can say it has poor robustness. However, the image in the image processing is inevitably

interferenced by di�erent noise. This requires that the noise information be processed together

with the real information and that the noise e�ect is suppressed as much as possible during the

segmentation process, which cannot be achieved in the standard FCM clustering process. For this

reason, Chuang et al [17] proposed a FCM cluster which is combined with spatial information. It is

Spatial Fuzzy c-means. This algorithm is �rst uses the standard FCM to calculate the membership

degree of each points in the image, and then use the sliding window template to determine the

degree of similarity between the points in the cluster and the neighborhood point, to reduce the

membership degree of the noise point. Finally, the new spatial membership function is constructed

by using the pixel clustering distribution statistics. This algorithm can correct the wrong clustering

pixels.

An important property of an image is that the neighbourhood pixels have a high correlation.

In other words, these adjacent pixels have similar eigenvalues, and they should have the same

membership degree. So the probability is very large that they belong to the same cluster. Therefore,

spatial relations are very important in clustering, but are not applied in FCM algorithms. In order

to use the correlation of neighborhood pixels, a sliding window template is used to de�ne the spatial

neighborhood function as

hij =
∑

k∈NB(xj)

uik, (4.12)

where NB(xj) is a square sliding window centered on pixel xj . We use 5×5 square sliding window in

this dissertation. Similar to the membership function, the spatial function hij re�ects the probability

that pixel xj belongs to cluster i. If most of the pixels in the xj neighborhood belong to the same

cluster i, then the value of pixel xj in the spatial function will large. At the same time, if the

membership degree is large that xj is belongs to the cluster i, it is means that xj is the correct

distribution. On the contrary, if the membership degree is small, it is indicating that the distribution
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of the pixel xj is wrong. Combined with spatial function, we have the new membership function

vij =
upijh

q
ij

c∑
k=1

upkjh
q
kj

. (4.13)

The new clustering center can be determined according to the new membership degree of each

pixel

Ci =

n∑
j=1

(vij)
Mxj

n∑
j=1

(vij)M
, (4.14)

where p and q are the parameters that control the relative importance of the two functions of uij and

hij , when p = 1, q = 0, vij = uij . From the new membership function, we can see that the clustering

result does not change for the pixels in the same class. But for the noise point, the clustering weight

is reduced and the in�uence on the cluster center is suppressed. Therefore, the pixel that is wrong

cluster by the e�ects of noise can easily be corrected. The implementation procedures of the SFCM

algorithm are show in below [46]:

1. Given the relevant parameters c, M , p, q, ε, use FCM algorithm to segment the image;

2. Based on equation (4.7) and equation (4.11) to calculate the membership degree and clustering

center of the pixel;

3. Perform iteration operations, if it is less than the threshold set in step 1, or it is less than a

certain threshold relative to the value of the last objective function, then the algorithm stops.

Otherwise go to step 2. The membership degree and the clustering center are obtained as the

initial parameters of the secondary clustering;

4. Use equation (4.12), equation (4.13) and equation (4.14) to obtain the new membership degree

vij and clustering center Ci;

5. Perform iteration operations, if it is less than the threshold ε which is set in step 1, or it
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is less than a certain threshold relative to the value of the last objective function, then the

algorithm stops. Otherwise go to step 4.

Figure 4.1(a) is a real palm image (93 × 93). Figure 4.1(b) and (c) show the segmentation

results of the two clustering methods without adding noise, respectively. We can see that without

adding noise, the two segmentation methods can achieve good segmentation results. Figure 4.1(d)

showes the image with 5% Gaussian noise. Figure 4.1(e) and (f) show the segmentation results of

FCM [37] and SFCM [37] after adding noise. It is easy to see that due to the palm image is simple

and the target (palm) is clear, the two methods can complete segmentation. But in the details,

noise has more impact for FCM method. As show in Figure 4.1(e), there is a lot of unnecessary

segment in the palm. And at the edge of the palm of the hand, the segmentation result of the FCM

method is not as smooth as the segmentation result of the SFCM method.

(a) Original (b) FCM (c) SFCM

(d) 5% Gaussian noise (e) FCM (f) SFCM

Figure 4.1: The comparison of segmentation results by using FCM and SFCM clustering
algorithm for a real palm image with adding 5% Gaussian noise.

Figure 4.2 is a ultrasound image of blood vessel (288× 287). We can see that the edge of the
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target (blood vessel) in the ultrasound image is weak, and the background has a signi�cant gray

scale due to the presence of the skin tissue. Figure 4.2(b) and (c) show the segmentation results of

the FCM and SFCM methods for the original image. Although the edge of the image is very weak,

but the two methods have satisfactory results. Figure 4.2(d) is the original image with 5% Gaussian

noise. Figure 4.2(e) and (f) are segmentation result of the image with adding noise by using two

method. From the result we can see that comparing to the simple image (palms) in Figure 4.1, the

FCM method is almost impossible to complete the segmentation for weaker edge vascular images.

However, the SFCM method still has a good result.

(a) Original (b) FCM (c) SFCM

(d) 5% Gaussian noise (e) FCM (f) SFCM

Figure 4.2: The comparison of segmentation results by using FCM and SFCM clustering
algorithm for an ultrasound image with adding 5% Gaussian noise.

The target and the background is relatively obvious in the above experiment, so the number

of cluster c = 2, parameter p = 1, q = 1. From the above experimental results, we can see that the

traditional FCM algorithm does segmentation only based on the current pixel. It is obviously that

it has no strong anti-noise ability. The SFCM algorithm has considered the grey scale di�erence
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between the pixel, and the neighborhood pixels, and the spatial location, therefore it greatly reduces

the weight of the membership degree of noise. It showes that SFCM has good noise immunity.

Meanwhile, the size of the parameter q has a smooth e�ect on the image, especially the more detail

image. If the value of q is too large, it increases the weight of the spatial function, and the tiny

details of the image becomes blurred. However, this condition is hard to see in this experimental.

4.3 CER image segmentation model combined with SFCM algorithm

The basic principle of the variational level set image segmentation method is to use the varia-

tional theory to minimize an energy functional which is a fusion image information about the level

set function, to get the partial di�erential equation or the equations of the evolution of the level set

function, so as to achieve the purpose of the evolution of the zero level set which is implied in it, and

to make the zero level set converges to the edge of the target object in the image. The basic idea

of clustering is to divide static data into homogeneous cluster. The goal is to make the similarity of

the data in the cluster as large as possible and the similarity of the data out of the cluster as small

as possible. Based on the discussion above, we propose an image segmentation model combined

with SFCM and variational level set CER in this dissertation, referred to as SCER. This model

combines the advantages of SFCM clustering and the variational level sets for image segmentation.

The numerical results show that our method has the following advantages: (1) It can get a smooth

segment boundary and a closed segment area; (2) Because the SFCM algorithm combined with spa-

tial information, so the proposed model in this dissertation has strong robustness to noise images;

(3) Since the image edge information clustered by SFCM is used as the initial contour condition of

the CER model of the variational level set, it further improved the calculation speed, and it also

solved the di�cult problem of choosing the initial contour of the variational level set.

The basic idea of SCER model is: First, the image is clustering segmented by SFCM algorithm.

Since the algorithm considers the spatial information of the image, so it is more robustness to

the medical image containing the noise. Then we have good segmentation result. And because

the traditional FCM algorithm is an unsupervised fast calculation method, so SFCM calculation

speed is very fast, i.e. the calculation time is improved. Second, according to the segmentation
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result of SFCM, the image edge information in the result is extracted. Third, the extracted edge

information is applied as an initial contour to the variational level set which not only solve the

problem of selecting the initial contours, but also reduce the number of iterations and improved

the computational speed. And �nally get a smooth and closed segmentation results. The speci�c

process is show in below:

Figure 4.3: The implementation process of CER model which is combined with SFCM
model.

4.4 Experimental Result

Through the above experiments, we can see that the improved SCER method not only segment

the uneven gray scale image better and faster, but also has stronger robustness to the initial contour

position and to strong noise than the original CER model.

4.4.1 Comparison of calculate time

Table 4.1 showes the number of iterations and the time required to segment an image by using

the CER model and the SCER model. It is more intuitive to show that the SCER model has

certainly improved the calculation time.

Table 4.1: Comparison of the number of iterations and calculation time required to segment
an image by using two models.

CER SCER
iteration times time iteration times time

Folding cone image (Figure 4.4) 60 4.44s 40 2.75s
Vascular access image (Figure 4.5) 40 1.32s 20 0.63s

Figure 4.4(a) is a folding cone image (290 × 290), where the edge between the cone and the

ground plane belongs to the ridge edge. For these deep images, since the gray scale value of each

point is related to the distance between the point and the observation point, so it is di�cult for a
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common segmentation method to detect and segment the target in those images [21]. But our two

models can get the correct segmentation results. The CER model needs 60 iterations for 4.44s. The

improved SCER model just need 40 iterations for 2.75s. It also showes that the improved SCER

model has certainly improved the calculation time.

(a) Original (b) CER initial contour (c) CER, 60 iterations

(d) Result of SFCM (e) SCER Initial contial (f) SCER, 40 iterations

Figure 4.4: The comparison of the number of iterations (time) by using two models to
segment a folding cone image.

Figure 4.5 showes an original vascular access image and the segmentation result by using two

models. Figure 4.5(c) and (d) show the segmentation results of CER model with iterating of 20

times and 40 times (1.32s). It is obvious to see from the �gure below that SCER model only need

20 iterations for 0.63s. Only from the number of iterations, we can see that the SCER model has

improved segmentation time.
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(a) Original (b) CER initial contour (c) CER, 20 iterations

(d) CER, 40 iterations (e) SCER Initial contial (f) SCER, 20 iterations

Figure 4.5: The comparison of the number of iterations (time) by using two models to
segment a vascular access image.

4.4.2 Comparison of noise sensitivity

Figure 4.6(a) is a multi-target cell image with partial target crossing the boundary (250×203).

For this type of image, we cannot select a curve to include all the objects in the image. Those

segmentation models that are sensitive to the initial contours, using only one initial contour, are

di�cult to segment such images. In contrast, our model is insensitive to the initial contour, and

accurately extract all the targets in the image after several iterations, as show in Figure 4.6(c) and

(f). Of course, our improved SCER model, using the SFCM segmented image boundary as the initial

contour, can have multiple initial contours at the same time and contain all the targets. Figure

4.6(g) is an image with 5% Gaussian noise. Although the CER proposed in Chapter 3 has strong

105



robustness to noise, but it is still powerless for strong noise. From the above experimental results (h)

and (i), we can see that the CER model is almost impossible to get the right segmentation result.

While the 5% Gaussian noise has in�uence on the SCER model, but the model produced relatively

correctly segmented result. We can see that the improved SCER model has more robustness to

noise.

(a) Original (b) CER initial contour (c) Result of CER

(d) Result of SFCM (e) SCER initial contour (f) Result of SCER

(g) 5% Gaussian noise (h) Result of CER (i) Result of SCER

Figure 4.6: The segmentation results of the improved SCER model and the CER model
for a cell image with noise respectively.

Figure 4.7(a) is an actual aircraft image (135125) with pseudo boundary (shadow). Figure
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4.7(c) and (e) show the segmentation results of CER model and SCER model for the original image.

Both methods get accurate segmentation results. Figure 4.7(f) is the image with 5% Gaussian noise

added in the original image. Figure 4.7(g) is the segmentation results of CER for an image with

added noise. As we can see from the �gure, the model cannot complete the segmentation. However,

SCER can still get a relatively correct segmentation result as show in Figure 4.7(h). The above

experiment once again shows that the SCER model has a stronger anti-noise property.

(a) Original (b) CER IC (c) Result of CER (d) SCER IC

(e) Result of SCER (f) 5% Gaussian noise (g) Result of CER (h) Result of SCER

Figure 4.7: The segmentation results of the improved SCER model and the CER model
for an actual aircraft image with noise.

4.4.3 Low contrast image and medical image segmentation

Figure 4.8 shows the segmentation results of two models for an CT image (200 × 200) with

noise. This image has more serious noise, but from the experimental results we can see that our

improved SCER model is still able to segment the target very well. This also shows that the SCER

model has a strong robustness to noise. Here we compare this kind of noise images, because real

CT and MRI images always have certain noise at di�erent degree of pollution.
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(a) Original (b) Result of CER (c) Result of SCER

Figure 4.8: The segmentation results of two models for an CT image with noise.

(a) Original (b) Result of CER (c) Result of SCER

(d) CER detail (e) SCER detail

Figure 4.9: The segmentation results of two models for a low contrast texture image re-
spectively and the comparison of details.

Figure 4.9 is a low contrast texture image (705×681). The property of this type of image is the

low contrast with weak edges. And it usually has noticeable grayscale variation in the target edge.

Figure 4.9(b) and (c) show that we can get more satisfactory segmentation results. Overall, the

segmentation results of the two models are similar, and not much di�erence. Figure 4.9(d) and (e)

are the enlarged detail images with the red circle marked part of the segmentation result. From the

details of the image, we can see, although there is over segmentation of two models, but CER has

more. And the segmentation result of SCER model is better than CER model in detail. Therefore,

we can also see that the improved SCER model is more smooth and can complete the segmentation
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in more detail.

(g) Original (h) Result of CER (i) Result of SCER

Figure 4.10: The segmentation results of two models for a real heart image and the MRI
of human brain image.

In Figure 4.10 from the �rst line to the third line are three real MRI images and the seg-

mentation results of the two models. Figure 4.10 includes a real heart image (200× 205), and two

human brain images (169 × 207, 141 × 157). The �rst column showes the original images, the sec-

ond column showes segmentation results of CER, the third column showes segmentation results of

SCER. The experimental results once again show that which the same number of iterations and the

same parameters, both models can get relatively good segmentation results. But in the details, the
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improved SCER model segmentation results are better in terms of smoothness and completeness.

For example, the CER model only showes the edge of the contour of the heart. While the SCER

model not only showes the edge of the contours of the heart, but also extracts the two atriums.
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Chapter 5

CONCLUSION AND FUTURE WORK

With the development of imaging technology and the expansion of image applications, image

segmentation becomes more and more important in real life. Therefore, the research of image

segmentation is of important theoretical value and practical signi�cance. The method of partial

di�erential equations has advantages such as the complete mathematical theoretical basis and the

good extensibility. Therefore, in recent years, its application in image processing and computer

vision has become the focus of research worldwide. In this dissertation, partial di�erential equation

method is used, combined with information entropy and clustering analysis. Mathematical models

and algorithms are used to study image segmentation technology. And satisfactory results have

been obtained. The speci�c work and conclusion are as follows.

5.1 Summary of the Main Work

1. This dissertation studies various methods and models of image segmentation theory of partial

di�erential equations based on the existing analysis, analyzes the theoretical basis and the

mathematical principle of these methods, and compares their advantages and disadvantages.

We build two new models and apply �nite di�erence method and conduct digital simulation

by MATLAB programming. The numerical results show that the new model has obvious

advantages.

2. As we all know, with the development of imaging technology, the complexity of images is

increasing, especially in the medical �eld, where images show extremely complex features.

Weak edge, strong noise and uneven brightness often appear in the images. When one or

more of these phenomena occur, the traditional active contour model cannot achieve the

correct segmentation of target boundaries, especially for medical magnetic resonance images

and ultrasonic images. To solve this problem, this dissertation introduces the concept of

information entropy and improves the existing active contour RSF model. On this basis,
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a new model CER combining CV model and RSF model is proposed in this dissertation.

This model takes into account the in�uence of image region and boundary contour at the

same time. By minimizing the energy function and taking into account the internal and

external energy of the target boundary, we obtain the segmentation of the target boundary

in the uneven intensity image. Numerical experiments show that the algorithm can extract

the target with weak edge and uneven brightness. At the same time, the robustness of the

original RSF model to noise and the sensitivity to the initial contour is also improved.

3. Image segmentation method based on clustering analysis has been one of the popular segmen-

tation methods in recent years. The main feature of the traditional FCM clustering algorithm

is an unsupervised segmentation method, which is fast in computation but sensitive to out-

liers. Therefore, this dissertation considers an improved SFCM algorithm, which combines

the spatial information of the image, and reduces the sensitivity to noise of the traditional

FCM algorithm. Using this advantage, this dissertation proposes to preprocess images by

SFCM, and takes the edge information of the image after clustering as the initial contour of

the CER model. This method not only improves CER model's robustness to noise, but also

solves the problem in the initial contour selection. In addition, the improved rationality of

the initial contour selection also leads to the improvement in computational e�ciency to a

certain extent. A large number of experiments show that this method can not only accurately

segment strong noise images, but also improve the problem in initial contour selection and

reduce computation time, thus enhance the CER model's robustness to noise.

5.2 Conclusion

This dissertation studies image segmentation based on the partial di�erential equation. It

improves the problems of sensitivity to initialization, lack of strong noise robustness and slow evolu-

tion. Through solving speci�c problems, this dissertation studies the causes of the above problems

and proposes CER model combining CV model, and improves RSF model based on information

entropy. The experimental results show that CER model can improve the above problems to some
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extent, and obtain good segmentation results.

The main characteristic of clustering algorithm is the segmentation according to similarity

between pixels. It can not only improve the e�ciency of computation, but also solve the image seg-

mentation problem with complex content (strong noise and low contrast). Based on the advantages

of the clustering algorithm, SCER model, an improved CER model, is proposed. The basic idea is

to preprocess the image by SFCM algorithm, and then extract the edge information of the image

after clustering as the initial contour of the CER model. This model not only reduces computational

time, but also increases the robustness of the CER model to noise. At the same time, the problem

in the initial contour selection is solved.

5.3 Main innovations of this dissertation

1. The concept of image information entropy is introduced into the image segmentation of partial

di�erential equation method, and an improved scheme combining the famous CV model and

RSF model is proposed. At the same time, we consider the internal and external energy of

the target area to make CV model and the RSF model complement each other in the defects

of algorithm. This improved CER model enhances the original model's robustness to contour

initialization and to strong noise, and achieves satisfactory segmentation results.

2. The SFCM clustering algorithm combining spatial information is introduced into the CER

model proposed in this dissertation. The clustering algorithm has the advantages of fast

calculation and strong noise immunity, which improves the computational e�ciency of CER

model and its robustness to noise. This method also obtained satisfactory segmentation

results and solved the problem in initial contour selection to a certain extent.

5.4 Future Work

The research of this dissertation is only a small part of the image segmentation of partial di�er-

ential equations. The traditional methods are discussed and improved, and some achievements have

been made. However, there is still much work to be done in the research of the image segmentation

techniques for the active contour models of partial di�erential equations. In the future, I will study:
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1. When an object is included by other objects, how to combine the prior geometry information

of the target image with the active contour model?

2. How to preprocess medical images with strong noise so as to reduce the in�uence of noise on

partial di�erential equations?

3. How to segment 3D images with stereo images?

4. For the numerical implementation of the model, only a simple �nite di�erence scheme is

considered in this dissertation, which will de�nitely a�ect the validity and the experiment

of the model. Some more complex di�erential schemes or other numerical implementation

methods will be developed for better performance.
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