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ABSTRACT

This thesis studies the dynamics of optical solitons in multi-dimensions with spatio-
temporal dispersion and non-Kerr law nonlinearity. The integrability aspect is the
main focus of this thesis. Five different forms of nonlinearity that are considered
- Kerr Law, Power Law, Parabolic Law, Dual-Power Law and Log Law nonlinear-
ity. The traveling wave hypothesis, ansatz approach and the semi-inverse variational
principle are the integrations tools that are adopted to retrieve the soliton solutions
to the governing equation. As a result, several constraint conditions arise out of the
integration process and represent necessary conditions for the existence of solitons.
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Chapter 1
INTRODUCTION

The dynamics of soliton Propagation through optical fibers, centro-symmetric crys-
tals, optical meta-materials and other forms of wave guides have been studied for
the past few decades (1-30]. In most of the papers that are published so far, the
focus is on the study of optical solitons in (1+1)-dimensions. However, it is much
more practical to consider the dynamics of optical solitons in multi-dimensions. In
this thesis, our study focuses on solitons in (2+1)-dimensions - two spatial and one

temporal dimension.

The governing equation is the nonlinear Schrédinggr equation (NLSE) with dual-
dispersion term. In addition to the group-velocity dispersion (GVD), the spatio-
temporal dispersion (STD) term is also taken into account. It was recently proved
that the inclusion of the STD term makes the governing NLSE well-posed as opposed
to NLSE with only GVD that is ill-posed [5, 17, 30].

The purpose of this paper will be to extract the exact solution to the governing
NLSE. There are three integration tools that will be adopted to obtain the solution
to the NLSE. The traveling wave hypothesis will reveal the waves of permanent form,
while the ansatz method will also lead to the exact 1-soliton solution. In the second
method, bright, dark as well as singular soliton solutions will be obtained. The third
approach is the semi-inverse variational principle that will give the analytical solu-

tion to the NLSE in (2+1)-dimensions and this is the inverse problems approach. All
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of these integration approaches leave constraint conditions, between the parameters
and coefficients, that are imperative in order for the solitons to exist. It needs to be
noted that these three approaches have already been implemented to carry out the

integration of the NLSE, with STD in (1+1)-dimension (3, 23, 24].

1.1 GOVERNING EQUATION

The dimensionless form of the NLSE in (2+1)-dimensions with dual-dispersion is

given by (3, 23, 24]

iQt + ay (Qz:z: + Qy‘y) + A2qxt + a3Qyt + F (IQIZ) q= 07 (11)

where g(z,y,t) represents the wave profile of the soliton, z and y are the spatial
variables while ¢ is the temporal variable. The first term is the linear evolution term.
The coefficients of a; represent the GVD in the z- and y- direction. The coefficients
of a; and a3 represents the STDs in the = and y-directions respectively. The addition

of these STD terms makes the NLSE well-posed [5, 17].

Finally, in (1.1), the last term is the nonlinear term where the functional F' represents
the form of nonlinearity. There are five types of nonlinearity considered. Here, F is

a real-valued algebraic function.

The focus of this paper is to study the integrability of (1.1) with five forms of nonlin-
earity given by the functional F'. These are the Kerr law, power law, parabolic law,
dual-power law and the log law. There are three forms of integration architecture that
are applied in this thesis. The first two approaches lead to an exact soliton solution

while the third approach leads to a closed form analytical 1-soliton solution. The first
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method is the traveling wave hypothesis which will lead to bright 1-soliton solution
only. The second form of integration, known as the ansatz approach will retrieve
bright solitons, dark solitons and the singular solitons. Finally, the semi-inverse vari-
ational (SVP) approach will also only retrieve 1-soliton solution to the NLSE. These

approaches are addressed in details in the next three chapters.



Chapter 2
TRAVELING WAVES

The traveling wave hypothesis leads to waves of permanent forms for equation (1.1).
Occassionally, this approach is also known as the first integral method. The velocity
of the soliton is obtained and 1-soliton solution will be retrieved for the five forms of

nonlinearity. The starting hypothesis is that (1.1) can be written as (2, 23, 24]

qa(z,y,t) = g(s)e*@¥, (2.1)

where g(s) is the amplitude component of the wave and ¢(z, v, t) is the phase that is

defined by
O(z,y,t) = —K1Z — Koy + Wt + 0 (2.2)
and
s = Bix + Byy — vt. (2.3)

Here, the parameters B; and B, are related to the inverse width of the soliton in the
z- and y- directions respectively. Then the parameter v is the speed of the soliton.
From the phase component, «; for j = 1,2 gives the frequencies of the solitons along

the z- and y-directions respectively while § is the phase constant.



5

Substituting (2.1) into (1.1) and decomposing into real and imaginary parts leads

to

{a: (B} + B}) —v(aB + asBs)} g”
= {a1 (K] + #3) — w (azks + agy — D}g+F(s*)g=0 (2.4)

and

) (a2B1 + a3 By) — 2a, (k1B + K9 By)

2.
1 —ask, — azky (2:5)
where g” stands for d?g/ds?. Equation (2.5) poses the immediate constraint

azK1 + agky # 1 (2.6)

in order for the soliton to exist. Next, multiplying (2.4) by ¢’ and integrating leads

to

Byz + Byy — vt
Va1 (B? + B?) — v (az2B, + a3By)
dg

) / \/{al (3 + K3) — w (azk1 + agkz — 1)} —2fghF(h2)dh’

(2.7)

In the subsections that follow, equation (2.7) is used to find the 1-soliton solution for

five forms of nonlinearity.

2.1 KERR LAW

This section focuses on the Kerr law of nonlinearity. The origin of the nonlinear re-

sponse is related to the non-harmonic motion of bound electrons under the influence



6

of an applied field. This results in the induced polarization being nonlinear electric

field, and involves higher order terms in electric field amplitude [1).

For Kerr law nonlinearity, F(u) = bu, for a dummy variable u and b # 0, so then

equation (1.1) reduces to

1q; + ay (sz + ny) + a2qx + a3qyt + b'QI2q =0,

hence (2.7) simplifies to

Biz + Byy — vt
\/al (312 + Bg) —v (a2B1 + (1332)
dg

= 2
/ V2{a1 (5% + k%) — w (agk; + agry — 1)} — bg*

which, upon integration leads to
9(s) = g(Bi1x + Bay — vt) = Asech[B (B;z + Byy — vt)]

where

1
Ao [2 {a1 (&% + K3) — w(azk1 + agkz — 1)}] 2
- b

and

1
B - |1kl + K3) —w(azr + agrp — 1)] :
| a1 (B + B2) —v(agB; + a3Bs)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)



These two relations introduce the constraint conditions given by

b{a1 (k} + &2) — w (agky + agy — 1)} >0 (2.13)

and

{a1 (] + #3) —w(azm1 + ags — 1)} {ay (B2 + B2) — v (0B, + asBy)} > 0 (2.14)
respectively. Finally, the 1-soliton solution to (2.8) is given by
q(z,y,t) = Asech[B (Byz + By — vt)]e (-mz—raytutio) (2.15)

where the amplitude A and the parameter B are respectively given by (2.11) and
(2.12). An additional constraint that must also hold is given in (2.6) for the solitons

to exist.

4

2.2 POWER LAW

Power law nonlinearity is displayed in various materials including semiconductors.
This law also occurs in media for which higher order photon processes dominate
at different intensities. Moreover, in nonlinear plasmas, the power law solves the
problem of small K-condensation in weak turbulence theory and this law is also
viewed as a generalization to the Kerr law nonlinearity [1]. For power law nonlinearity

F(u) = bu™, where b # 0, the NLSE given by

ige + 01 (Goz + Qyy) + G2zt + a3qye + blg|*"g =0, (2.16)
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reduces to Kerr law NLSE given by (2.7). It must be noted that for practical consid-

erations,

0<n<?2 (2.17)

in particular n # 2 in order to avoid self-focusing singularity [1, 10]. Therefore

equation (2.6), becomes

BI:L‘ -+ Bzy — ot
Va1 (B + Bf) — v (a;B; + a3B,)
dg
= (n+1 /
( ) vV (n+1) {a; (63 + K3) — w (azk; + agky — 1)} — bg2n+2
(2.18)
and yields the solution

9(s) =g(Biz+ By —vt) = A sech%[B (B1z + By — vt)] (2-19)

with

1

A= [(n +1) {a1 (s + &3) ;w (a2 + agkp — 1)}] " (2.20)

and

1
_[a1 (8] + K3) —w(azk: + azks — 1)] 2 2.91
b= [ ay (B} + B3) — v (a2B1 + a3By) (2.21)
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Requiring that A > 0 and B > 0, lead to (2.13) and (2.14), the same constraints as

given for Kerr law nonlinearity. The 1-soliton solution is
q9(z,y,t) = A sech~[B (Br1z + Bay — vt)]e(-rz—raytwt+o) (2.22)

which reduces to the soliton for the Kerr law nonlinearity when n = 1.

2.3 PARABOLIC LAW

It is necessary to consider nonlinearities higher than the third-order in order in an
attempt to obtain some knowledge of the diameter of a self-trapping beam. There
was little or no attention paid to the propagation of optical beams in the fifth-order
nonlinear media, since no analytic solutions existed and it seemed that chances of
finding any material with significant fifth-order term was low, until the present time [1,
9]. For parabolic law nonlinearity, also known as cubic-quintic law, F(u) = bju+byu?,

with b; # 0 and b, # 0, the NLSE becomes
igs + 01 (¢zz + Gyy) + 0200t + a3y + (b |g]* + b2 [q]*) ¢ = 0, (2.23)

and (2.7) reduces to

Biz + By — vt
Vo1 (B} + B}) — v (a2B1 + a3 B,)
v6dg
- / V6{a1 (&2 + K3) — w(azk; + azkz — 1)} — 3byg* — 2b,g5

(2.24)



and leads to

A

9(s) = 9(Biz + Byy — vt) =

The amplitude is

Ao 2v/3{a1 (k% + k3) — w (agks + agks — 1)}
19
[gb% + 48b2 {a1 (B]? + B%) —-v (a231 + 0,332)}]z

while the parameters B and D, are respectively given by

[al (k2 + k%) — w (agky + agky — 1)} 2
B=2 5 5
a) (Bl + B2) - (a231 + 0.332)

and

Do — V3b
' /3b% + 16bs {a; (k2 + k3) — w (azk; + agky — 1)}

{D1 + cosh [B (Byz + Bay — vt)]}?

10

(2.25)

(2.26)

(2.27)

(2.28)

For the solitons to exist, however, the form of the expressions for the parameters A,

B and D; we deduce that the following constraints must be satisfied

a (Bf + B%) —v(axB; + azBs) > 0,

a1 (K3 + K3) — w (azk1 + azke — 1) > 0,

3b2 + 16by {a1 (B} + B3) — v(a2B; + a3zBs)} > 0.

(2.29)

(2.30)

(2.31)
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The 1-soliton solution to the N LSE with parabolic law nonlinearity is

Q(xv Y, t) = A ei(—nlz—nzy+wt+9) (232)

{Dl + cosh [B (le + B2y — ’Ut)]}%

where all the parameters are now defined along with the constraint conditions (2.6),
(2.29)-(2.31).

2.4 DUAL-POWER LAW

This model is a generalized version of the parabolic law nonlinearity and it also serves
as a basic model to describe solitons in photovoltaic-photorefractive materials such
as LINbOj [10]. Here, F(u) = byu™ + byu®", with b; and b, being non-zero constants,
and consequently, if n = 1 the dual-power law nonlinearity collapses to parabolic law.

The NLSE is now given by

iq; + a1 (Qzz + Qyy) + Q2Ga + a3qy: + (bl |‘1|2n + by |QI4n) q=0, (2.33)

and therefore (2.7) reduces to

Biz + Bay — vt
‘/al (B% + B%) -V (a231 + a3B2)
/ V(n+1)(2n + 1)dg
- (n+1)(2n +1) {a1 (k2 + £3) — w (azk1 + azk2 — 1)} — (2n + 1)b1g27+2 — (n 4 1)bygin+2
(2.34)
and leads to
A

9(s) = g(B1z + Bay — vt) = (2.35)

{Ds + cosh [B (B, + By — vt)]} &
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where the amplitude is

A= (n+1)v/Cn +1) {1 (F + %) —w (aam + agis — D} (2.36)
[(2n +1)26 + 4(n + 1)2(2n + 1), {a (B? + BY) — v (axBy + asBo)}]F

and the parameters B and D, are

1
a1 (k] + k%) — w(azk; + agkg — 1)]2
B =2n 2 9.
[ a1 (Bf + BZ) — v (asB, + a3Bs) (237)
and
bi1v2 1
vent (2.38)

D, = ;
2 V(2n +1)b2 + 4by(n + 1)% {a; (k2 + K3) — w (agk; + agkg — 1)}

In this case, D, poses the constraint
(2n 4 1)b] + 4(n + 1)%b2 {a1 (k] + K3) — w (azk1 + azky — 1)} > 0. (2.39)

Therefore, the 1-soliton solution to the NLSE with dual-power law nonlinearity is

q(z,y,t) = A ei(Trsmraytutto) (2.40)
{D; + cosh [B (Bz + Byy — vt)]} >

where the parameters are all defined and the constraint conditions are given by (2.6),
(2.29), (2.30) and (2.39). One can clearly observe that all the results of this sub-

section collapses to the results of the parabolic law, when n = 1.

2.5 LOG LAW

This law appears in contemporary physics. It allows for closed form exact expressions

for Gaussian beams (Gaussons) as well as in the periodic and quasi-periodic regimes
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of beam evolution. The advantage of this model is that the beams do not shed any
radiation and this gives log law nonlinearity an edge over other forms of nonlinearity.

For log law nonlinearity, F(u) = blnu, with b # 0, the governing NLSE is [3]
gt + a1 (Qoz + Qyy) + aqee + a3qy: + bgln|g|> = 0. (2.41)

Therefore (2.7), in this case, simplifies to

Biz + By — vt
\/al (B% + B%) — v (a231 + 0.332)

_ dg
/g\/{al (k2 + K2) — w (agky + azkg — 1)} —b(2lng — 1)’

(2.42)
which integrates to
9(s) = g(B1z + Bay — vt) = Ae~B*(BiztBay-vt)® (2.43)
where the amplitude is
A=exp{a1 (;c%+n§)—w(a22brs1+a3n2—1)+b} (2.44)

and the parameter B is

b
B = \/ 2 (a1 (B2 + BY) — v (@B, + 0aBa)} (2.45)
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The existence of the Gaussons are guaranteed through the constraint conditions (7)

and

b {al (Bf + B%) - (GQB] + a3B2)} >0 (246)
Finally, the 1-soliton, or Gausson, solution to (42) is given by

q(x’ v, t) — 146—32(Bl.'l:-l-Bzy—‘vt)2 ei(—n1z—&2y+wt+0) (247)

where the parameters are all defined with the necessary constraint conditions in place.
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Chapter 3
ANSATZ METHOD

This chapter discusses the second integration tool that we adopt to integrate the NLSE
with STD. This method typically reveals three types of solitons, bright solitons, dark
solitons and singular optical solitons. There are the necessary constraint conditions
that will naturally arise from the structure of the soliton solution. Thus, this method
has an edge over the traveling wave hypothesis approach.

The starting hypothesis for the ansatz method for NLSE given by (1.1) is [23, 24]
q(z,t) = P(z,y,t)e?=w) (3.1)

where P(z,y,t) represents the amplitude component of the soliton and it is assumed
that P is at least twice differentiable with respect to its variables. Therefore, substi-

tuting (3.1) into (1.1) and decomposing into real and imaginary parts leads to

{w(1 - azky — agkz) + a1 (k2 +K3)} P—F (P P

o’P  9°P o’P . o’P 0 (32)
- o (79? Yo7 ) T %ozat  Boyor :
and
0P oP oP oP oP
(1 — azk1 — azk2) T 20, ('ﬁa‘ + Iizgy—) +w (aza—x + aaa—y> =0 (3.3)

The imaginary part equation, will lead to the speed of the soliton as determined

earlier in (2.5). This rest of this chapter will focus on the real part of the equation
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given by (3.2). The study will now be split into three subsections. These subsections

will address bright solitons, dark solitons and singular solitons respectively.

3.1 BRIGHT SOLITONS

The bright solitons are derived for five types of nonlinearity as in the previous section.

3.1.1 KERR LAW

For Kerr law nonlinearity, the real part of equation (3.2) reduces to

{(d(]. — Q2K3 —a3li',2) +a; (K)f +K§)}P—bP3

o (TELEPY_ FP #P y
"\622 " 92 ) T “ozor  Coyar (34)

The starting hypothesis in this case will be [23, 24]
P(z,y,t) = Asech’s (3.5)

where s is the same as defined in (2.3) and the exponent p is unknown at this point.
The value of this unknown exponent p is revealed, once the balancing principle is

implemented. Substituting (3.5) into (3.4) gives

{w+ a1 (K] + K3) — w (azk1 + agkz) } sechPs — bA? sech™s
+ {a; (B} + B}) — v (a2B: + a3B;) } {p” sech®s — p(f'+ 1)'sech+?s} = 0.
(3.6)
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By the balancing principle, equating the exponents 3p and p + 2 leads to

p=1 (3.7)

Next, setting the coefficients of the linearly independent functions sech?*’s to zero,

for j = 0,2 leads to )
w="2 (a2B: + a3B;2) — 0Bt By 4 o) (38)
— Q2K — agKso
and
1
a [2 {v(azB; + assz) —a (B} + 33)}] ' (3.9)
provided
b{v(a2B1 + a3Bz) — a1 (B} + B})} > 0 (3.10)

and (2.6) remain valid. Thus, the 1-soliton solution to the NLSE by ansatz method

is given by

q(z,y,t) = A sech (B1z + Bay — vt) ei(-m1z—ravtwi+f) (3.11)

3.1.2 POWER LAW
For power law nonlinearity, equation (3.2) transforms to

{w(1 — azK1 — a3ks) + ay (K] + K3) } P — bP**!

#p &P\ PP &P _
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so that the starting hypothesis stays the same as in (3.5). Therefore substituting
(3.5) into (3.12) leads to

{w+a1 (k] +K2) — w(apmy + a3kz)} sechPs — bA?™ sech®+pg

+ {ai (B} + B3) —v(azB; + a3Bs)} {p®sech?s — p(p + 1) sech?*?s} = 0.

(3.13)
Again, applying the balancing principle yields
1
= -, 14
p=_ (3.14)

Equating the coefficients of the same linearly independent functions, as for the Kerr

law case, implies

LY (a2B1 + a3 Bz) — a1 {(B} + B}) + n? (k2 + £3)} (3.15)
1 — a3k — azk,

and

a231 Q, Bg — Q1 B% B% #
4= [t oleaB b b - (B B .16

which leads to the same constraint condition (3.10). Therefore, the 1-soliton solution

with the power law nonlinearity is given by

q(z,y,t) = A sechm (B1z + Byy — vt) ef(-mizravtet+d), (3.17)
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3.1.3 PARABOLIC LAW

For this case, equation (3.2) transforms to

{w1 = asr1 — agms) + a; (k2 + K2)} P — b, PP — b, P

2P  9%p %P 0P
- — =) _ - =0. (3.18)
“ (6:1:2 + 8y2) " 5z0t ~ “oyor
The starting hypothesis is given by (23, 24]
A (3.19)
Pl@,y,1) = (D1 + cosh s)?

where, D, is a parameters whose value and that of the exponent p is determined by
I

using the balancing principle. Substituting (3.19) into (3.18) leads to

[w+ a1 (K3 + K3) — w (azk1 + asks)

— p*{a1 (B} + B3) —v(a2B) + a3Bs)}]
a1 (B2 + B?) — v (azBy + a3By)

+ p(2p+1)Dy

D, + coshs
2 v (a2B; + a3B;) — a, (B} + B3)
+ p(p+1) (‘Dl —1) (D1+COS}18)2
bt - b = (3-20)
(D; + coshs)?  (D; + cosh s)*
By the balancing the pairs of exponent (2p, 1) or (4p, 2) leads to
= (321)
p - 2'
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Finally, setting the coefficients of the linearly independent functions 1/(D; + cosh sy
to zero, for j = 0,1, 2 leads to

w = v (azBl + ang) —a; (312 + B%) —4a, (K,% + K:g)
4{1 — (azr1 + azkz)}

(3.22)

and the amplitude is given by

(3.23)

4= [Plon BB vt asBz)}r
by ’

where the parameter

D; =b 3 (3.24)
PN 362 + 4b, {an (BZ+ BE) — v (a2B: + asBa)} '

The constraint retation is
302 + 4by {ay (B} + B}) —v(az2B; +a3By)} >0 (3.25)

and as before (2.6) must still remain valid. Hence, the 1-soliton solution to the NLSE

with parabolic law nonlinearity is

A . ei(—nlz—n2y+wt+0) (326)
{D; + cosh (Biz + Byy — vt)}?

q(z,y,t) =

3.1.4 DUAL-POWER LAW
From (3.2), the function P(z,t) satisfies

{w (1 — agr1 — azkz) + a1 (Kf + ng)} P — b P+ _ p, pintl

9P &2P PP 8P _
- a (_a_z_{ + W) - ag——axat a;;—ayat =0. (327)
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The trial function is given by [23, 24]

P,y,1) = (D, +foshs)” (3:28)
where D, is a parameter. Substituting (3.28) into (3.27) leads to
[w+ a1 (53 + £2) — w (azk, + asks)
- p{a (B? + B3) —v(asB; + a3Bs)}]
+ sl BB vl s
2
+ plp+1) (D2 — 1) %28 T;Z%)c;sl‘: ;)(f L+ 5)
bA™ b A (3.29)

(D3 + cosh s)>» (D, + cosh s)inp 0

Again, by the balancing principle, from the exponents pairs (2np, 1) or (4np, 2) it is

found that

- = 3.3
P= o (3.30)

Equating the coefficients of the linearly independent functions of 1/(D; + cosh s)? to

zero, for j = 0, 1,2 the following expressions are obtained for soliton parameters w,

A and D2:

v (a2B1 + a3B2) — a; (B? + BZ) — 4n’a; (K2 + &2)

- , 3.31
w= 4n2? {1 — (az2k1 + azk2)} (3:31)

_ 2 2\17 3%
Ao [(n + 1)D {v (a2 B ;nZZle) a1 (By + Bz)}] ’ (3.32)



Dy =nb 2n+1

1
n*(2n + 1)bF + (n + 1)%;, {a; (B? + BY) — v (@B: + 6B3)}

The constraint relation, in this case, is

n?(2n + 1)b% + (n + 1)2b, {a1 (B} + B}) — v(asB1 +a3B;)} > 0.
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(3.33)

(3.34)

As before, (2.6) must remain valid as well. It needs to be noted that all the results

in this subsection for dual-power law nonlinearity collapses to the results of the pre-

vious section for parabolic law nonlinearity upon setting n = 1. Hence, the 1-soliton

solution to the NLSE with dual-power law is given by

q(z,y,t) = T
{D, + cosh (B + Bay — vt)}

3.1.5 LOG LAW

For log law nonlinearity, the real part equation given by (3.2) leads to

{w(1 — azrz — azk2) +ay (xF + 3) } P — bPIn P?
oP @P\_ &P __ &P _,
- (’a? + a_yz) %55 Boyor

so that the starting hypothesis is given by

P(z,y,t) = Ae™

A 6i( —K1T—Koy+wi+06)

(3.35)

(3.36)

(3.37)
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which is a Gausson beam with the amplitude A and widths B, and B, along z- and

y- directions respectively. Substituting (3.37) into (3.36) leads to

w {1~ (a2 + asmo)} + ay { (62 + w3) +2 (B + B)}
~ 2{v(a2B; + a3B;) + bln A}

~ 2{201 (B} + B}) — 20 (asB, + a3B,) — b} s? = 0. (3.38)

Next, setting the coefficients of the linearly independent functions s’ for i=0,2to

zero leads to

w = 2010 A+2v(aB) + a3B;) — 201 (B + B}) — a1 (k3 + K3)

1-— (azh‘,l + a3K.2) (3'39)

and
2a; (Bi2 + Bg) =20 (a231 + a3Bz) +b (340)

which connects the two widths of the Gausson with its speed. Thus, finally, the

Gausson beam solution to the NLSE with log law nonlinearity is given by

q(x, v, t) — Ae—(le+Bzg)—vt)2ei(—n1z—nzy+wt+0) (341)

with the constraint (2.6) in place.

3.2 DARK SOLITONS

In this subsection we obtain the dark soliton solution to the NLSE with STD in

(2+1)-dimensions. It is not yet known if log law nonlinearity supports dark solitons.
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Therefore the study will be only with Kerr law, power law, parabolic and dual-power

laws of nonlinearity.

3.2.1 KERR LAW

For Kerr law nonlinearity, the starting hypothesis is given by [23, 24]
P(z,y,t) = Atanh®s (3.42)

where the value of the unknown exponent p is determined by the balancing principle
and the parameters s is still defined by (2.3). It needs to be noted that for dark
solitons the parameters A, B; and B, are all free parameters. Now, substituting

(3.42) into (3.4) leads to

{w (1 — az2k1 — azkz) + a; (k3 + £3) } tanh® s — bA? tanh® s
— p{ai (B} + B) —v(azB1 +a3By)} X

x {(p—1)tanh?%s — 2ptanh®s + (p + 1) tanh?*?s} = 0 (3.43)

By the balancing principle as for the bright solitons, p = 1. Next, setting the coef-

ficients of the remaining linearly independent functions tanh?*’s for j = 0,2 leads

to

_ 2 {’U (a231 + aaBZ) —ax (Blz. + B%)} — a1 (K’% + K%) (3.44)
w = 1 — agKk1 — agka

and

Ao [2 {v(azB1 + assz) — a1 (B} + Bg)}} 2 (3.45)
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provided

b {al (Bf + B22) —v(axB; + a3Bz)} <0. (3.46)

The dark 1-soliton solution to the NLSE
q9(z,y,t) = Atanh (Byz + Byy — vt) e'(-F1z—Raytwt+d) (3.47)
with the constraint conditions given by (2.6) and (3.46).

3.2.2 POWER LAW

For power law nonlinearity, substituting (3.42) into (3.12) leads to

{w (1 — a2r1 — azka) + a1 (k2 + K2) } tanhP s — bA?™ tanh@*+1P
— p{ai (B} + B}) —v(azB1 +a5By)} x

x {(p—1)tanh”?s — 2ptanh®s+ (p + 1) tanh”*?s} =0. (3.48)
By the balancing principle, the value of p = 1/n and thus

n=1 (3.49)

This means that the NLSE with power law nonlinearity collapses to NLSE with Kerr
law nonlinearity. Hence, the NLSE with power law nonlinearity does not support dark
soliton solution unless it reduces to Kerr law nonlinearity. This is a very important
observation that is being made for the first time, in the context of NLSE in (2+1)-

dimensions with STD. Therefore, all the results from the previous subsection hold
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true for power law NLSE. Hence equations (3.44)-(3.47) are also valid for power law

nonlinearity.

3.2.3 PARABOLIC LAW

For parabolic law nonlinearity, we assume dark soliton is given by [23, 24, 27]
q(z,y,t) = (A + Btanhs)? e, (3.50)

Substituting (3.50) into (2.23) and decomposing into real and imaginary parts leads
to
A2\? 2
— w(A+ Btanhs)” +a,B? (B + B2)p(p—1) (1 - ﬁ) (A + Btanhs)™”
aip(p+1) (B} + B3
B2
A? -1
+ 2a1p(2p—1) A(B? + B3) (1 - —) (A + Btanhs)?

) (A + Btanhs)"*?

B2
0 o\ o 3A2 2 2 P
+ @ |2(Bi+ B (r —1) —wi— s (A+ Bianhs)
2 2
_ 2ap(2p+ 12;;4 (Bi + B3) (A + Btanhs)"*!
A2

2
— B?(ayB; +a3Bs)vp(p—1) (1 - —B_z) (A + Btanhs)??

2o DB LGB 4 g
A? _
— 2p(2p—1) (1 - -EE) A (a2B; + a3B2) v (A + Btanh s)f 1

3A2
+ [2 (a2 Bi + a3 B2) vp* (1 - _BZ_) + (azk1 + asﬂz)w] (A + Btanhs)

i 2p (2p + 1) AgI;Bl + aaBz)'U (A + Btanh 8)p+l

+ by (A+ Btanhs)* + by (A+ Btanhs)” =0 (3.51)
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and

A?
- _a 1 2pv
pBu (l B2) (A + Btanhs)? 1——34(A+Btanhs)"

+ % (A + Btanh s)PH!

2
= 2a:pB (k1 B; + K2 B5) (1 — A—) (A + B tanh s)’”—l

B2
4a1pA (k1B + k2 By)

- B (A + Btanhs)?
2a,p (k1 B, + k2B
+ 1P IE: 252) (A + Btanh s)**!
A2
+ pB (1 - ﬁ) [(az2k1 + aska) v+ w (a2B1 + a3 Bz)] (A + Btanh s)p_l

2pA
+ 5 [(a2r1 + azkz) v + w (a2 By + a3B,)] (A + Btanhs)?

- % [(a2k1 + a3k2) v + w (a2B; + a3B;)] (A + Btanhs)P! =0 (3.52)

Equating the exponent pairs (p+ 2, 5p) or (p+ 1, 3p) lead to p = 1/2. From equation
(3.52), setting the coefficients of the linearly independent functions (A + B tanh s)”*?

to zero, for j = 0, £1, gives

A=B, (3.53)

and the speed of the soliton that is given by (2.5). Now from equation (3.51), the fol-

lowing relations are recovered after setting the coefficients of the linearly independent

functions (A + B tanh s)p+j to zero, where j = 0,%1, X2, gives

_ a1 (K’% + K’g) (3'54)
" agky + a3k — 1

ax (B% + B22) 3
_ , 55
v (a231 + a,3Bz) ( )
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and

A=p=-2 (3.56)
These relations prompt the constraints
a2B +a3B, # 0, (3.57)
and
by # 0. (3.58)

The dark 1-soliton solution for the NLSE with parabolic law nonlinearity is given by

q(z,y,t) = /A{1 + tanh (Biz + By — vt) }e'(Tmz—raytuttd), (3.59)

3.2.4 DUAL-POWER LAW

For dual-power law nonlinearity, our starting hypothesis for dark 1-soliton solution,

stays the same as given by (3.50) [23, 24, 27). Upon substituting this ansatz into
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(2.33) and decomposing into real and imaginary parts leads to

w (A + Btanhs)® + a,B% (B2 4 Bi)p(p—1) (1 - f—) (A + Btanhs)P?

BZ
a1p (p + 1) (B? + B2
B2 : 2) (A + Btanhs)"*?

2

+ 2a1p(2p—1) A(B;} + B}) (1 - %) (A + Btanhs)P™!

+ a [2 (B} + B2) p? (— — 1) — K3 - fc%] (A + Btanhs)?

2a1p (2p + 1) A(B2 + B2
- 1)32 (By 2) (A + Btanhs)"t!

A%\?
— B?(a2B: + azBy) vp (p — 1) (1 — ﬁ) (A + Btanhs)P?

p(p+ 1) (agBl +a3Bs)v
- = 2% (44 Btanhs)P*?
2

A
- 2p(2p-1) (1 — ﬁ) A (a2B; + a3B;) v (A + Btanh 7)™}

3A?
+ [2 (a231 + asBz) 'Up2 (1 - F) + (0.2521 + a3li',2) w] (A + Btanh s)p
2p(2p + 1) A(azB1 + asBs) v
B2

+ b (A+ Btanhs)?®* 4 by (A + Btanh )P =, (3.60)

(A + Btanhs)”*!
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A2
pBv (1 - _) (A + Btanhs)?!

2pv
(A+ Btanhs)? + (A + Btanhs)P*!

2a,pB (K,lBl + KQBQ) (1 - i-) (A + Btanh S)p -1
4a1pA (k1 By + k2 By)

B (A + Btanhs)?
2a:p (k1 B, + k2B
1p (1 Bl r2By) (A+Btanhs)”"l
A2
pB (1 — ﬁ) [(azk1 + azks) v + w (a2 By + a3By)] (A + Btanh s)P!

2pA
—_— [(agn,l + a3kz) v + w (a2B; + a3 B;)| (A + Btanhs)?

E [(azl‘al + a3n2) vt+w (agBl + a3Bg)] (A + Btanh 8)p+1 =0 (361)

respectively. From (3.60), equating the exponents (p+ 1, p(2n+1)) leads to the same

value of p as in (3.30). From the linearly independent functions in (3.61), the speed

of the soliton is retrieved as in (2.5) and the same relation (3.53) is obtained. Next,

from the real part equation given by (3.60), the following relations are obtained

and

asK1 + agky — 1’

(5] (32 + B )
- By (3.63)
A=p= -t (3.64)

4(n+1)by’
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which prompts the same constraint relations as in the parabolic law case. Finally,

the dark 1-soliton solution to the NLSE with dual-power law nonlinearity is given by

9(2,y,t) = [A{1 + tanh (Byz + By — vt)}]% eil-mz—raytut+0) (3.65)

General text of this section.

3.3 SINGULAR SOLITONS

In this section we discuss the singular solitons of the NLSE with STD. Singular solitons
can serve as a possible analytical model for the formation of rogue waves. However,
this is not yet confirmed. It is not yet known if log law nonlinearity supports singular

optical solitons. Therefore, we only consider the remaining four types of nonlinearities.

3.3.1 KERR LAW

For Kerr law nonlinearity, we write [23, 24]
P(z,y,t) = A csch’s (3.66) |

In this case, just as for dark solitons, A, B; and B; are free parameters. Substituting

into (52) gives

{w+ a; (k% + K3) — w (azk1 + aska) } csch®s — bA? csch*s
+ {ay (B?+ B3) — v (asB1 + asBa)} {p” csch”s — p(p + 1) csch™*s} = 0.
(3.67)
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Here, we find p = 1 and

q9(z,y,t) = A csch (Byz + Byy — vt) e'-rmz—rey+wt+6) (3.68)
with all the parameters and constraint conditions defined through (3.8)-(3.10).

3.3.2 POWER LAW

For power law nonlinearity, substituting this hypothesis (3.66) into (3.12) leads to

{w + a; (fi% + K%) —w (aznl + a3;¢,2)} csch?s — bAZn CSCh(zn'H)"s

+ {a1 (B} + BZ) — v(azB: + a3B,)} {p* csch®s — p(p + 1) csch®?s} = 0.

(3.69)
The singular 1-soliton solution is
q(z,y,t) = A cschn (Byz + Bay — vt) el Tz —rav+uttf) (3.70)
where w and A are defined by (3.15) and (3.16) respectively.
3.3.3 PARABOLIC LAW
Our starting point for the singular 1-soliton solution is the ansatz (23, ‘24]
P(z,y,t) = (3.71)

(D, + sinh s)?
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where, D, is a parameter. Substituting this hypothesis (3.71) into (3.18) leads to

[w+a (<3 + K3) — w (azk; + asksa)

— p*{a1 (B} + B}) —v(a;B1 + a3B;)}]
a; (312 + B%) - (a231 + a3Bg)
D; +sinhs
9 v (azBl + a3B2) — a3 (Bf + B%)
+ plp+1) (D} -1) D, + sihs)?
bhA* kAt
(D1 +sinhs)? (D, +sinhs)®

(3.72)

The same parameter definitions and constraint conditions as given by (3.21)-(3.25)

are obtained. Therefore, the singular 1-soliton solution is

A . ei(-—nlz—nzy-i-wt-{-e). (373)
{D, + sinh (B,z + Boy — vt)}*?

q(z,y,t) =

3.3.4 DUAL-POWER LAW

For dual-power law nonlinearity, we assume [23, 24]

A

S e— 3.74
(D, + sinh s)? (3.74)

P(z,y,t) =
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where D, is a constant to be determined. Substituting (3.74) into (3.26) leads to

[“’ +a (k3 + "%) — w (az2k; + azkz)

— p*{a1 (B} + B}) — v(a2B: + a3By)}]
a; (Biz + B%) —-v (a231 + (1332)
Dy + sinh s
v (a2B1 + a3Bz) —-a (Bf + B%)
(D2 + sinh s)?
blAzn b2A4n —0
(D; + sinh s)?"* (D, + sinh s)®

+ p(2p+1)D,

+ p(p+1) (D} —1)

(3.75)

and also leads to the same parameter relations expressed through equations (3.30)-

(3.34). The singular 1-soliton solution to (34) is

A

. ei(—n;z—nzy+wt+0)' (376)
{Dz + sinh (le + Bgy - 'Ut)}E

q(z,y,t) =
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Chapter 4
SEMI-INVERSE VARIATIONAL PRINCIPLE

The third method of integrability that will be studied in this chapter is the so called
semi-inverse variational principle (SVP). In an attempt to solve (1.1), we look for
traveling wave hypothesis as given by (2.1). Upon substituting (2.1) into (1.1) leads
to the velocity given by (2.5) and the ordinary differential equation (2.4). Multiplying
both sides of (2.4) by ¢’ and integrating leads to

{a1 (B? + B?) — v(a2B1 +a3By)} (¢)°
= {a1{s] +43) = wlazrs +asrr - 1)}g2—2—/ghF(h2)dh+K
(4.1)

where K is the integration constant. The stationary integral is then defined as [3, 26]

J=/de

_ / " [{a (B1 + B2) —v(@:Bi + asBa)} (¢)°

—00

— {a1 (2 + K3) —w (asm1 + ask2)} g° + 2/9 hF (R?) dh] ds
4.2)

Finally, underlying the SVP is to postulate a trial solution for the 1-soliton solution.

Hence we assume

g(s) = Af [sech(Bs)], (43)
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or

9(s) = Ae~B* (4.4)

depending on the type of nonlinearity that is being considered. The functional f
in (4.3) is based on one of the first four forms of nonlinearity. The second form of
assumption is for the log law nonlinearity. Here, A is the amplitude and B is the
inverse width of the soliton or Gausson. The SVP states that the amplitude A and

the inverse width B can be obtained from the following coupled system of equations

[3, 26]

oJ

a4 =% (4:5)
and

oJ

This principle will now be applied to the NLSE and studied in details in the following

five subsections.

4.1 KERR LAW

For Kerr law nonlinearity, the stationary integral is given by (3]

P o (- T N

—00

b 4
- {a (K2 + Kk3) — w(azky + askz — 1)} + %] ds. 4.7)
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The assumption for g(s) in this case is (3, 11]

9(s) = A sech(Bs). - (4.8) .
Upon substituting this into the stationary integral and simplifying leads to

2A2
= 35 [{a1 (B} + BZ) —v(a:B: + a3B,)} B?

— 3{a:1 (x? + K3) — w (azk1 + agkg — 1)} +0bA4%]. (4.9
Setting the partial derivatives of J with respect to A and B to zero results in

{al (Bf + B%) —v (a231 + a3Bg)} B?

— 3{a; (s} + K3) —w(azky +agka — 1)} + 2bA% =0, (4.10)
and

{al (B% + B%) —-v (a231 + ang)} B2

+ 3{a (k2 + K3) — w(azk1 + azky — 1)} —bA* = 0. (4.11)

Solving the coupled system (4.10) and (4.11) gives

Ao [2 {a1 (k2 + K3) — wb(azﬂl +agkz — 1)} } : : (4.12)

and

. l ’
_ [w(azk1 + ask2 — 1) —ai (s + "‘%)] ’ (4.13)
B= a1 (B? + B}) —v(a2B1 +a3B2) | ’
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while the amplitude-width relationship is

B=A b 3
[2 {v(a2B, + a3B;) — a; (B? + B%)}] : (4.14)

Requiring that A >0 and B > 0 means

b{a1 (k2 + K3) — w(agk; + azkg — 1)} >0, (4.15)

{w (azky + azky — 1) — a, (nf + ng)} {al (Bf + B%) —v(axB; + a3B2)} > 0,(4.16)
and

b{a: (Bf + B}) —v(a2B1 +a3B2)} < 0. (4.17)

The 1-soliton solution to (2.8) is (2.15) where the parameters are defined in (4.12)-

(4.14) and the constraints are as in (4.15)-(4.17).

4.2 POWER LAW
For power law nonlinearity, the stationary integral is
oo 2 n2
J = / [{al (B? + B}) —v(az:B1 + a3B)} (¢')
—oo b

2n+2
2
(4 K2) — w(asks +asma — 1)} g+ Z‘IT] ds.  (418)

~ Here, soliton profile is taken to be [3, 11]

g(s) = Asechw(Bs). (4.19)
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Here, soliton profile is taken to be 3, 11)

9(s) = Asech=(Bs). (4.19)

Substituting (4.19) anto (4.18), we get

A2
T D+ 2)B @ (Bl + B}) —v(a:B, + aB,)} (n+1)B?

- n(n+1)(n+2){a (2 + K3) — w(azk; + agks — 1)} + 2nbA*"] 1;‘((2) L'(y ))

(4.20)
where I'(z) is the Gamma. function. Using (4.5) and (4.6),

{a1 (B} + B3) — v (asB; + asBs) } B’
— n(n+2) {al (nf + ng) — w(azKk; + agka — 1)} + 2nbA% =0,
(4.21)

and

(n + 1) {al (Bl + B2) — v (azBl + a3B2)} B?

2n __
+ nn+1)(n+2) {a1 (x3 + K3) — w (azk1 + agka — 1)} — 2nbA*" =0,
(4.22)

from which we deduce that

A [(n +1) {a1 (s + K3) -; w (azK1 + agkz — 1)}] 3n | (@23)
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and

B = n [w (0:21411 + ask; — 1) ! (K'% + K‘%) % (424)
a1 (B} + B2) — v (ayB; + a3B,) ’
while the amplitude-width relationship is given by
1
B =na [ b ] 2 (4.25)
(n =+ 1) {al (B% + B%) —-v (a231 + aaBz)} ) )
4.3 PARABOLIC LAW
Here, the stationary integral is expressed as
7= [ [{a (B2 + BY —v (@B + 03B} 0
e b 4 b2 6
— {al (li% + K,g) —-w (aglﬁl + agka — 1)} 92 + % + —39—'] ds.
(4.26)
The trial function for g(s) is [11]
A
g(s) = T (4.27)
{D; + cosh(Bs)}?2

for some external parameter D;. Substituting this into the stationary integral (4.26)

J = 2{a(B2+B3) —v(@Bi+asBy)} A'BM;
’ A2M.

2

- 2 {a1 (K,% + KZ%) - w(agnl + azKkg — 1)} B

4 by M A® ,
+ b‘];‘[;A +———bf15§ : (4.28)
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where M; (1< 5 < 4) is

_ 1 1-D,
M, =F (3,1,—5,7), (4.29)
_ 31-D
51-D
M3=F(2,2,§; 5 ) (4.31)
and
71-D
M4=F(33 T 1). (4.32)

Here, F(a, B;7; ) is the Gauss’ hypergeometric function that is defined as [10]

r INa+n)'(B+n)z
F(a,ﬂ;7;2)=r(a)(g)(ﬁ)z ( +7)+(n+ )n! (4.33)

The convergence criteria for the hypergeometric function is given by

v <a+p, (4.34)

and

lz| <1 (4.35)
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the latter of which, implies

~1<D;<3. (4.36)

Now, equations (4.5) and (4.6) respectively produce

5{a1 (B} + B}) — v (az2B; + asB,)} B2M,
— 15{ay (k] + K3) — w (azky + agky — 1)} My + 5by A2M; + 2b,A*M, = 0,

(4.37)

and

5{a1 (B} + B3) — v (az2B; + asB,)} B2 M,

- 15 {a1 (nf + n%) — w(azky + agkg — 1)} M, + 5b, A2 M3 + 2b,A* M, = 0.

(4.38)
Solving for the amplitide A and the inverse width B
1
3Y — 450, M3 2
_ [ o ] , (4.39)
where
Y = /22562 M2 + 12806, My Mj {a: (x} + k3) — w (ask1 + agrz — 1)}
15by Ms + 8b, My A ] :
_ 4.40
B=4 [6OM1 {v(azB1 + a3B2) — a1 (B} + B3)} (440)
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These imply the constraint conditions

256b2M2M4 {0,1 (Kg + K.%) — W (G,glﬁl + agkg — 1)} + 45b¥M§ > 0, (441)

and

M1 (15b1M3 + 8b2M4A2) {'U (a231 + a3Bz) —a] (B% + B%)} > 0. (442)

44 DUAL-POWER LAW

The stationary integral now is

J = / " [{ar (B2 + BY) — v (@B + asBa)} (6"

—00
on+2 an+2
n+1 2n+1

— {a1 (K} + K3) — w(azk: + azka — 1)} g®+
(4.43)
The trial function is [11]

A
{D, + cosh(Bs)}ZL" ,

o(s) = (4.44)

where D, is a parameter. On substituting (4.24) into (4.23)

J = §2§ n i 5 {o1 (Bi + B}) —v(a2B:1 +a3B)} A°BN,
A2N2
— o (6 + ) —w (i +aame — 1)}
bl A2n+2 N3 (’n + 1)b2A4n+2N4 ]
+ (n+1)B + (n+2)(2n+1)(3n+2)B]’

(4.45)
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where V;, (1< j < 4)

_p(l.,.1 11-D\TE)T()
N —F(— - . 2 2 n
1 n ’n') 21 2 ) F(%-{-:‘—;) ) (4.46)
111 11-D)\T(3)T (1)
N =F —_ — = _ 2 2 n
2 (n,n,n+2, 5 ) T+l (4.47)
1 1 3 1-D,\T(3)T(3)
N3;=F | = = —. 2 2 n
and
_ 1 1 1 51-D,\T(3)T (%)
N4_F(n+2’ﬁ+2’ﬁ+§’ 5 ) T %+%) (4.49)
The existence criteria is
—-1<D;<3. (4.50)

Now, equations (4.5) and (4.6) respectively reduce to

n(3n + 2) {a1 (B% + B%) —v (a2B1 + a3B2)} ]\rlB2
- (n+2)(3n+2) {a1 (K2 + K3) — w (agk1 + agkz — 1)} N,

+ (n+2)(3n+2)b/NsA™ + (n+ 1)by Ny A*™ = 0, (4.51)
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and

n(n+1)(2n +1)(3n + 2) {a1 (B + B2) — v (asB; + asBy)} N B?
+ (n+1)(n+2)(2n+1)(3n +2) {g (k1 + K3) — w(as1 + agrz — 1)} Ny

= (n+2)(2n+1)(3n + 2)b; N34 — (n + 1)2N, A% = 0. (4.52)

Solving for the amplitude A

1
z bi(2n + 1)N; | ™
where
Z = \/n2(n +2)(2n + 1)2(3n + 2)b N2 - 16n(n + 1)3(2n + 1)ba N2 Ny {a1 (3 + x3) — w (azk1 +a3kz — 1)}.
The connection between the amplitude A and the parameter B is
B (n +2)(2n + 1)(3n + 2)by N3 + 2(n + 1)2b, N, A% ] 3
2(77, + 1)(2’1’& + 1)(3n + 2)N1 {a1 (B% + B%) —v (a231 + a3Bz)} )
(4.54)

Finally, the constraints are

16(n + 1)3b2N2N4 {al (nf + fcg) — w (azK1 + agk2 — 1)}

— n(n+2)(2n+1)(3n+2)6N; <0, (4.55)
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and

{(n+2)(2n +1)3n + 26, N, + 2(n + 1)%b, N, A™}

{01 (B} + BE) — v(a3B1 + a3Ba)} N, > 0. (4.56)

4.5 LOG LAW

Finally, for log law nonlinearity,

J = / [{a1 (B} + B2) — v(a2B1 + a3By)} (¢')°
— {a1 (k] + K3) — w(azk1 + azky — 1)} g% + 2bg* Ing — bg?] ds.

(4.57)

The assumption for g(s) in this case is given by (4.4) [3]. Upon inserting this expres-
sion into the stationary integral (4.57) leads to
V2
J = 5 [2{a (Bl + B}) —v(a:B1 + asBa)} A°B
— 2{a: (s3+ K3) — w (azK1 + azka — 1)} A%+ A% (3b+4bIn A)] .

(4.58)

By (4.5) and (4.6)

2 {al (B? + B%) —v (a231 + (1332)} B2
— 2{a (k3 + Kk3) — w(azk1 + ask2 — 1)} +3b+4blnA +2b =0,
(4.59)
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and

2{a1 (B} + B}) ~ v (a;B, + a3By)} B
+ 2{a1 (5] + K3) — w (aoky + agry — 1)} + 3b — dbinA = 0.

(4.60)

Solving the coupled system (4.59)-(4.60) gives the amplitude of the Gausson as

A= exp {b + a1 (k3 + k%) — w (agk; + azky — 1) , (4.61)
2b
and the parameter B is
B = b (4.62)
2{v (a2B: + a3B;) — a, (B} + B3)}’ '

which prompts the constraint condition

b{a; (B? + Bf) —v(azB1 +a3Bs)} <0. (4.63)
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Chapter 5
CONCLUSIONS

Three different approaches were used to obtain the 1-soliton solution to the (2+1)-
dimensional NLSE in presence of STD. These include the first integral method, ansatz
method and the SVP. The application of these methods provide the bright, dark as
well as singular soliton solutions for five types of nonlinearity. They are Kerr Law,
Power Law, Parabolic Law, Dual-Power Law and the Log Law nonlinearity. It is for

the log law nonlinearity that only bright soliton solutions are possible.

In future, there are several related problems that can be tackled. They include
obtaining the quasi-stationary solitons in the presence of perturbation terms, de-
veloping the quasi-particle theory for suppressing the soliton-soliton interactibn. The
study of soliton solutions for vector NLSE in (2+1)-dimensions is also pending. The
variational approach will also be applied, with perturbation terms, in an attempt to
obtain the soliton solution as well as soliton radiation. Several other approaches will

be implemented in order to extract solitons and Gaussons.
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