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Integrative Sparse Modeling and Classification of Biomedical

Imaging Patterns

Keni Zheng

Faculty Advisor: Dr. Sokratis Makrogiannis

ABSTRACT

The analysis and characterization of imaging patterns is a significant research area with

several applications to biomedicine (computer-aided diagnosis), remote sensing (urban plan-

ning, environmental monitoring), homeland security (face recognition, object recognition,

biometrics) social networking, and numerous other domains.

In this dissertation we study and develop mathematical methods and algorithms for dis-

ease diagnosis and tissue characterization. The central hypothesis is that we can predict the

occurrence of diseases with certain level of confidence using supervised learning techniques

that we apply to medical imaging datasets that include healthy and diseased subjects that

can be used for training.

In the first stage of this work we propose to diagnose diseased patterns using texture

characteristics that are derived from medical imaging modalities. The texture feature set

consists of fractal dimension, local binary patterns, discrete wavelet frames, Gabor filters,

discrete Fourier and Cosine Transforms, statistical co-occurrence indices, edge histogram,

and Laws energy maps. Next, we implemented feature selection using correlation-based

techniques to reduce the feature dimensionality. In the learning stage we employed bagging

methods using fast decision tree learners, Random Forests, Bayes network, or näıve Bayes

techniques. These techniques are also used for comparisons at the later stages of this work.

Next, we develop methods for calculation of sparse representations to classify imaging

patterns and we explore the advantages of this technique over traditional texture-based clas-

sification. We also introduce integrative sparse classifier systems that utilize structural block

decomposition to address difficulties caused by high dimensionality. We propose likelihood

functions for classification and decision tuning strategies. These likelihood scores may also

be used to determine a type of confidence interval for prediction.

The two application domains are osteoporosis diagnosis in radiographs of the calcaneus

bone, and breast lesion characterization in mammograms. Both of these applications are

very significant for improving public health. Osteoporosis results in deterioration of bone
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quality and affects the quality of life of aging populations. Timely diagnosis of osteoporosis

can effectively predict fracture risk and prevent the disease. Furthermore, breast cancer is

one of the leading causes of death among women. Early detection and characterization of

breast lesions is important for increasing the life expectancy and quality of health of women.

We performed bone osteoporosis classification experiments on the TCB challenge dataset

and breast lesion characterization experiments Mammographic Image Analysis Society data

set. In TCB there are 87 healthy and 87 osteoporotic subjects in the calcaneus trabecular

bone. MIAS includes benign and malignant breast cancer lesions. In both of these two data

sets, the scans of healthy and diseased subjects show little or no visual differences, and their

density histograms have significant overlap.

In the experiments, our method of block-based sparse representation produced the best

classification accuracy on these two datasets. We compared the conventional sparse represen-

tations classification (SRC) and texture-based methods with our method in a leave-one-out

(LOO) cross-validation (CV) framework. The top texture-based classification performances

are 67.8% ACC (classification accuracy) and 70.9% AUC (Area Under the Receiver Oper-

ating Curve) for bone characterization, and 63.4% ACC and 62.1% AUC for breast lesion

characterization. The top performance of our integrative sparse model method by using a

decision threshold equal to zero is 100% ACC and AUC for bone characterization by block-

based maximum a posteriori sparsity-based (BBMAP-S) decision function, as well as 100%

for bone characterization by block-based log likelihood sparsity-based (BBLL-S) decision

function, 98.6% ACC and 97.8% AUC for breast lesion characterization by BBMAP-S deci-

sion function, and 100% ACC and 100% AUC for breast lesion characterization by BBLL-S

decision function for breast lesion characterization.

We also used 10-fold and 30-fold cross-validation to evaluate the classification perfor-

mances of our classification methods. The top rate of accuracy produced by the texture-based

method is 66.7% and corresponding AUC is 67.5% for bone characterization using 10-fold

cross-validation. Our method using integrative sparse models has obtained the highest ACC

for 30-fold cross-validation is 69.33% and 70.2% with BBMAP-S decision function. It also

achieved 70.7% ACC and 74.4% AUC with BBLL-S decision function for bone characteri-

zation. In 10-fold cross-validation experiments for bone characterization, BBLL-S produced

60.6% ACC and 62.5% AUC. In the breast lesion characterization application, the best per-

formance over all the ROI sizes is 71.2% ACC and 69.8% AUC using texture-based methods

and the conventional SRC method reached 55.0% ACC and 51.8% AUC using 10-fold cross-

validation. For our system, the top performance is 86.7% ACC and 88.2% AUC for 30-fold

experiments and 68.9% ACC and 73.7% AUC for 10-fold experiments.
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Our results show that ensemble sparse representations of imaging patterns provide very

good separation between groups of healthy and diseased subjects in two challenging diag-

nostic applications.
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Chapter I: INTRODUCTION

In this chapter we first introduce the fields of machine learning and pattern recognition

including the main approaches, systems, stages and related fields. We also describe the goals,

motivation, significance and contributions of this work. Finally, we provide an outline of the

dissertation.

1.1 Machine Learning and Pattern Recognition

1.1.1 Machine Learning

Machine learning is an artificial intelligence (AI) technique that applies statistical learn-

ing methods to learn and identify objects from their measurements. One of the main goals

of machine learning is to explore and develop methods for learning and creating models and

rules that predict the state of new samples at sufficient accuracy levels using given input

samples of known states.

Machine learning algorithms may train a model given the input data and use statistical

techniques to yield a prediction score in a fixed range of numerical, categorical or other types

of values. In other words, machine learning can create a model in order to automatically

determine the state of test data.

One example is the decision tree learner, whose nodes process one variable at a time.

One decision rule can be learned by a branch of the decision tree. To improve the accuracy

of learning, more branches can be built for the decision tree corresponding to different types

of input data. After the decision tree is created, new data samples can be given as input to

this model for prediction.

Machine learning has developed into a multidisciplinary field in the past 30 years or so,

involving concepts and techniques from probability theory, statistics, approximation theory,

convex analysis, and computational complexity theory.
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It has been widely used in medical diagnostics, computer vision, data mining and bio-

metrics. One of the applications of machine learning is text classification [90], in which

pool-based active learning with support vector machines (SVMs) has been performed. Di-

agnostic and prognostic prediction of neuroimaging measurements in psychiatry frequently

employs machine learning classification techniques [65]. In addition, high diagnostic accuracy

has been achieved in Alzheimer’s disease by machine learning [21].

1.1.2 Pattern Recognition

Pattern recognition uses mathematical methods and algorithms to analyze patterns

and to classify the patterns or related information. Patterns can be objects or signals which

we aim to recognize, such as face, voices, fingerprints, diseases. We may consider machine

learning and pattern recognition as two different facets of the same subject. Machine learning

terminology is mostly used in computer science, while pattern recognition in engineering

disciplines [8].

The more relevant the patterns that we select, the better decisions we can make [43].

Pattern recognition includes a training or learning stage, in which the model is created

by learning from the input patterns. The training stage may be challenging in terms of

representing the input patterns and also time consuming. Training is important since it

affects the performance of the system. The training stage includes the pre-processing, feature

selection and feature extraction stages as well.

Pattern recognition is widely applied to many cutting edge research areas. For example,

face recognition is a widely studied topic. Face analysis requires the extraction of efficient

descriptors. In [4] the authors introduced local binary pattern texture features extracted from

local facial regions as local descriptors. A local descriptor has the advantage of robustness

with respect to illumination and facial expression changes. Medical image analysis is another

popular topic, where pattern recognition technique plays a very important role [59].
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1.1.3 Classification and Regression

Machine learning and pattern recognition can be categorized by the desired output of

a machine-learned system. One of these categories is classification, where the input data is

split into two or more subsets of data. Then the learner creates a model by using one of

few subsets from these subsets of data, and testing is applied to the unseen subset of data.

Techniques of classification include Naive Bayes, entropy and support vector machines.

Another purpose is regression, where the output of regression problem consists of one

or more continuous variables. Extreme learning machine can be applied for regression [42].

Classification and regression both are supervised problems. The error of classification

and regression can be decomposed into a bias term and a variance term [43].

1.2 Machine Learning Paradigms

Supervised Learning

Supervised learning utilizes the input data and its labels –which is the desired output–

to create a model and/or learn a decision function that is then applied to unlabeled data.

In [47], the procedure of applying supervised machine learning has been described. First,

the dataset is pre-processed because the collected data are not all informative and relevant,

some are not available for induction, and may have been corrupted by noise. Some methods

have been cited in [47] to deal with missing data, noise, and unavailable data for learning.

Then feature selection helps to reduce the data dimensionality. The learning algorithm is

the main step for the model creation. This is based on the problem domain to choose the

algorithm, such as decision trees, Naive Bayes, Bayesian networks, SVM and so on. In the

training stage learning algorithm is applied on the collected data, so the parameters of the

learning algorithm can be tuned and cross-validation can be applied. The test data should

not overlap with training data, but they are expected to have similar properties.
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Unsupervised Learning

In unsupervised learning the class labels are not available, so the system does not know

whether the classification results are correct or not. It analyzes the input data and finds the

potential rules for classification by minimizing an objective function. A typical example of

unsupervised machine learning is clustering. Clustering seeks similar characteristic features

to group data samples that have no class labels. Therefore, a clustering algorithm usually

only needs to know how to calculate the similarity. Clustering may be a component of other

techniques such as artificial neural networks [1].

Semi-Supervised Learning

Semi-supervised learning utilizes a training set that includes the input data and some

labels of the input data, therefore some of the output may be missing. It is considered

a combination of supervised and unsupervised learning as there are labeled and unlabeled

data samples. The data labeling procedures may be difficult and time consuming, therefore

semi-supervised learning requires less human effort than supervised learning and may still

yield high accuracy rates [105]. Semi-supervised learning has been applied to image pro-

cessing, bioinformatics, and information retrieval [17]. In [17] the authors propose to apply

unsupervised learning on all data first and then apply supervised learning to the labeled

data only.

Reinforcement Learning

Reinforcement learning utilizes an incentives-or-punishments system and learns under

stimulation from the system, resulting in habitual behavior that can maximize benefits. It is

mostly used in operations research, cybernetics, etc. The difference with supervised machine

learning is reinforcement learning does not require the correct input/output pairs.
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Figure 1.1: Machine learning and pattern recognition learning strategies.

1.3 Pattern Recognition Categories

Statistical

The statistical pattern recognition has been designed for many recognition systems. A

pattern is represented by a set of d features that form a d−dimensional feature vector [43].

These methods use statistical approaches, such as estimation of probability distributions

of patterns in each class, to determine the decision functions and the decision boundaries

between classes.

The decision boundaries can also be determined by discriminant analysis methods. A

discriminant function can be a linear, quadratic or other type of function. Based on the pat-

terns, we can assume the type of discriminant function and find the best decision boundaries

based on the classification of training patterns [43].

These systems also include a training and a classification stage. The training stage im-

plements pre-processing, texture computation, feature selection/extraction and model learn-

ing. In the classification stage, test patterns are classified by the trained classifiers.

Syntactic

Syntactic pattern recognition uses the structure of patterns and focuses on the inter-

relationships between the primitives. The primitive is the simplest and elementary pattern
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such that more complex patterns are presented by these primitives. If we know the concept

of the formal grammar, then we can design a syntax classifier based on the formal grammar.

1.4 Related Fields

1.4.1 Probability Theory

In pattern recognition, probability theory provides the foundation for building learning

models, and expressing and analyzing uncertainty in knowledge [8]. We next introduce some

probability theory principles, which we will be used in our methods.

Probability Distributions

A probability distribution models the probability of occurrence of values of one or more

random variables. Among the different types of probability distributions, the Normal or

Gaussian distribution is one of the most common types with wide applicability to pattern

recognition and machine learning and is given by

p(x) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]

(1.1)

where µ is the mean and σ is standard deviation. The µ and σ values can be used to quantify

the data separation and analyze data properties.

The cumulative distribution function (CDF) is the probability that a real valued random

variable X takes on a value not greater than x,

FX(x) = P (X ≤ x), P (a < X ≤ b) = FX(b)− FX(a). (1.2)

Multivariate Normal Density

The multivariate normal density has been investigated for a while, mainly because of

its analytical tractability [26]. Given a continuous valued feature vector x for a given class
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ωi, we define general multivariate normal density as,

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)tΣ−1(x− µ)

]
(1.3)

where d is the dimensionality, x is a column vector ∈ Rd, µ ∈ Rd is the mean vector ,

Σ ∈ Rd×d is covariance matrix.

It is frequently convenient to transform the multivariate normal distribution to a spher-

ical one, that is having a covariance matrix proportional to the identity matrix I. This is

known as Whitening transformation and is given by [26],

A = ΦΛ−1/2 (1.4)

where Φ is a matrix that columns are orthonormal eigenvectors of Σ, Λ is the diagonal

matrix of the corresponding eigenvalues.

Density Estimation

Parametric Techniques - Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is method for estimating the parameters of a

probabilistic model under the given observations. It is one of the methods that does not use

the prior distributions for estimating. The observations and the probabilistic model define

the properties of the parameters.

The maximum likelihood estimation can be defined as,

θ̂ = {arg maxθ∈ΘL(θ;x)} (1.5)

where L(θ;x) is the likelihood function, θ is a set of parameters for a specific distribution

model {f(·; θ)|θ ∈ Θ}.
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The natural logarithm of likelihood function is log-likelihood function. It is more con-

venient to use, since log-likelihood function is a strictly increasing function and can be used

in maximum likelihood estimation and decision functions as well.

Nonparametric Techniques - Kernel Density Estimation

In contrast to parametric density estimation, nonparametric techniques can be used

with any distributions and without knowing the underlying densities.

Kernel density estimation utilizes Parzen windows and is widely used in signal process-

ing, statistics, and econometrics fields as discussed in [70, 79].

In the fundamental approach we first consider a region Rn that is a hypercube with

dimension d and the length of this hypercube edge is denoted as hn. The volume of this

hypercube is Vn = hdn. We define another function kn that returns the number of samples

falling in this hypercube [26]

kn =
n∑
i=2

φ

(
x− xi
hn

)
(1.6)

where φ(u) may be defined as a unit hypercube with origin at its center. φ(u) is 1 when

|uj| ≤ 1/2, j = 1, ..., d, otherwise is 0. Hence, the estimated function is

pn(x) =
1

n

n∑
i=1

δn(x− xi) (1.7)

where δn(x) = 1/V φ(x/hn). The value of hn affects the amplitude and the width of δn. Small

values of hn generate smoothly varying estimates of pn(x). Another common estimator for

φ(u) is the Gaussian kernel, or radial basis function.

1.4.2 Decision Theory

Probability theory provides the foundation for representing uncertainty in pattern recog-

nition. Decision theory helps us determine the state of an unlabeled sample usually via
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probability theory tools.

Bayesian Theory

The Bayes’ theorem plays an important role in pattern recognition and machine learning

[8]. It provides the relationship between conditional probabilities of random variables and

the distribution of marginal probability. The Bayesian formula may be used for introducing

new evidence to modify the existing decision function.

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)
(1.8)

In the Bayes theorem, we normalize the product of the prior probability and the likelihood

function, to yield the posterior probability. Prior probability P (ωj) is the probability avail-

able before we know the state of object ωj, the posterior probability is the probability that we

know the state of ωj after x has been measured. The likelihood function p(x|ωj), expresses

the likelihood of occurrence with different ωj. The integral of likelihood of ωj may not equal

to one.

Discriminant Functions

Discriminant functions are functions that are designed for classifying patterns. The

discriminant functions do not have to be unique, and we can multiply by same positive

constant or shift them by same constant [26]. The discriminant function learns a function

that maps into x and directly to the decision function [8].

The linear discriminant function is a linear combination of the components of x can be

formulated as [26]

g(x) = wtx + w0 (1.9)

= r ‖ w ‖ (1.10)
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Figure 1.2: Linear discriminant function outline (left) and decision surface (right)

where w is a weight vector, w0 is the bias or threshold weight, and r is the desired algebraic

distance. We can express x using xp that is the normal projection of x onto the hyperplane

H which divides the feature space into different regions by

x = xp + r
w

‖ w ‖
(1.11)

Each component of x is an input and by obtaining the corresponding weight w and bias

w0, we calculate the output by the inner product as shown in Fig 1.2.

On the other hand, nonlinear discriminant functions can be step discriminant functions,
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quadratic, or of another type. The discriminant function of multivariate normal of (1.3) is

gi(x) = −1

2
(x− µi)

tΣ−1
i (x− µi)−

d

2
ln 2π − 1

2
ln |Σi|+ lnP (ωi) (1.12)

1.5 Main Stages of Machine Learning and Pattern Recognition

To implement a recognition system, we use the classifiers to perform classification on the

data that need to be identified. Next, we describe the four main stages in a pattern recog-

nition system: pre-processing, feature computation, feature extraction, and classification

decision function.

Pre-processing

Pre-processing is an important step for pattern recognition as it can help to obtain

the useful information from the input data. Pre-processing includes removing the noise

from imaging data, filtering the irrelevant and redundant information, normalization, under-

sampling, and finding the region of interest (ROI).

Feature Calculation

This stage includes feature calculation and analysis. Different characteristics of the

data can be represented based on the feature type. In image-based systems the computed

features may be related to texture, appearance and shape. Texture features include fractal

dimension, wavelet texture descriptors, Law’s texture energy masks, discrete Fourier and

cosine transforms and several others.

Feature Extraction

The data we use for pattern recognition usually lie in a high denominational feature

space. In order to effectively implement classification, it is helpful to select the more relevant

features for classification. Feature extraction and selection can reduce the complexity of data
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Figure 1.3: The pattern recognition process.

and save computational time.

Learning Decision Function/Model

The classification decision function can be learned by statistical, numerical or other

methods to classify the objects into a category in the feature space. Certain rules of decision

have been created based on the training set, then minimize the false rate of classification

according to the decision function.

1.6 Classification Performance

1.6.1 Bayes Error Rate and Dimensionality

The minimum classification error obtained by Bayes decision classifiers is the Bayes

Error Rate. This rate can be estimated by analytical or numerical methods and determines

the separation capability of a classification system. The Bayes optimal decision boundary

minimizes the probability of classification error. The two types of error are false positive and

false negative. The Bayes decision boundary and the corresponding error rate are determined

by the point of equal posterior probabilities for all classes.

For the two class multivariate normal case and equal prior probabilities the Bayes error

rate is [26]

P (e) =
1√
2π

∫ ∞
r/2

e−u
2/2du (1.13)

where r2 = (µ1 − µ2)tΣ−1
i (µ1 − µ2). Then P (e)→ 0 as r →∞.
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If Σ = diag(σ2
1, ..., σ

2
d), then we have

r2 =
d∑
i=1

(
µi1 − µi2

σi

)2

. (1.14)

The Eq. (1.14) shows that each additional feature will increase r2 and decrease P (e).

More useful features have the property of big differences between the class-conditional means

and small standard deviations within each class.

On the other hand, the increased dimensionality of features may cause difficulties in

classification. One consideration is the curse of dimensionality that sets requirements for in-

creased number of samples for each additional feature in order to estimate the likelihood and

discriminant functions. Given a fixed number of training samples, increased dimensionality

implies sparser points. Overfitting is a problem that becomes more substantial in sparse

feature spaces.

An overfitting classifier uses a complex model to explain the property of the data points,

although the true underlying decision surface may be approximated by lower order. This may

happen when the training set’s size is small in comparison with the feature dimensionality

and because the measured data points may contain errors and random noise. Overfitting

may result in decreased predictive capability in the testing stage. For example, the model

can have high order terms whereas the problem can be learned by a linear function model

as in Fig. 1.4.

Another important problem is that the computational complexity of the classifier in-

creases with the number of dimensions. We use O and Θ for computational complexity. For

example, in Eq. (1.12), assuming n > d, for each individual components, we have

gi(x) = −1

2
(x− µ̂i︸︷︷︸

O(dn)

)t Σ̂
−1

i︸︷︷︸
O(nd3)

(x− µi)−
d

2
ln 2π︸ ︷︷ ︸
O(1)

− 1

2
ln |Σ̂i|︸ ︷︷ ︸
O(d3)

+ lnP (ωi)︸ ︷︷ ︸
O(n)

(1.15)
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Figure 1.4: Blue line is overfitting, orange line is decision function line.

Figure 1.5: Selection of optimal Bayes criterion based on error minimization.

Then the computational complexity for the Bayes classifier is O(cd2n). Given the computa-

tional complexity of each equation, we can estimate the complexity of the problem and find

the most efficient way to solve the problem.

1.6.2 Bias and Variance

There are two main approaches for measuring the matches between the classification

problem and the learning algorithm; bias and variance. The lower the bias or the variance,

the better match the learning algorithm produces. Also, bias and variance are related [23].
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Figure 1.6: Example of effect of bias and variance on classification/regression output.

Bias was discussed in [61] as a criterion for choosing one generalization over another.

Bias expresses the deviation of all measurements from the true value, includes the inaccu-

racy of measuring instruments, not enough features, the design of experiments, etc. In the

biomedical research related fields, bias quantifies the systematic errors caused by design, im-

plementation, data processing and analysis, and the interpretation and inference of results.

Bias can not be avoided, but more features and multiple sampling can help to reduce the

bias.

Variance describes the fluctuation of classification performance with respect to variation

in the training data. Therefore, the greater the variance is, the greater the fluctuation of the

error is; the smaller of the variance, the smaller of the fluctuation of the error. Such as in

Fig. 1.6. In general a model with many parameters may achieve low bias but high variance.

Conversely, a model with few parameters may not fit the data very accurately but the model

will not change very much for diffferent training datasets.
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The mean-square error is the average over all training sets D with a fixed size n [26],

εD[(g(x;D)− F (x))2] = (εD[g(x;D)− F (x)])2︸ ︷︷ ︸
bias2

+ εD[(g(x;D)− εD[g(x;D)])2]︸ ︷︷ ︸
variance

(1.16)

where F (x) is the true function, and g(x;D) is the estimated regression function. The prior

information may help to achieve low bias and variance for regression.

The classification error rate is given by [26]

Pr[g(x;D) 6= yB] = Φ

[
Sgn[F (x)− 1/2]

εD[g(x;D)]− 1/2√
Var[g(x;D)]

]
(1.17)

= Φ

Sgn[F (x)− 1/2][εD[g(x;D)]− 1/2]︸ ︷︷ ︸
boundary bias

Var[g(x;D)]−1/2︸ ︷︷ ︸
variance

 (1.18)

where

Φ[t] =
1√
2π

∫ ∞
t

e−1/2u2du =
1

2
[1− erf(t/

√
2)] (1.19)

Pr[g(x;D) = y] = Pr[yB(x)) = y] = min [F (x), 1− F (x)] (1.20)

From Eq. (1.18), the variance is affected by the sign of the boundary bias, so the low variance

is important for classification accuracy rate, but bias is not need be. Some types of bias can

be reduced by low variance, and this can significantly reduce the effects of biases associated

with simple estimators such as Nave Bayes [33].

More parameters in g can decrease classification bias and increased n may decrease the

variance decrease. In many cases, bias and variance grow in the opposite way, low bias with

high variance and high bias with low variance. To reach low generalization error, achieving

low variance is more effective than achieving low bias. The prior information of F (x) and

large n are effective for low bias and variance, since the larger n we have, the more new
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parameters in model g can be added.

1.6.3 Classification Performance Measures

We can measure the classification performance by calculating the true positive rate

(TPR), true negative rate (TNR), classification accuracy (ACC), and area under the ROC

curve (AUC).

Receiver Operating Characteristic (ROC) Curve

The ROC curve is a graph of the true positive rate (TPR) versus the false positive

rate (FPR). We can utilize the receiver operating characteristic (ROC) curve to test the

classifier’s performance because when we make decisions, the ROC curve is not affected

by the cost and benefit of the model, and gives objective and neutral performance results.

When there are many trials, the probabilities can be determined, and the false and hit rates

as well. We use these hit and false rates to plot a 2-D graph that enables us to select the

best detection model and set the optimal threshold in the same model. Different decision

thresholds will produce points on the curve, because the hit and false rates will change as

the threshold changes.

1.6.4 Cross Validation

Cross validation is a practical method for statistically separating a data sample into

smaller subsets. Some of the subsets are called training sets, and the remaining subsets are

called test sets. The training set is used for analysis and finding the model parameters, while

the test set is used for confirmation and verification of this analysis. The cross validation

method for the training set aims to reduce problems such as over-fitting.

A generalization of cross validation is k-fold cross validation, k = 1, 2, .... We divide

data set into k subsets, where one of these subsets is test set and the remaining k−1 subsets

are training sets. The cross-validation is repeated k times, then each subset is verified once.
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Estimates can be obtained by the average of these k times, or other combinations methods.

The advantage of this method is that it can randomly generate subsets of samples and can be

repeated for training and testing. 10-fold cross-validations and leave one out cross validation

(k = 1) are mostly used.

1.7 Computer-Aided Diagnosis and Tissue Characterization

Pattern recognition supports the development of computer-aided detection/diagnosis

(CAD) systems. A CAD system can localize, delineate and label structures like tumors

or lesions. The research fields of computer-aided tissue characterization, diagnosis, and

prognosis have gained significant interest in the past few decades [7, 85]. These techniques

combine concepts from image analysis, pattern recognition and machine learning to separate

diseased from healthy subjects. Applications span a wide range of clinical areas and diseases

such as detection of microcalcifications in mammography screening systems [66, 50], early

diagnosis of Alzheimer [76, 55], cancer [29, 81], soft and hard tissue characterization for age-

related diseases [49, 27, 68], and cardiovascular diseases. This popularity is mainly attributed

to the potential for timely characterization of tissues that may reduce the mortality rate from

diseases. Frequently, these automated diagnostic systems extract information from medical

imaging modalities such as MRI and CT scans to produce a binary decision or a likelihood

score that characterizes the state of a lesion as healthy or diseased. Sometimes multiclass

classification may be needed to characterize different lesion types as in cancer applications.

An interesting recent research topic in the CAD field studies the application to multiple

databases of a CAD system that has been trained on a single database. For example, the

goal would be to train a breast lesion CAD system on a single mammography database and

use it for diagnosis of breast lesions on other mammography databases.
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1.7.1 Breast Cancer

Breast cancer is one of the leading causes of death among women [29]. The cells in the

breast start to grow out of control. Breast cancer can be diagnosed on an x-ray, or a lump

which can be felt. If the tumor is malignant, the cancer cells may spread into surrounding

tissues, blood, or the lymph system. The breast cancer can start anywhere in the breast,

but mostly starts from the ducts which carry milk to the nipple (ductal cancers). The breast

cancer does not always cause a lump that an expert can feel, therefore many of the breast

cancers are found on screening mammograms. If the breast cancer can be diagnosed early,

when it is small and has not spread, it can be treated successfully. Mammograms can help

to find breast cancer at an early stage. Because of its significance, the research area of CAD

systems for breast cancer is very popular [40, 66, 67, 93, 58, 63, 48, 73, 64].

There are some widely used mammographic databases, for example mammographic im-

age analysis society digital mammogram database (MIAS) [88], digital database for screening

mammography (DDSM), Trueta, and BancoWeb [63]. The MIAS database consists of 322

digitized MLO images with 68 benign, 51 malign lesions and 203 normal images. DDSM

contains 10,480 LJPEG images, benign and malignant lesions and normal images from two

views (CC and MLO) of each breast. BancoWeb is a new database that was made public

in 2010. It contains 320 cases and 1473 TIFF images in CC and MLO views. BancoWeb

includes more information about patients and annotations than other older databases.

1.7.2 Osteoporosis

Osteoporosis is a skeletal disorder characterized by decreased bone strength that may

lead to susceptibility of fracture [7]. Osteoporosis has been operatively defined on the basis

of bone mineral density (BMD) [96], in [95, 46] has described the criteria of osteoporosis,

the T-score less than 2.5 standard deviations, that is a BMD lies on 2.5 or lower than

the average of young healthy women. The most used technique to measure BMD is dual
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energy X-ray absorptionmetry (DXA), and the development of pharmaceutical interventions

in osteoporosis is based on T-score for BMD [28, 32, 38]. There are many researchers working

on diagonosis of osteoporosis, such as [91, 69].

One of the osteoporosis datasets is provided by the TCB challenge. Many published

works in the literature have proposed analysis and diagnosis of osteoporosis. The authors in

[84] applied histogram, gray-level co-occurrence matrix (GLCM) and principal component

analysis (PCA) analysis to compute and extract texture chracteristics and used support vec-

tor machines (SVM) as classifier. In [69], the anisotropic discrete dual-tree wavelet transform

was proposed for texture computation and SVM for classification.

1.8 Thesis Outline

1.8.1 Topic and Goals

In this dissertation we study and develop mathematical methods and algorithms for

computer aided-diagnosis. The two application domains are osteoporosis diagnosis in radio-

graphs of the calcaneus bone, and breast lesion characterization in mammograms.

These two applications are both related to the quality of human’s life and the risk

of death, so early detection and characterization is very important for preventing deaths.

While automated diagnosis in both applications is very challenging since scans of healthy

and diseased subjects show little or no visual differences, and their density histograms have

significant overlap.

We have proposed a system that is using pattern classification and machine learning

for CAD (computer-aided detection/diagnosis) systems. We will explore the use of sparse

modeling and classification for classifying diseased from healthy subjects. Then we will pro-

pose ensemble sparse techniques to find more accurate solutions than individual classification

techniques. We will also develop and test other classification techniques based on texture

features, or patch-based techniques such as the Bag of Keypoints.
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Figure 1.7: Example of textures of a control subject (top left) and a subject with osteo-
porosis (top right). The histograms of these two scans overlap significantly
therefore rendering the diagnosis a challenging task (bottom).

1.8.2 Background and Motivation

The osteoporosis and breast lesion applications are very significant for improving public

health. There are more than 3 millions of people diagnosed with osteoporosis in the U.S. per

year. The risk is increasing with age, especially the people who are over 40+. Osteoporosis

results in deterioration of bone quality and affects the quality of life of aging populations.

Timely diagnosis of osteoporosis can effectively predict fracture risk and prevent the disease.

Furthermore, breast cancer is one of the leading causes for women. More than 200,000

new population per year in the U.S. have the disease. It also has higher risk with increasing
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age. The treatment depends on the stage of the cancer, surgery may needed if it diagnosis

is late. So early detection and characterization of breast lesions are important for increasing

the life expectancy and quality of health of women.

Another reason for the popularity of this research topic is also the significant overlap

between the histograms of disease and healthy imaging patterns. Classification of these

two datasets is a hard problem, therefore a potential solution of this problem will have a

significant impact on related classification and recognition applications.

1.8.3 Dissertation Structure

In Chapter 2, we describe benchmark classification systems that we developed in the

early stages of this work. They include a texture based classification system and the Bag

of Keypoints method that utilizes patches. Then we introduce sparse classification methods

and related mathematical programming problems and solvers in Chapter 3. The integrative

sparse representation classification based system that we proposed is presented in Chapter

4, as well as the decision functions which are related to our proposed classification system.

In Chapters 5 and 6 we discuss the experiments and results obtained by our system for

osteoporosis diagnosis and breast lesion characterization and we compare these results with

other methods described in Chapters 2 and 3. In Chapter 7 we summarize the methods that

we developed and the main findings of this work.

1.8.4 Points of Contribution

In the first part, we explore texture based characteristics for separating diseased form

healthy subjects. In the feature computation stage we have studied and implemented fractal

dimension, local binary patterns, discrete wavelet frames, Gabor filters, discrete Fourier

and Cosine Transforms, statistical co-occurrence indices, edge histogram, and Laws energy

maps. We select the more relevant features from the features what we obtained. The feature

extraction can help reduce the dimensionality and the computational time. The classification
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techniques includes Random Forests, Bayes network, or näıve Bayes techniques and Bagging.

The main contribution of this work is related to the development and evaluation of

sparse representation based methods for classification. We show that sparse representation

and classification may be more advantageous than the texture based technique for specific

problems. Then we propose a block-based sparse representation method that uses a spatial

block decomposition methodology for training an ensemble of classifiers to address irreg-

ularities of the approximation problem. Based on the sparse representation method, we

divide the image into blocks, and develop three decision functions: maximum a posterior

decision function, log likelihood score-based decision function and log sparsity decision func-

tion. Also, we propose methods for setting thresholds for decision functions using minimum

Bayes error criteria. We compare the conventional sparse representation classification and

texture-based methods with the block based sparse representation technique. The significant

improvement of the classification for bone characterization and breast lesion characterization

will be discussed in detail.
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Chapter II: NON-SPARSE CLASSIFICATION TECHNIQUES:
TEXTURE-BASED AND PATCH-BASED

Here we introduce our texture feature method for computer-aided diagnosis of diseased

and healthy subjects. Our premise is that the deterioration of disease can be captured by

textural features. We first computed texture features based on wavelet decomposition, dis-

crete Fourier and Cosine transforms, fractal dimension, statistical co-occurrence indices, and

structural texture descriptors. We employed feature selection techniques that consider the

individual feature predictive ability and inter-feature redundancy to find the most discrimi-

nant feature set. In the classification stage we employed Näıve Bayes, Multilayer Perceptron,

Bayes Network, Random Forests and Bagging models for diagnosis.

2.1 Introduction to Texture-based Classification

Texture is an image property that can be used for segmenting and classifying images

into different objects. We can define a texture as a structure consisting of a group of related

elements [86]. The pixels in this group are called texture primitives or texture elements, also

called texels sometimes.

Texture analysis techniques are mainly applied to texture recognition and texture based

shape analysis [86]. Generally, people consider texture as fine when the texture element is

small and there are large differences between element, and coarse when the element is large

and only few element in the image, grained and smooth, etc. For scientific applications of

texture, we use more precise feature such as tone and structure [37]. Tone is more about

pixel intensity and structure is about the spatial relationship between texture elements.

Statistical and syntactic approaches are employed for texture description. Statistical ap-

proaches compute the properties of texture. Syntactic approaches are good for the elements

that have been labeled, then elements can be described by their properties.
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There are many methods for texture extraction, such as wavelet analysis, Gabor filters

and discrete cosine transform(DCT). The distributional based multivariate methods will be

introducted, WW-test [34] and Kantorovich Wasserstein distance [35]. In [74], the authors

present a patch based method and applied the multivariate WW-test and KWass techniques,

also compared with wavelet, DCT and Gabor methods. The multivariate WW-test is based

on the WW-test, WW-test can applied to hypothesis H0 to test is there are any two multi-

dimensional point samples from same multivariate distribution [74] by method MST-graph

[100]. The multivariate WW-test is defined [74] as,

W =
R− E[R]√
V ar[R|C]

(2.1)

where R is test statistic obtained of disjoint subtrees, and E[R] and V ar[R|C] is given

in [34]. Kantorovich-Wasserstein distance (KWass) is the distance between two stochastic

distributions [74],

dw(µ, v) = inf
j
{E[d(X, Y )] : L(X) = µ, L(Y ) = v} (2.2)

where X and Y are discrete distributions, the infimum is taken of all the joint distributions

with marginals µ, v [35].

2.2 Calculation of Texture Features

In this stage we compute texture descriptors that can be used to form morphometric

signatures for separation between groups of healthy and disease subjects. This is usually

performed in a high-dimensional feature space to reduce the Bayes error rate as explained

in Chapter 1. We describe our feature set next.
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Figure 2.1: Box counting to compute the fractal dimension of Delaware state boundary.

2.2.1 Fractal Dimension

We computed Fractal Dimension attributes that have shown promise in texture classi-

fication applications. A fractal is defined as a mathematical set whose Hausdorff dimension

exceeds the fractal’s topological dimension [72]. It has been shown that fractal dimension

correlates well with a function’s roughness. Therefore, we used fractal dimension to measure

the roughness and granularity of the image intensity function. The topological dimension of

this function is equal to 3, consisting of 2 spatial dimensions plus the intensity.

We utilized the method of box counting to compute the fractal dimension explained as

follows. Assuming a fractal structure with dimension D, we let N(ε) be the number of non-

empty boxes of size ε required to cover the fractal support. Using the relation N(ε) ' ε(−D),

we can numerically estimate D from

D = lim
ε→0

logN(ε)

− log ε
(2.3)

by least squares fitting.

For the case of grayscale images or continuous functions, we generated 8 binary sets

using multiple Otsu thresholding, then computed the fractal dimension, area, and mean

intensity for each point set as in [19].
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2.2.2 Wavelet Texture Descriptors

A multi-scale texture descriptor is usually very useful for classification. Gabor and

wavelet transforms are both multi-scale spatial-spatial frequency filtering techniques. The

discrete wavelet transform is frequently applied using tree or pyramid hierarchies for texture

representation. Multi-band analysis offers advantages over the traditional discrete Fourier

transform, but wavelet transform does not produce as exact a result as the Fourier transform.

Discrete Wavelet Frames

Discrete wavelet frames employ a filter bank for multi-scale decomposition. The Haar

wavelet with a low-pass filter

H(z) = (1 + z)/2 (2.4)

and a corresponding high-pass filter

G(z) = (z − 1)/2 (2.5)

is frequently used because of its efficiency and computational simplicity.

The largest filter kernels will have size 2maxlevel, where the maxlevel is the number of

multiresolution levels. At each level, we filter the image by using the filter combinations:

HxHy, HxGy, GxHy, GxGy, (2.6)

where Hx is the low-pass filter along the x direction, and Gy is the high-pass filter along the

y direction.

To produce the wavelet frame representation we compute the discrete wavelet transform

for all possible signal shifts at multiple scales. The filters are used to decompose the image in

subbands. We compute the orthogonal projections and residuals for a full discrete wavelet
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expansion. We then compute energy, variance, entropy, contrast, skewness, and kurtosis

signatures to form the texture descriptor. These characteristics are calculated as follows.

Contrast

Contrast measures the intensity contrast between a pixel and its neighbor of an image,

in the range [0 (size(Method, 1)− 1)2], the formula is presented as,

∑
i,j

|i− j|2p(i, j) (2.7)

Energy

Returns the sum of squared elements in [0 1],

∑
i,j

p(i, j)2 (2.8)

Skewness

Skewness is a measure of the lack of symmetry. For a random variable x, the skewness

is the third standardized moment γ1 [11],

γ1 = E

[(
X − µ
σ

)3
]

=
µ3

σ3

=
E[(X − µ)3]

(E[(X − µ)2])3/2
=

κ3

κ
3/2
2

(2.9)

where µ is mean, σ is standard deviation, µ3 is central moment, E is expectation operator

and κi is the ith cumulants.
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Kurtosis

Kurtosis measures the heavy-tailed or light-tailed of data in a normal distribution. If

kurtosis is high, then it has heavy-tail.

Kurt[X] = E

[(
X − µ
σ

)4
]

=
mu4

σ4
=

E[(X − µ)4]

(E[(X − µ)2])2
(2.10)

Entropy

Entropy presents the state of a system, such as the disorder and randomness of the

system. The changes of entropy of this system is determined by the initial states and final

states of the entropy. The wavelet entropy is defined in [9],

S(p) = −
∑
j<0

pj ˙lnpj (2.11)

Wavelet Gabor Filter Bank

The Gabor filter is a linear filter that can extract relevant characteristics for multiple

frequencies and orientations (Fig. 2.2), similarly to the human visual system.

Gabor functions form a complete but non-orthogonal basis. In the spatial domain, a

2D Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane wave. Gabor

filters are often used for texture identification, and good results have been achieved. The
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filter has a real and an imaginary component representing orthogonal directions,

Complex: g(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
exp

(
i(2π

x′

λ
+ ψ)

)
(2.12)

Real: g(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
(2.13)

Imaginary: g(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
sin

(
2π
x′

λ
+ ψ

)
(2.14)

and

x′ = x cos θ + y sin θ (2.15)

y′ = −x sin θ + y cos θ (2.16)

where λ is wavelength of the sinusoidal factor, θ is orientation of the normal to the parallel

stripes of a Gabor function, ψ is phase offset, σ is standard deviation of the Gaussian envelope

and γ is spatial aspect ratio.

The filter dictionary can be produced by dilations and rotations of the mother Gabor

wavelet.
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Figure 2.2: The original bone radiograph and the Gabor texture components of a healthy

subject using 4 scales and 6 orientations. The 24 components are calculated

using the mother wavelet function by using the original image (top left). While

these maps pronounce the texture characteristics, visual interpretation is still

particularly challenging. Therefore a machine learning technique is needed to

distinguish healthy from osteoporotic subjects.
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Figure 2.3: Process used to create the LBP

2.2.3 Local Binary Patterns (LBP)

For each pixel pix in the image, we compare the intensity of pix to the intensities of

its eight neighbors. If the intensity of pix is greater or equal to its ith (where i = 1, 2, ..., 8)

neighbor, we set bi = 0, otherwise bi = 1. From these eight neighbors we construct an eight-

digit binary number b1b2b3b4b5b6b7b8. We use the histogram of these numbers as a texture

descriptor [83]. Fig.2.3 shows the process of local binary patterns, the LBP = 01011101 = 93.

If a images with size p × q, the LBP matrix is computed as p − 2 × q − 2, and copy

the boundary of the LBP matrix add it to the boundary of the LBP matrix, then the LBP

matrix will be p× q.

2.2.4 Discrete Fourier and Cosine Transforms

We utilize discrete Fourier transform and the discrete Cosine transform coefficients

to capture spectral characteristics of texture. For example, fine texture has greater high

frequency components, whereas coarse texture is represented by lower frequencies. The

discrete Fourier and Cosine transforms are defined as follows,
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Discrete Fourier transform (DFT):

F (k, l) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m,n) · e−j2π(mk
M

+nl
N

), (2.17)

where k = 0, 1, 2, ..., N − 1, l = 0, 1, 2, ...,M − 1.

Discrete Cosine Transform (DCT) uses only cosine basis functions:

C(k, l) =

√
α

MN

M−1∑
m=0

N−1∑
n=0

cmncos
π(2m+ 1)k

2M
cos

π(2n+ 1)l

2N
, (2.18)

where α = 1, if k = l = 0;α = 4, if 1 ≤ k ≤M − 1, 1 ≤ l ≤ N − 1.

We use the 8× 8 coefficients corresponding to lower frequencies for classification.

2.2.5 Law’s Texture Energy Masks

The texture energy is computed by a set of 5×5 convolution masks (level, edges, waves,

spots, and ripples) to measure the amount of variation within a fixed-size window. We

use the average level (intensity) feature to normalize intensity range and then we use the

remaining 24 components to form the texture vector, as in Fig. 2.4. Next, we calculate the

mean, variance, energy, skewness, kurtosis, and entropy for each component.

Level L5 = [ 1 4 6 4 1]

Edge E5 = [−1 − 2 0 2 1]

Spot S5 = [−1 0 2 0 − 1]

Wave W5 = [−1 2 0 − 2 1]

Ripple R5 = [ 1 − 4 6 − 4 1]
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Figure 2.4: Law’s Texture Energy Masks of a healthy subject calculated from a bone
radiograph.
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2.2.6 Edge Histogram

We compute the intensity gradient magnitude |∇f | and then calculate its histogram by

p|∇f | (|∇f | = rk) =
nk
N
, k = 0, ..., L− 1 (2.19)

∇f =

(
∂f

∂x1

,
∂f

∂x2

, · · · , ∂f
∂xN

)>
(2.20)

2.2.7 Gray Level Co-Occurrence Matrix (GLCM)

The GLCM calculates how the frequency of occurence of gray-level pairs (i, j) in hori-

zontal, vertical, or diagonal pixel adjacencies on the image plane, shows in Fig.2.5 left. Hor-

izontal (0◦), vertical (90◦), and diagonal (−45◦,−135◦) dimensions of analysis are denoted

by P0, P90, P45, and P135, respectively. After we create the GLCMs, we compute contrast,

correlation, energy and homogeneity measures.

The offset of GLCM example and figure is given by following and shows in Fig.2.5 right,

Offset =[0 1; 0 2; 0 3; 0 4; ...

− 1 1;−2 2;−3 3;−4 4; ...

− 1 0;−2 0;−3 0;−4 0; ...

− 1 − 1;−2 − 2;−3 − 3;−4 − 4]

2.3 Feature Selection

Feature selection aims to select relevant and informative features for classification. It is

applied to improve classification performance, to reduce computational complexity, and to

interpret data.
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Figure 2.5: Process used to create the GLCM (left) and Offset of GLCM (right)

2.3.1 Correlation-based Feature Selection (CFS)

This method selects features that are highly correlated with the pattern classes, but

have low correlation with the remaining features. The subset evaluation function is given

by:

MeritS =
k̄rcf√

k + k(k − 1) ¯rff
(2.21)

where MeritS is the merit of the selected feature set S, k̄rcf is the mean correlation between

the features and class with f ∈ S, and ¯rff is the mean pairwise feature correlation. The nu-

merator expresses predictive capacity, while the denominator expresses feature redundancy.

Best First Search (BF)

Searches the space of feature subsets by greedy hillclimbing that may include back-

tracking. Best first may search forward, or backward, or, consider all possible single feature

additions and deletions at a given point using a bi-directional strategy.

Genetic Algorithm-based Search (GA)

Genetic search works by having a population of variables representing feature sets and

performs the operations of reproduction, cross-over and mutation in each generation to get
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the offspring that optimizes a feature set-related objective function.

2.3.2 Information Gain (IG)

This function measures the information gain with respect to the class:

InfoGain(Class,Attribute) = H(Class)−H(Class|Attribute) (2.22)

where H is the entropy of each class given by H(Class) = −pClass log pClass We select the

attributes by individual ranking evaluation.

2.3.3 Ranker

Using Ranker as a search means that we will rank the features based on the features’

individual evaluations. A threshold can be set in Ranker, and features that are smaller than

this threshold will be removed from the feature set. Ranker used with attribute evaluators,

such as Information Gain (IG), feature selection and entropy, etc.

2.4 Classifiers-Discriminant Functions

2.4.1 Näıve Bayes (NB)

p(ωj|x) =
p(x|ωj)P (ωj)

p(x)

Bayes formula can be expressed informally in English by saying that

posterior =
likelihood× prior

evidence

This model assumes conditional statistical independence p(x|ωj) =
∏D

k=1 p(xk|ωj) where x =

(x1, x2, . . . , xD)T and D is the dimensionality of the feature space. The posterior probability

is based on Bayes’ formula. The MAP decision rule is typically used for classification.
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Suppose we have two categories ω1 and ω2 with discriminant functions g1(x), g2(x), where

gi(x) = −1

2
(x− µi)TΣ−1

i (x− µi) +
D

2
ln 2π − 1

2
ln |Σi|+ lnP (ωi)

Then we can define a single discriminant function by

g(x) = g1(x)− g2(x)

The decision rule is : 
ω1, if g(x) > 0

ω2, if g(x) < 0

2.4.2 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a feedforward artificial neural network system that

maps input patterns onto class labels. An MLP has multiple layers of nodes that are fully

connected to the next layer. Each node is a neuron with a nonlinear activation function.

MLP utilizes backpropagation for supervised learning [78, 80]. Because MLP has multiple

layers of logistic regression models, it can distinguish data that are not linearly separable. In

learning by backpropagation -that can be considered as an extension of the LMS algorithm-

we adjust the connection weights, according to the amount of error in the output compared

to the expected result.

2.4.3 Bayes Network (BN)

A Bayes network, is a probabilistic graphical model that uses a directed acyclic graph

to represent a set of random variables and their conditional dependencies. In a Bayesian

network the joint probability density function can be written as the product of univariate
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conditional density functions dependent on their parent variables:

p(x) = Πv∈V p
(
xv|xpa(v)

)
(2.23)

where pa(v) denotes the parents of v. In the graph, the parents are vertices directly connected

to v by a single edge.

2.4.4 Bagging

For a training set S with size k, Bagging generates j training subsets denoted as Si with

size k′ < k, by sampling from S uniformly and with replacement. We denote the original set

as A. In the training stage, we first have D = ∅ and j is the number of classifiers to train.

Then for p = 1, 2, ..., j, we take a bootstrap sample Sp from A to train classifier Dp. Then

we add the classifier Dp to the current ensemble, D = D ∪ Dp. We obtain the class label

prediction for the input x by majority voting on the individual classifier decisions produced

by D1, ..., Dj [26].

Algorithm 1 Bagging

1: Input: Training set S of size k
2: Generate j training subsets Si (n′ < n) with replacement.
3: Training stage
4: Initialize Original set as A, D = ∅.
5: Build a classifier Dp, using a bootstrap sample Sp from A as the training set,
6: D = D ∪Dp, where p = 1, 2, ..., j
7: Classification stage
8: Input x
9: Perform classification decisions from D1, ..., Dm on x
10: Output: Voting decision for x.

2.4.5 Random Forests (RF)

Random forests are an ensemble learning method that constructs multiple decision trees

from subsets of the training set and uses random feature selection for node splitting. RF
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decide the class after applying voting to the predicted classes by the individual trees for

classification, or by calculating the mean prediction for regression. Random forests address

the overfitting tendency of the decision trees and have shown robustness with respect to

noise [62].

2.5 Patch-based Classification

2.5.1 Bag of Keypoints

In our experiments we have also evaluated the classification performance of the Bag of

Keypoints (BoK) [20, 102] that is another patch-based technique comparable to our method.

Bag of Features methods have been applied to image recognition and classification and

have produced very good results. The Bag of Keypoints technique originates from the Bag

of Features. These methods apply feature detection, extraction and clustering for finding

the most representative features in the training database. In the next step they build a

vocabulary that consists of the frequency of occurrence of these features. In the testing

stage, features are extracted from the unlabeled image and encoded using the vocabulary

that was built during training. Then a learning method is applied to classify the test pattern

into one of the classes.

In this work we employed the support vector machine (SVM) classifier for learning

a discriminant function from the encoded features and classifying unlabeled samples. In

SVM we evaluated the use of linear or radial basis function kernels. We utilized radial

basis function kernels for our experiments to address possible non-linearity of the decision

boundary. The main parameters that we tuned were the fraction of features to keep for

building the vocabulary, the vocabulary size, the penalty coefficient for misclassification of

training samples in SVM, and the kernel scale.
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Chapter III: SPARSITY-BASED TECHNIQUES

The concept of sparsity has been used in many methods of mathematics, computer

science and engineering and plays an important role in machine learning and pattern recog-

nition. In this chapter, we introduce the standard sparse technique, the details of this

method, and other related sparse techniques.

3.1 Overview of Sparse Modeling Methods

Sparse techniques are based on a matrix in which the majority or a significant number

of its entries are zeros. This means that there is a redundancy in representation and only

a fraction of the features may be needed for approximating a pattern. These features are

expected to be more relevant to training and classification than the features with zero or very

small coefficients. The sparsity property may be used for finding compact representations

that simplify the pattern recognition problem.

Sparse techniques have been applied in many fields in the past years. Especially in high

dimensional problems, low dimensional structures may be extracted to represent relevant in-

formation. For example, in face recognition, only few features are sufficient for representation

because the sparse model includes only few nonzero entries [97].

Tissue classification is typically achieved by supervised machine learning approaches.

Among numerous techniques that proposed generative or discriminative models, use of ker-

nels, and linear or nonlinear approaches, sparse classification techniques have shown promise

and applicability for characterizing visual patterns in region of interest (ROI)-based analy-

ses. Sparse representation techniques have been applied to extensive fields including coding,

feature extraction and classification, superresolution [98], and regularization of inverse prob-

lems [30]. Exploration of signal’s sparsity may provide insight into the important patterns of

prototyping of objects category. The sparse representation is more concise for compression
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and naturally discriminative for classification [97]. Sparse representation techniques calculate

a sparse linear combination of atoms for describing a vector sample using an overcomplete

dictionary of prototypes. If the representations of these linear combinations are sufficiently

sparse, then they can be used for object recognition and classification of imaging patterns.

Sparse representation methods have been applied to a wide range of fields including

coding, feature extraction and classification, superresolution, and regularization of inverse

problems [97, 104, 103, 75]. In addition, sparse representation may provide insight into

significant patterns that form object category prototypes. Sparse representation techniques

describe a vector sample by sparse linear combinations of atoms from an overcomplete dic-

tionary of prototypes. If these representations are sparse enough, then the representations

reveal characteristic imaging patterns of disease and can be used for object recognition and

classification. The authors in [97] proposed the sparse representation classification (SRC)

method to recognize 2,414 frontal-face images of 38 individuals of Yale B Database and over

4,000 frontal images for 126 individuals of AR Database, the recognition rates are above 90%

for both database. In the cases of recognition under random corruption and under varying

level of contiguous occlusion, the recognition rates increased further. A regression and spec-

tral graph analysis based method has been used for sparse representation, and compared

with other methods, such as principal component analysis (PCA), SparsePCA, and linear

discriminant analysis (LDA) in [14]. The proposed method was evaluated on CMU, PIE,

and Yale-B datasets. Other notable applications of sparse coding methods were published

in [103, 75] reporting high levels of classification accuracy.

The sparsity preserving projections (SPP) technique was proposed in [75]. It solves

a modified sparse representation problem to create a sparse reconstructive weight matrix.

Then a low dimensional feature space is calculated as a minimizer of an objective function

that includes the weight matrix.The advantage of this method is the invariant to rescaling,

rotation and translation of the data. It also produces natural discriminant representations for
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supervised and unsupervised problems. The weight vector si = [si1, ..., si,i−1, 0, si,i+1, ..., sin]

is constructed as follows,

min
si
‖ si ‖1 (3.1)

s.t. xi = Xsi (3.2)

1 = 1T si (3.3)

where x is training sample, X = [x1, ...,xn],1 is a vector with all ones. Then the sparse

reconstructive weight matrix can be expressed as

S = [̂s1, ŝ2, ..., ŝn]T (3.4)

The SPP method was applied to face recognition on the Yale, AR and extended Yale B

datasets. It was compared with PCA, local preserving projection (LPP) and neighhborhood

preserving embedding (NPE). SPP yielded the highest accuracy for these four data sets

among the compared methods [75].

Dictionary learning techniques have also emerged as solutions for sparse representation

in the recent years. The utilization of K-SVD, where SVD denotes singular-value decom-

position, for dictionary learning has been studied to produce a dictionary aiming for more

accurate representation [3]. In [54], the K-SVD technique has been used for color image

restoration to handle nonhomogeneous noise and information missing problems. The au-

thors in [101] observed that K-means may yield as good precision rate as K-SVD when we

use the same number of atoms. The SRC method with dictionary learning was applied to

classification of pulmonary patterns of diffuse lung disease in [104]. 1161 volumes of interest

were used for classification and yielded very high accuracy. Additional algorithms such as

matching pursuit (MP), orthogonal matching pursuit (OMP), and basis pursuit (BP) have
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been proposed for codebook design [3].

3.2 Sparse Representation and Classification

Sparse Representation techniques construct a dictionary from labeled training samples

to calculate a linear representation of a test sample. This representation can be used to make

a decision for the class of the test sample. Assuming that a dataset has k distinct classes,

s samples, and for ith class there are si samples, so that s =
∑

i si, we define a dictionary

matrix M from the training set as

M = [v1,1, v1,2, ..., vk,sk ]. (3.5)

where M ∈ Rl×s, and vi,h is a column vector for the hth sample from ith class. In image

classification applications, a p × q grayscale image forms a vector v ∈ Rl, l = p × q using

lexicographical ordering.

A new test sample y ∈ Rl, can be represented by a linear combination of samples

y =
∑k

i=1 βi,1vi,1 + βi,2vi,2 + · · ·+ βi,sivi,si , where βi,h ∈ R are scalar coefficients. Hence, the

test sample y can be rewritten as:

y = Mx0 ∈ Rl. (3.6)

where x0 is a sparse solution. If there are sufficient training samples, the components of

x0 are equal to zero except for the components corresponding to the ith class. Then x0 =

[0, 0, ..., βi,1, βi,2, ..., βi,si , 0, 0, ..., 0]T ∈ Rs.

In [25], it was proved that whenever y = Mx for some x, if there are less than l/2

nonzero entries in x, x is the unique sparse solution: x̂0 = x. Finding an accurate sparse

representation of an underdetermined system of linear equations is an NP-hard problem

[22, 6], therefore only approximate solutions can be found. The authors in [15, 16, 24]
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supported that if the solution x0 is sparse enough, it is equal to the solution x̂1 of the

l1-minimization problem:

(l1) : x̂1 = arg min ||x||1 s.t. Mx = y. (3.7)

In sparse representation classification we define a characteristic function δi : Rs → Rs

that has nonzero entries, only if x is associated with class i. Then the function ŷi = Mδi(x̂1),

represents the given sample y using components from class i only. To classify y and determine

the class label ω̂i, we minimize the residual between y and ŷi [97]:

ω̂i = arg min
i
ri(y)

.
= ||y −Mδi(x̂1)||2. (3.8)

This technique also adopts the sparsity concentration index (SCI) to measure the efficiency

of class-conditional representation of a sample. The SCI of a coefficient vector x ∈ Rs is

SCI(x) = k×maxi ||δi(x)||1/||x||1−1
k−1

∈ [0, 1] as defined in [97]. For a solution x̂, if SCI(x̂) is 1, y

is only represented by images from a single class, and if SCI(x̂) = 0, the components of β

are spread evenly over all classes.

Algorithm 2 Sparse Representation-based Classification (SRC)

1: Input: A training samples matrix for k classes
M = [v1,1, v1,2, ..., vk,sk ] ∈ Rl×s,
A test sample y ∈ Rl.

2: Solve the l1-minimization problem:

(l1) : x̂1 = arg min ||x||1 s.t. Mx = y. (3.9)

3: Compute the residuals
min
i
ri(y)

.
= ||y −Mδi(x̂1)||2. (3.10)

for i = 1, ..., k.
4: Output: Identify ω̂i = arg mini ri(y).
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3.3 Algorithms for solving sparse representation problem

In Sec. 3.1 we mentioned that finding the accurate solution of sparse representation is

an NP hard problem, and in Sec. 3.2 we have used one of the common methods to solve the

solution in Eq. (3.7). We describe two common methods for the NP hard problem. One is

the matching pursuit (MP) method. In [71] the authors proposed a algorithm as orthogonal

matching pursuit (OMP). OMP modified MP to achieve full backward orthogonality of

residuals (error) at each step, resulting in improved convergence. Another optimization

method for this problem is basis pursuit (BP) [2].

3.3.1 Matching Pursuit

Matching pursuit was originally proposed for time-frequency analysis, and now it is

employed as a sparse approximation algorithm as well. It attempts to find the best matching

solution of a given signal f from Hilbert space H, through the sum of multiple atoms gγn

that are the components of f on an over-complete dictionary D with their corresponding

weight [56],

f(t) ≈ f̂N(t) :=
N∑
n=1

angγn(t) (3.11)

where an is the scalar weighting factor.

MP selects atoms one at a time to minimize the approximation error. This is done by

finding the atom with the largest inner product of the signal, subtracting the approximation

from the signal using only that atom, repeat this step until it finds the satisfying residual,

RN+1 = f − f̂N (3.12)

Then if RN+1 can converge quickly, only few atoms are needed. This process is solving the

problem

min
x
‖f −Dx‖2

2 s.t. ‖x‖ ≤ N (3.13)
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and Eq. (3.13) is same as Eq. (3.8). One of the applications in [92] uses the OMP algorithm

to solve sparse approximation problem on a redundant dictionary.

3.4 Linear Programming

A linear programming (LP) problem is a constrained optimization problem that seeks

the minimizer x of a linear objective function CTx = c1x1 + c2x2 + · · · + cnxn subject to

linear constraints [77],

min
x
CTx subject to


A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(3.14)

where b and beq are inequality and equality vectors respectively, A is inequality matrix, and

Aeq is equality matrix. Here lb denotes the lower bounds vector, and ub denotes the upper

bounds vector.

The SRC method uses the Aeq ·x = beq to find a linear representation and the function

to be minimized is the l1 norm. The approximated solution is x̂1 for SRC method. In SRC

the components of the solution vector x are assigned to their respective object classes. We

use the Interior-Point Solver to find the solution of the LP problem.

The KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions use generalized Lagrangian multipliers to

determine if the point x is an optimal solution in a feasible region. Let f : Rn → R be a

objective function, smooth constraint functions µw(x) ≥ 0, w = 1, ...,m, and a collection of

Lagrange multipliers λ ≥ 0. Then our optimization problem is equivalent to minimization

of L(x, λ) = f(x) +
∑m

w=1 λwµw(x) [77].
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Interior-Point Linear Programming Algorithm

The interior point method traverses the interior of the feasible region on a path towards

the boundary to reach an optimum solution. We seek to minimize the barrier function

F (x, µ) = CTx − µ
∑n

w=1 lnxw subject to Aeq · x = beq, instead of (3.14), as the solutions

produced by the projective algorithm and by use of barrier methods were shown to be

equivalent [36]. The Lagrangian is defined by L(x, λ) = CTx−µ
∑n

w=1 lnxw−λT (Aeq·x−beq).

To detect the optimal solution, a search direction dF = x+ 1
µ
X2(AeqTλ∗ − C) can be defined

[77], such that xγ+1 = xγ + αd satisfies CTxγ+1 < CTxγ, where X = diag(x1, x2, · · · , xn)

and α is a parameter. If µ → 0, then the optimal solution to the barrier function will be

the optimal solution to the original LP problem [77]. Then we can compute the direction dF

and solve minα F (x, µ).

3.4.1 Basis Pursuit

The basis pursuit (BP) is another method for decomposition of an overcomplete system.

BP is a mathematical optimization problem, which decomposes a signal into an optimal su-

perposition of dictionary elements and the optimal mean has the smallest l1 norm coefficient

over all the compositions [18].

Basis pursuit solves the following problem

arg min
x

1/2‖Ax− y‖2
2 + λ‖x‖1 (3.15)

The relation of BP with fields of ill-posed problem and total variation denoising are

interesting. BP leads to a large-scale optimization problem in highly overcomplete dictionary

[18].
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3.5 Second order cone programming

The second order cone (SOCP) programming problems are convex optimization prob-

lems. The SOCP can be used to implement linear programming (LP), convex quadratic

programs (QPs) and convex quadratically constrained quadratic programs (QCQPs) [5].

The standard form of SOCP is defined as following:

min u>1 x1 + · · ·+ u>nxn (3.16)

s.t. A1x1 + · · ·+ Anxn = b (3.17)

xi � 0 for i = 1, 2, ..., n (3.18)

The SOCP problems can implement LP problems, where the standard form of LP is

min
k∑
i=1

cixi (3.19)

s.t.
k∑
i=1

xiai = b (3.20)

xi ≥ 0 for i = 1, 2, ..., k (3.21)

The standard form of LP may be described as a special cased of SOCP standard form. QPs

and QCQPs can be implemented by SOCP by substituting some variables or vectors.

SOCP models are widely applied in the fields of engineering, such as filter design and antenna

array design [52], robust optimization control, finance [5, 52].
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We utilize a method that solves the following problem,

min
x
f(x) s.t.



c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(3.22)

where f(x) is a object function, lb and ub are lower bound and upper bound respectively, A

is a matrix and b is a vector for inequality, Aeq is a matrix and beq is a vector for equality,

and c(x) and ceq(x) are constraint functions that return vectors. Especially, f(x), c(x) and

ceq(x) can be nonlinear functions.

To solve SOCP problems by using the formulation of Eq (3.22), we may utilize interior-point

optimization, SQP or active-set optimization algorithms. The implementation parameters

for the Eq (3.22) will be introduced in the following sections.

3.5.1 Interior-point Optimization

The interior-point optimization algorithm searches through all the interior of the feasible

region to obtain the optimal solution and can be described as,

min
x
f(x) s.t. g(x) ≤ 0 and h(x) = 0. (3.23)

The corresponding barrier function of (3.23) is

B(x, c) = f(x)− µ
m∑
i

ln (ci) (3.24)
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where g(x) + c = 0, i = 1, ...,m. We define ci > 0, the logarithmic term of Eq (3.24)

is bounded. µ is a small positive scalar, when µ → 0, the right side term of Eq (3.24)

approximates to zero, hence B(x, c) is the value of f(x).

The reason we use Eq (3.24) instead of the standard form Eq(3.23) is because Eq (3.24) is

an equation constrained problem that is easier to solve than the standard form Eq (3.23)

inequality constrained problem.

The gradient of the barrier function Eq (3.24) is

gradB = gradf − µ
m∑
i=1

1

ci(x)
∇ci(x) (3.25)

where gradf is the gradient of f and ∇ci is the gradient of ci.

Let λ ∈ Rm denote the Lagrange multiplier vector associated with constrain function g, such

that

∀mi=1 gi(x)λi = µ (3.26)

Eq (3.26) is similarly as the condition of ”complementary slackness” in KKT conditions, and

the condition (3.26) is called ”perturbed complementarity” sometimes.

We denote the Hessian matrix of the Lagrangian of barrier function by [12, 13, 94],

H = ∇2f(x) +
∑
i

λi∇2gi(x) +
∑
j

λj∇2hj(x) (3.27)
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Then the Newton step is



H 0 JTh JTg

0 SΛ 0 −S

Jh 0 I 0

Jg −S 0 I





∆x

∆s

−∆y

−∆λ


= −



∆f − JTh y − JTg λ

Sλ− µe

h

g + s


(3.28)

where Jg and Jh are the Jacobians of the constraint functions g and h, respectively. S and

Λ are diagonal matrices of s and λ. y is the Lagrange multiplier vector associated with h

and e is the vector of ones that is the same size as g [12, 13, 94].

3.5.2 Active Set Algorithm

The active set algorithm is an iterative algorithm. In the original active set algorithm,

all the iterative points are feasible solutions of the problem. The algorithm starts from a

initial feasible solution and follows the rules of the iteration, until it reaches the maximum

number of steps corresponding to the optimal solution of the problem.

As we know, an equality constraint is much easier to handle than an inequality con-

straint, and that explains why the concept of active sets is proposed. The active set is a

set of subscripts of all the constraint conditions that holds equality constraint and contains

all the equality constraints and a subset of inequality constraint. The optimal active set

can help to solve the problem fast, since we only need to rewrite the inequality constraint

as equality constraint, and not include the other constraint conditions, and then we use

Lagrange multiplier to solve the problem. Next, we will introduce how to obtain the optimal

active set.

We define a working set that is a subset chosen from all the constraint conditions that

includes all the equality constraints and some of the inequality constraints. Assuming this

working set is the optimal active set, we solve for the corresponding optimization subprob-
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lems of the working set. Then we use the reformulated inequality constraint and equality

constraint, not including the other constraints, and then use Lagrange multiplier to solve

the problem.

The initial feasible solution x0 is the starting point, and it can be obtained by the same

method or by linear programming. We assume there is a initial feasible solution x0, and the

active set is the working set W0.

After k, k = 0, 1, 2, ... iterations, we denote the iteration point by xk, and the working set

is Wk. If xk satisfies the KKT conditions, then it is the optimal solution. Otherwise, we

continue to the next iteration.

3.5.3 Sequential Quadratic Programming (SQP)

The SQP algorithm is similar to active-set algorithm. It also attempts to compute

the Lagrange multipliers directly and it solves a quadratic programming (QP) problem at

each major iteration. At each major iteration, it uses a quasi-Newton updating method

to approximate the Hessian matrix of the Lagrangian function, and the solution of QP

subproblem is used to determine a direction of line search procedure [31]. To apply the SQP

algorithm, the object function and constraints need to be twice continuously differentiable.

The differences of SQP and active-set algorithm are 1) each iterative step of SQP is in the

region that is constrained by bounds implying strict feasibility with respect to bounds; 2) in

the iterative process, the SQP algorithm may attempt to fail, and then it can take a smaller

step; 3) to solve QP subproblems, the SQP uses a different set of linear algebra routines; 4)

if the constraints the QP subproblems are not satisfied, the SQP can combine the objective

and constraint function into a merit function or the SQP attempts to use second order

approximation to obtain feasibility to the constraints [87, 89, 13].

53



Chapter IV: INTEGRATIVE ENSEMBLE SPARSE ANALYSIS
TECHNIQUES

In this chapter we propose a method for finding sparse solutions by reducing the di-

mensionality of the feature vectors and correcting the bias of estimation using ensembles

of Bayesian decision learners. We introduce a classification method that calculates sparse

representations of block structures for given ROIs and builds an ensemble model of sparse

learners to make a decision on lesion category. We hypothesize that the combination of

relative sparsity scores of multiple disjoint sparse representations computed from multiple

dictionaries will yield a more robust decision function than the decision function derived

from a single dictionary used in conventional sparse representation classification techniques.

We also propose a block-based log likelihood (BBLL) decision system and a minimum Bayes

error-based approach for determining the decision threshold that will address classification

bias. The optimized parameters may be used to define probability decision scores (PDS)

in order to determine confidence intervals for prediction. This approach is advantageous

in constructing overdetermined linear systems and addressing numerical optimization prob-

lems, such as convergence to infeasible solutions. The development of a classifier ensemble

learning approach and the introduction of two Bayesian decision functions aim to improve

classification accuracy.

4.1 Block Decomposition and Ensemble Classification

Conventional sparse representation techniques may not find a good approximation of

the solution vector, if the pattern dimensionality is high and the number of training samples

is small. This is a typical case for medical image classification applications that may include

lesions of variable types and limitations in the availability of training samples.

The images that we use for lesion characterization are subject to intra-class variability,

that cause the samples to depart from the true class prototype. Furthermore, the high
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Figure 4.1: Main stages of our integrative sparse modeling system: block-based analysis,
sparse solutions, and decision functions.

dimensionality of the feature space complicates the optimization procedure and may lead to

infeasible solutions.

We propose to build an ensemble of sparse representation classifiers based on block

decomposition of the input ROI to address these shortcomings. Fig. 4.2 summarizes the

main stages of our method that may be divided in block-based learning and Bayesian model

averaging to form decision functions.

4.1.1 Block Decomposition

We first divide each training ROI into non overlapping blocks of size m×n. Thus, each

ROI image is expressed as I = [B1, B2, ..., BNB], where NB is the number of blocks in an

image. The dictionary Dj, where j = 1, 2, ..., NB corresponds to the block Bj at the same

index within the image ROI. The dictionary Dj for all the s images can be represented as

follows:
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Dj = [bvj1,1, bv
j
1,2, . . . , bv

j
k,sk

], (4.1)

where bvji,h is the column vector denoting the hth sample, ith class, jth block Bj.

4.1.2 Ensemble Classification

We propose to classify each test sample by constructing ensembles of classifiers that

solve a set of sparse coding and classification problems, or hypotheses corresponding to the

block components. Given a test sample yj in jth block, we find the solution xj of the

regularized noisy l1-minimization problem:

x̂j = arg min ||xj||1 subject to ‖Djx− yj‖2 ≤ ε (4.2)

where j = 1, 2, ..., NB. The test sample yj will be assigned to the class ωji , which has

minimum approximation error calculated by (4.3).

ωi = arg min
i
ri(x̂)

.
= arg min

i
‖y − ŷi‖2. (4.3)

We propose ensemble learning techniques in a Bayesian probabilistic setting as weighted

sums of classifier predictions. We propose a function that applies majority voting to individ-

ual hypotheses (BBMAP) and an ensemble of log likelihood scores computed from relative

sparsity scores (BBLL).

Maximum a Posterior decision function (BBMAP)

The class label for each test sample is determined by voting over the ensemble of NB

block-based classifiers. The predicted class label ω̂ is given by

ω̂BBMAP = FBBMAP (x̂)
.
= arg max

i
pr(ωi|x̂), (4.4)
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Figure 4.2: Main stages of the proposed system: block decomposition, construction of
ensemble of sparse learners, and classification by probabilistic model averaging.

57



where x̂ is the composite extracted feature from the test sample given by the solution

of (4.2). The probability for classifying x̂ into class ωi is

pr(ωi|x̂) =
NB∑
j

NDωj
i
/NB (4.5)

NDωj
i

=


1, if x̂j ∈ ith class

0, otherwise

, (4.6)

where NDωj
i

is an indicator function whose values are determined by the individual classifier

decisions.

Log likelihood approximation residual-based decision function (BBLL-R)

We define a likelihood score based on the residuals rm, rn calculated in the sparse rep-

resentation stage of each classifier

LLSj(x̂) = − log
rjm(x̂)

rjn(x̂)


> 0, x̂ ∈ mth class

< 0, x̂ ∈ nth class

. (4.7)

, where rjω(y) is the approximation residual for class ω and j is the block index:

rjω(y) = ||y −Mδω(x̂1)||2 for j = 1, ..., k. (4.8)

We calculate the expectation of LLS(x̂) over all classifiers that is determined by indi-
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vidual classification scores derived from (4.7):

LLS(x̂) =
NB∑
j

LLSj(x̂)/NB

= − 1

NB

[
NB∑
j

log rjm(x̂)−
NB∑
j

log rjn(x̂)

]
, (4.9)

Log likelihood sparsity-based decision function (BBLL-S)

We define a likelihood score based on the relative sparsity scores ‖δm(x̂j)‖1, ‖δn(x̂j)‖1

calculated in the sparse representation stage of each classifier

LLSj(x̂) = − log
‖δm(x̂j)‖1

‖δn(x̂j)‖1


> 0, x̂j ∈ mth class

< 0, x̂j ∈ nth class

. (4.10)

We calculate the expectation of LLS(x̂) over all classifiers that is determined by individual

classification scores derived from (4.10):

LLS(x̂) =
NB∑
j

LLSj(x̂j)/NB

= − 1

NB

[
NB∑
j

log ‖δm(x̂j)‖1 −
NB∑
j

log ‖δn(x̂j)‖1

]
, (4.11)

The introduction of the log-likelihood score accommodates the definition of a decision func-

tion for the state ω̂. To determine the class we apply a decision threshold τLLS to LLS(x̂).

ω̂BBLL = FBBLL(x̂)
.
=


mth class, if LLS(x̂) ≥ τLLS

nth class, otherwise

. (4.12)

This threshold is expected to be equal to 0, if there is no estimation bias, but may
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be experimentally determined as the minimizer of a Bayes-type risk function. Hence the

optimal τ ∗LLS value can be determined by sampling the domain of τLLS and calculating true

positive and true negative rates. Next, the optimal value is determined by the intersection

of TPR and TNR curves. An example of this procedure for determining τ ∗LLS is displayed in

Figure 4.3.

In the next stage, we aim to convert the log likelihood decision scores to bounded

posterior probability values using a sigmoid function. This function is denoted by Probability

Decision Score (PDS) and is expressed by

PDS(LLS) =
1

1 + exp(−m(LLS − c))
(4.13)

To calculate the model parameter c, we require that this function be equal to 50% probability

for τ ∗LLS, hence c = τ ∗LLS. To estimate m, we set a fixed probability level PDSmin (e.g., 5%,

10%) for the smallest value LLSmin.

m =
1

τ ∗LLS − LLSmin
ln

(
100− PDSmin

PDSmin

)
(4.14)

In Figure 4.3 we display the graph of PDS versus LLS for one experiment. We can use

PDS to express margins of uncertainty for classification in percentiles.

4.2 Optimization Parameters

Here we discuss implementation topics and list options for the SOCP method that may

affect convergence to the solution.

4.2.1 Nonlinear Constraints

The SOCP method implements linear and/or nonlinear constraints. We denote by c(x)

and ceq(x) the matrices of nonlinear inequality and equality constraints at x. The SOCP
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Algorithm 3 Block based sparse representation
tp

1: Input: Training and test images.
2: The images presented as

I = [B1, B2, ..., BNB] (4.15)

for NB blocks, and the dictionary is

Dj = [bvj1,1, bv
j
1,2, . . . , bv

j
k,sk

]. (4.16)

3: We apply each block as a image and apply to SRC method to solve for x,

x̂j = arg min
x
||xj||1 s.t. ||Djx− yj||2 ≤ ε. (4.17)

4: Predict class label by using decision function
5: BBMAP decision function

ω̂BBMAP = FBBMAP (x̂)
.
= arg max

i
pr(ωi|x̂) (4.18)

pr(ωi|x̂) =
NB∑
j

NDωj
i
/NB (4.19)

BBLL-R decision function

LLSj(x̂) = − log
rjm(x̂)

rjn(x̂)
(4.20)

BBLL-S decision function

LLSj(x̂) = − log
‖δm(x̂j)‖1

‖δn(x̂j)‖1

(4.21)

ω̂BBLL = FBBLL(x̂)
.
=

{
mth class, if LLS(x̂) ≥ τLLS

nth class, otherwise
. (4.22)

6: Sigmoid function (PDS) to value decision scores to bounded posterior probability,

PDS(LLS) =
1

1 + exp(−m(LLS − c))
(4.23)

7: Output: ω̂ for each block and voting for decision of each image.
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Figure 4.3: An example of TPR and TNR curves versus τLLS for determining τ ∗LLS = c
(left) and the sigmoid probability decision score PDS after calculating the
parameters m, c for (4.13) (right).

seeks to satisfy c(x) ≤ 0, and ceq(x) = 0 for all x, respectively.

In our problem, we have the inequality constraints

‖ Ax− b ‖2≤ ε (4.24)

and we have defined the c(x) as

‖ Ax− b ‖2 −ε ≤ 0 (4.25)

In this equation, ε expresses the level of uncertainty or noise in the representation. In the

imaging context, this may be caused by various types of error in measurements including

imaging artifacts. By using the nonlinear inequality constrains, the sparsity of solution is

significantly improved.
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4.2.2 Lower Bound

The lower bound is a real vector or a real array, for all i, such that x(i) ≥ lb(i).

We are solving l1 norm of x, so the lower bound need to be positive vector for linear pro-

gramming, but not necessary for SOCP.

4.2.3 Stopping Criteria

The following tolerance parameters are stopping criteria for SOCP. The different toler-

ance parameters may be related.

ConstraintTolerance - TolCon

The ConstraintTolerance is the tolerance on the constraint violation, it is a positive

scalar. Constraintrance is an upper bound of constraints’ magnitude. If we use Constraint-

Tolerance in the SOCP and it returns a point with c(x) > ConstraintTolerance, then the

constraints are violated at point x in SOCP. The iterative attempts will continue even if the

ConstraintTolerance is not satisfied, unless there are some other reasons that halt it.

MaxFunctionEvaluations - MaxFunEvals

This stands for the maximum number of function evaluations allowed. F-count is defined

as function count, if there has constraints, the F-count is the number of points that function

evaluations, that can be smaller than the MaxFunctionEvaluations.

MaxIterations - MaxIter

MaxIterations is the maximum number of iterations allowed. The algorithm may stop

before reaching the value of MaxIterations because of the other values of tolerances that may

stop the solver before.
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OptimalityTolerance - TolFun

OptimalityTolerance is termination tolerance on the first-order optimality. The first-

order optimality is a measure of distance of point x to the optimal point. It is a necessary

condition but not sufficient condition.

StepTolerance - TolX

The StepTolerance is a positive scalar that is a lower bound for the step of the solver

on x at iteration i. So the solver will stop when ‖xi − xi+1‖ < TolX.
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Chapter V: CLINICAL APPLICATION: OSTEOPOROSIS
DIAGNOSIS

The main goal of our experiments is to validate the hypothesis that the proposed ensem-

ble of block-based sparse classifiers improves the classification performance of conventional

sparse representation. The second goal is to compare the proposed technique with texture-

based and Bag of Keypoints-based classification. Finally, we compare the performances of

the two decision functions BBMAP and BBLL. We test the predictive and generalization

capability of our system for two diverse and significant clinical applications; osteoporosis

diagnosis and breast lesion characterization. Here we describe the application of our system

to osteoporosis diagnosis, we report the classification results and discuss our findings.

5.1 Background: Osteoporosis Diagnosis

Osteoporosis is a skeletal disorder characterized by decreased bone strength that may

lead to susceptibility of fracture [7]. Aerial Bone Mineral Density (BMD) is computed in

dual-energy X-ray absorptiometry (DXA) scans to diagnose osteoporosis [41]. However,

BMD can predict fracture with only 60% accuracy. Analysis of trabecular bone microar-

chitecture can significantly improve the prediction rates, but this information requires bone

biopsy with histomorphometric analysis. The task of obtaining trabecular bone microarchi-

tecture information by noninvasive methods is a nontrivial scientific problem [53]. Previous

approaches to evaluating bone structure on radiographs by 2D texture analysis were re-

ported in [41, 57, 99]. Moreover, in [45, 44] the authors propose to use 2D texture analysis

to characterize 3D bone microarchitecture.

Diagnosis of osteoporosis using bone radiograph scans presents some challenges, mainly

because images of osteoporotic and healthy subjects are visually very similar. Therefore,

early diagnosis can effectively predict fracture risk and prevent the disease [68, 39]. The
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texture feature computation system produced a classification accuracy of 79.3% and a re-

ceiver operating characteristic area of 81% over 116 images. These results are particularly

promising when we consider the level of difficulty of the specific dataset.

5.2 Data Description

Our purpose is to distinguish between healthy and osteoporotic subjects. The TCB

challenge dataset contains labeled digital radiographs of 87 healthy and 87 osteoporotic

subjects for training and testing (available online in http://www.univ-orleans.fr/i3mto/data,

last access in 05/2018). The calcaneus trabecular bone images in the dataset have an ROI

size of 400 × 400 pixels. A more detailed description of the dataset is provided in [68, 39].

The experimental procedures involving human subjects were approved by the Institutional

Review Board of the institution that provides the data.

5.3 Texture-based Classification

In the performance evaluation of conventional texture-based techniques of Chapter II, we

calculated 723 texture-related features. We selected features using correlation-based feature

selection with best first search (CFS-BF), correlation-based feature selection with genetic

algorithm search (CFS-GA) as described in Section 2.3. We conducted leave-one-out cross-

validation and 10-fold cross-validation experiments reported in Tables 5.1 and 5.2. We note

that CFS-GA yields an overall better performance than CFS-BF, IG and no-feature selection

on leave-one-out cross-validation. This implies that CFS-GA effectively selects distinguishing

features from the entire set. Among the tested classifiers, Bagging accomplished the highest

performance with an ACC of 67.8% on leave-one-out cross-validation. We performed ROC

experiments using CFS-BF feature selection and display the graphs in Fig. 5.1 and 5.2.

We note that NB yielded the largest area under the curve for the leave-one-out experiment

followed by Bagging. In 10-fold cross-validation, RF reached the top ACC of 66.7% and the

top AUC of 67.5% with no dimensionality reduction.
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Table 5.1: Bone texture characterization classification performance (leave-one-out cross-
validation)

FSM CL TPR TNR ACC AUC Dimension
No NB 57.5 64.4 60.9 63.5 723

BN 58.6 65.5 62.1 65.3
RF 65.5 64.4 64.9 67.2

Bagging 70.1 64.4 67.3 68.1
CFS-GA NB 63.2 64.4 63.8 67.3 101

BN 66.7 62.1 64.4 70.4
RF 67.8 65.5 66.7 68.2

Bagging 70.1 65.5 67.8 65.0
CFS-BF NB 71.3 57.5 64.4 70.9 20

BN 64.4 66.7 65.5 69.9
RF 60.9 67.8 64.4 68.4

Bagging 66.6 67.8 67.2 70.5

Figure 5.1: ROC curves for bone characterization using conventional (non-sparse) texture-
based techniques (Bagging, BN, NB, and RF) with leave-one-out cross-
validation.
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Table 5.2: Bone texture characterization classification performance (10-fold cross-
validation)

FSM CL TPR TNR ACC AUC Dimension
No NB 57.5 60.9 59.2 63.1 723

BN 56.3 65.5 60.9 63.6
RF 64.4 69 66.7 67.5

Bagging 63.2 64.4 63.8 66.8
CFS-GA NB 64.4 60.9 62.9 67.0 226

BN 62.1 66.7 64.4 65.5
RF 66.7 62.1 64.4 68.8

Bagging 62.1 67.80 64.9 68.3
CFS-BF NB 69 55.2 62.1 67.1 20

BN 58.6 59.8 59.2 65.6
RF 64.4 59.8 62.1 66.1

Bagging 64.4 63.2 63.8 65.8

Figure 5.2: ROC curves for bone characterization using conventional (non-sparse) texture-
based techniques (Bagging, BN, NB, and RF) with 10-fold cross-validation.
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5.4 Bag-of-Keypoints Classifier

We performed cross-validation experiments for the Bag of Keypoints technique. The

results showed that BoK was able to separate successfully healthy from osteoporotic subjects

with an ACC of 99.3% leave-one-out cross-validation as displayed in Table 5.3. This very

high accuracy may be attributed to the extraction of discriminant features from the textured

areas. Also, the employed SVM model is known to address data complexity caused by non-

linearity and high dimensionality.

Table 5.3: Classification performance for bone characterization using Bag of Keypoints

classification (leave-one-out cross-validation)

TPR TNR ACC AUC

98.6 100 99.3 100

5.5 Conventional SRC

We then evaluated the performance of the conventional SRC method described in Chap-

ter III. We utilized multiple undersampling factors to address convergence to infeasible solu-

tions mostly caused by linearly dependent vectors that yielded different classes. In Table 5.4

we show results from the top performing experiments producing 59.2% classification accuracy

for resampling of 1/20, corresponding to feature dimensionality of 400 using leave-one-out

cross-validation. The ROC curves in Fig. 5.3 indicate that a higher degree of downsampling

yields shorter and more numerically tractable feature dimensionality, but it also diffuses the

textural information. We also applied conventional SRC to the texture feature set produced

in Section 2.3 and the classification accuracy was 71.7%. This result also implies the limited

separation capability of a generic texture feature set. In Table 5.5 and Fig. 5.4 we display

results using 10-fold cross-validation. The ACC for this experiment was 56.5% and the AUC

was 60.1%.
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Figure 5.3: ROC curves for bone characterization using conventional SRC classification
using LOO CV.

Figure 5.4: ROC curves for bone characterization using conventional SRC classification
using 10-fold cross-validation.
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Table 5.4: Classification performance for bone texture characterization sparse classifiers
using LOO CV.

Size of Block TPR (%) TNR (%) ACC (%) AUC (%)
400×400 (undersamp. 1/4) 55.2 54 54.6 58.4
400×400 (undersamp. 1/20) 57.5 60.9 59.2 63.4

Table 5.5: Classification performance for bone texture characterization sparse classifiers
using 10-fold CV.

Size of Block TPR (%) TNR (%) ACC (%) AUC (%)
400×400 (undersamp. 1/4) 44 53.5 48.8 54.7
400×400 (undersamp. 1/20) 53.6 59.3 56.5 60.1

5.6 Integrative Sparse Classification

Next, we evaluated the performance of our block-based ensemble of sparse classifiers.

We employed block sizes ranging from 100 × 100 pixels to 10 × 10 pixels to observe the

impact of this variable on the classification performance. We repeated these experiments

using the BBMAP and BBLL decision functions in this setting. We show our leave-one-out

cross-validation performance in Table 5.6. The experiment with block size 25×25 pixels that

led to 256 classifiers performed the best classification of 100% by the BBMAP and BBLL

techniques. These results imply 9.5% improvement of our method over the traditional SRC

method. The block size with 10×10 also produced 100% accuracy and 100% AUC. Figure 5.5

displays the ROC graphs for varying block sizes using BBMAP and BBLL decision functions.

We observe that the largest AUC was obtained by use of25 × 25 and 10 × 10 blocks. We

also note the improvement in classification performance compared with conventional SRC

results that are depicted in Figure 5.3. These results suggest that the block-based approach

finds more accurate sparse solutions than the conventional SRC approach and improves the

classifier performance. A reason for the improved group separation may be that the block-

based ensemble technique employs multiple learners of over-complete dictionaries that are
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Table 5.6: Classification performance for bone texture characterization using ensembles of
block-based sparse classifiers (LOO CV).

Size of Block
BBMAP-R BBLL-R (τLLS = 0)

TPR TNR ACC AUC TPR TNR ACC AUC
100×100 65.5 67.8 66.7 71.4 85.1 82.8 83.9 87.7
50×50 93.1 81.6 87.4 91.3 98.6 90.8 94.8 97.3
25×25 100 100 100 100 100 100 100 100
10×10 100 100 100 100 100 100 100 100

Size of Block
BBMAP-S BBLL-S (τLLS = 0)

TPR TNR ACC AUC TPR TNR ACC AUC
100×100 51.7 57.5 54.6 59.0 59.8 46.0 52.9 56.9
50×50 97.7 43.7 70.7 76.5 88.5 12.6 50.6 58.7
25×25 100 100 100 100 100 100 100 100
10×10 100 100 100 100 100 100 100 100

MaxIter=10. solver method is LP (top table) and solver method is SOCP (bottom table).

more amenable to sparse coding and representation. In addition, we estimated the statistical

significance of the differences between the AUC values of BBLL with optimized threshold

τ ∗LLS and BBMAP by applying DeLong’s statistical test between the ROCs produced by

BBMAP and BBLL. The p-values for block sizes of 100× 100, 50× 50, 25× 25 and 10× 10

were 0.47, 0.66, 0 and 0 respectively, suggesting significant differences for block sizes of

100× 100, 50× 50, 25× 25 and 10× 10.

We also performed 10-fold, 20-fold and 30-fold cross-validation experiments for variable

block sizes. We display the classification results in Tables 5.7, 5.8,and 5.9 and the ROC

curves in Fig. 5.6, 5.7, and 5.8. For 10-fold CV, the best accuracy of 60.59% was obtained

for 25× 25 block size, and the area under the curve was 62.46%. In the Tables 5.7, 5.8 and

5.9 we observe that the highest accuracy with block size 25× 25, was 70.67% using 30-fold

cross-validation. 30-fold cross-validation has 6 test samples in each fold for this data set.

The corresponding area under the curve was 74.36%. We estimated the AUC values of BBLL

with optimized threshold τ ∗LLS and BBMAP by applying DeLong’s statistical test between
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Figure 5.5: ROC curves for bone characterization using the proposed block-based ensemble
method with BBMAP (left), and BBLL (right) decision function for leave-one-
out cross-validation.

the ROCs produced by BBMAP and BBLL as well for k-fold cross-validation. The p-values

for block sizes of 100× 100, 50× 50, 25× 25 and 10× 10 were 0.59, 0.52, 0.003 and 0.0016

respectively for 10-fold cross-validation. With 20-fold cross-validation the p-values for block

sizes of 100× 100, 50× 50, 25× 25 and 10× 10 were 0.086, 0.96, 0.79 and 0.052 respectively.

For 30-fold cross-validation, the p-values for block sizes of 100 × 100, 50 × 50, 25 × 25 and

10× 10 were 0.69, 0.42, 0.036 and 0.0004 respectively.

73



Table 5.7: Classification performance for bone texture characterization using ensembles of
block-based sparse classifiers (10-fold CV)

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS=0.05)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
100×100 47.62 51.16 49.41 54.43 54.24 45.35 45.29 50.37 19.1 84.88 52.35 49.36
50×50 72.62 41.86 57.06 61.36 83.33 29.07 55.88 62.38 22.62 74.42 48.82 50.01
25×25 59.52 59.3 59.41 62.47 59.52 59.3 59.41 62.47 59.52 61.63 60.59 62.46
10×10 59.52 59.3 59.41 62.47 59.52 59.3 59.41 62.47 0 100 50.59 59.65

Table 5.8: Classification performance for bone texture characterization using ensembles of
block-based sparse classifiers (20-fold CV)

Size of Block
BBMAP-S BBLL-S (τLLS = 0)

TPR TNR ACC AUC TPR TNR ACC AUC
100×100 51.85 51.9 51.88 55.98 50.62 46.84 48.75 52.51
50×50 80.25 35.44 58.13 60.4 88.89 13.92 51.88 51.34
25×25 77.78 53.16 65.63 67.29 79.01 53.16 66.25 66.48
10×10 79.01 49.37 64.38 66.32 79.01 49.37 64.38 66.32

Table 5.9: Classification performance for bone texture characterization using ensembles of
block-based sparse classifiers (30-fold CV)

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS = 0.004)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
100×100 47.44 54.17 50.67 54.26 60.26 55.56 58.00 61.25 25.64 70.83 47.33 54.81
50×50 84.62 37.5 62.0 64.05 88.46 18.06 54.67 58.44 35.9 72.22 53.33 54.27
25×25 71.79 66.67 69.33 70.23 71.79 66.67 69.33 70.23 71.79 69.44 70.67 74.36
10×10 71.79 66.67 69.33 70.23 71.79 66.67 69.33 70.23 0 100 48 56.52

MaxIter=10

74



Figure 5.6: ROC curves for bone characterization using the proposed block-based ensemble
method with BBMAP (left), and BBLL (right) decision function with 10-fold
cross-validation.

Figure 5.7: ROC curves for bone characterization using the proposed block-based ensemble
method with BBMAP (left), and BBLL (right) decision function with 20-fold
cross-validation.
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Figure 5.8: ROC curves for bone characterization using the proposed block-based ensemble
method with BBMAP (left), and BBLL (right) decision function with 30-fold
cross-validation.

Figure 5.9: Graphs of ACC values versus ROI size (left) and the corresponding average
ACC for each method (right) produced by BoK, SRC, BBMAP and BBLL
using LOO CV.
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Figure 5.10: Graphs of ACC values versus ROI size (left) and the corresponding average
ACC for each method (right) produced by BoK, SRC, BBMAP and BBLL
using 10-fold CV.

77



Chapter VI: CLINICAL APPLICATION: BREAST LESION
CHARACTERIZATION

The second clinical application that we developed in this work is breast lesion charac-

terization as benign or malignant using digitized or digital mammograms. We outline the

significance and background of this application, then describe the data and experiments. We

also discuss the experimental results produced by our approach and other approaches that

we use for comparisons as in the previous chapter. We perform analysis for various ROI sizes

to explore the relationship of ROI size with classification accuracy.

6.1 Background: Breast Lesion Characterization

Early detection and characterization of breast lesions is important for increasing the life

expectancy and quality of health of women. Because of its significance, automated detection

and diagnosis of breast cancer is a popular field of research [40, 66, 67, 93, 58, 63, 48, 73, 64].

Mammograms can help to find breast cancer at an early stage. Automated diagnosis is very

challenging in this application as well.

6.2 Data Description

One of the most reliable methods for diagnosis and early prediction of breast cancer

is using X-ray mammographic test[10, 60]. In general, there are two view for each breast:

the craniocaudal (CC) view, this is view from top to bottom of breast; another view is

mediolateral oblique (MLO) view, ML is from middle to side and LM is from side to middle

view. The images acquired as x-ray films, such as film screen mammogram are converted into

TIFF and digital imaging and communications in medicine (DICOM) format. Mammograms

show the masses, calcifications, architectural distortion of breast tissue, and symmetries [63].

The MIAS database has 161 cases, and 322 digitized MLO PGM images with benign,

malign lesions and normal images. The annotations includes the information of center and
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radius of the area of interest (ROI). To obtain good quality of a mammographic image high

contrast resolution is needed, at least 10 bits, i.e. 1024 gray levels [58]. Although low contrast

resolution is not well suited for detection of microcalcifications (MCCs), 100% accuracy has

been reached on MIAS data in [51]. Bancoweb has 12 bits (4,096) contrast resolution. For

contrast resolution higher than 14 bits (16,384) little differences in the performances of most

CAD schemes have been observed [82]. There are 1,400 images from 320 patients, the spatial

resolutions of the images are 0.085 mm or 0.150 mm.

We validated the separation of the breast lesions data set into two classes: malignant

and benign. The training and testing data were obtained from the Mammographic Image

Analysis Society (MIAS) database that is available online [66, 58]. The resolution of the

mammograms is 200 micron pixel edge, and size of each image is 1024 × 1024 px after

clipping/padding. MIAS contains 322 MLO scans from 161 subjects. The data is categorized

into groups of healthy subjects, subjects with benign, and subjects with malignant lesions.

Our goal is to characterize the lesion type, therefore we utilized 68 benign and 51 malignant

mammograms for performance evaluation.

Because our proposed method performs block-wise analysis, we need to ensure that

the majority of the blocks cover the lesion to improve the accuracy. Hence we designed

our system so that the lesion ROI sizes are greater than or equal to the analysis ROI size.

In this experiment, we determined from the provided metadata the centroid and radius of

each lesion. We used these two values to determine a minimum bounding square ROI for

each scan. We trained and tested all classifiers on these ROI patches centered at the lesion

centroid. In order to evaluate the classification performance with respect to the lesion size,

we performed validation experiments on variable minimum ROI sizes. The selected ROI

sizes were 48× 48, 56× 56, and 64× 64. For each ROI size we selected subsets of the dataset

that met the minimum lesion radius criteria described above. The numbers of benign and

malignant images for each ROI size are displayed in Table 6.1.
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Table 6.1: MIAS Dataset Information by ROI size

ROI Benign Malignant
64×64 36 37
56×56 43 42
48×48 48 45

6.3 Texture-based Classification

In Tables 6.2, 6.3, 6.4 and Fig. 6.2 we display texture-based classification results com-

puted for lesions with 48× 48, 56× 56 and 64× 64 pixels minimum ROI size that performed

better than the other ROI sizes using leave-one-out cross-validation. The feature dimension-

ality in this experiment is 451. The dimensionality of texture feature set is different from

that of bone characterization experiments because (i) we did not utilize the co-occurrence

features due to several ROIs being smaller than the required size, (ii) 14 edge histogram

features were always zeros and not used in analysis, (iii) 2 additional features produced

numerical errors such as division by zero.

In Table 6.2, display the classification results after on 48 × 48 ROI size. We observe

that the Bagging technique achieves the best performance with an ACC of 63.4% and AUC

of 58.4% and 62.1% crosponding to CFS-GA and no feature selection. Bayes Network, Naive

Bayes and Random Forest techniques produced lower ACC values than Bagging, at 61.3%,

57.8% and 61.3%, respectively. Fig. 6.1 displays the ROC graphs for the CFS-GA feature

selection. This figure confirms that Bagging produced the largest AUC for the leave-one-out

experiment, followed by Random Forest.

In Table 6.3, we present results for 56×56 ROI size with leave-one-out cross-validation,

and the best performances is 58.8% by using Bagging with no feature selection, and Bayes

Network with CFS-GA feature selection method. The corresponding areas under the curve

are 59.5%, 33.9% and 36.9%.
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Table 6.2: ROI images of size 48 × 48 classification performance (leave-one-out cross-
validation)

FSM CL TPR TNR ACC AUC Dimension
No NB 66.7 22.2 45.2 45.7 451

BN 100 20 61.3 37.8
RF 66.7 46.7 57 53.0

Bagging 64.6 62.2 63.4 62.1
CFS-GA NB 62.5 26.7 45.2 43.4 55

BN 100 20 61.3 37.8 55
RF 70.8 51.1 61.3 58.9 49

Bagging 62.5 64.4 63.4 58.4 41
CFS-BF NB 50 53.3 51.6 50.9 2

BN 100 20 61.3 37.8 (330,402)
RF 70.8 44.4 58.1 54.4

Bagging 64.6 55.6 60.2 61.3

Figure 6.1: ROC curves for breast lesion characterization using conventional (non-sparse)
texture-based techniques (Bagging, BN, NB, and RF) with leave-one-out cross-
validation.
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Table 6.3: ROI images of size 56 × 56 classification performance (leave-one-out cross-
validation)

FSM CL TPR TNR ACC AUC Dimension
No NB 74.4 28.6 51.8 46.7 451

BN 90.7 21.4 56.5 33.4
RF 58.1 54.8 56.5 54.4

Bagging 60.5 57.1 58.8 59.5
CFS-GA NB 76.7 31 54.1 46.6 55

BN 93 21.4 57.6 33.9
RF 58.1 54.8 56.5 51.7

Bagging 55.8 50 52.9 51.7
CFS-BF NB 53.5 54.8 54.1 58.8 2

BN 90.7 21.4 56.5 33.4 (330,402)
RF 48.8 52.4 50.6 65.7

Bagging 55.8 57.1 56.5 63.8

The same experiments were performed on 64 × 64 ROI size as well. In table 6.4, the

best performances is 58.9% by using Bayes Network with CFS-GA feature selection method,

the corresponding area under the curve is 71.9%. Overall the best performance using leave-

one-out cross-validation is obtained by 48× 48 ROI size and accuracy is 63.4%.

Next, we use 10-fold cross-validation for all the ROI sizes and present the results in

Tables 6.5, 6.6, and 6.7 and Fig. 6.3. The best accuracy with 10-fold cross-validation was

71.2% and corresponding area under the curve was 69.8% for 64×64 ROI size, obtained by no

feature reduction and Random Forest classifier. This is 7.8% higher accuracy than the best

performance using leave-one-out cross-validation. For 56 × 56 ROI size, the best accuracy

was 64.5% and area under the curve was 65.6% and the top performances for 48 × 48 ROI

size were 64.7% accuracy and 65.2% area under the curve.

6.4 Bag-of-Keypoints Classifier

The cross-validation experiments of BoK for each ROI size are displayed in Table 6.8.

We note that this approach produces high classification rates for most of the ROI sizes and
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Table 6.4: ROI images of size 64 × 64 classification performance (leave-one-out cross-
validation)

FSM CL TPR TNR ACC AUC Dimension
No NB 66.7 35.1 50.7 54.2 451

BN 75 5.4 39.7 40.2
RF 58.3 54.1 56.2 56.5

Bagging 61.1 55.8 58.9 59.0
CFS-GA NB 75 43.2 58.9 71.9 31

BN 22.2 70.3 46.6 21.6 9
RF 50 54.1 52.1 47.8 31

Bagging 52.8 62.2 57.5 50.4 134
CFS-BF NB 58.3 21.6 39.7 28.2 4

BN 75 5.4 39.7 40.2 (127,302,
RF 58.3 62.2 57.5 50.4 406,409)

Bagging 50 51.4 50.7 44.4

Figure 6.2: ROC curves for breast lesion characterization using conventional (non-sparse)
texture-based techniques (Bagging, BN, NB, and RF) with leave-one-out cross-
validation. left top is ROI size 48×48, left right is ROI size 56×56 and bottom
is ROI size 64× 64.
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Table 6.5: ROI images of size 48× 48 classification performance (10-fold cross-validation)

FSM CL TPR TNR ACC AUC Dimension
No NB 58.3 20 39.8 46.3 451

BN 58.3 53.3 55.9 59.1
RF 81.3 40 61.3 57.3

Bagging 70.8 57.8 64.5 65.6
CFS-GA NB 68.8 35.6 52.7 51.0 55

BN 58.3 53.3 55.9 59.1
RF 70.8 53.3 62.4 60.0

Bagging 64.6 67.8 61.3 64.0
CFS-BF NB 33.3 60 46.2 50.9 2

BN 58.3 53.3 55.9 59.1 (330,402)
RF 60.4 55.6 58.1 55.0

Bagging 60.4 57.8 59.1 62.5

Table 6.6: ROI images of size 56× 56 classification performance (10-fold cross-validation)

FSM CL TPR TNR ACC AUC Dimension
No NB 67.4 31 49.4 39.9 451

BN 72.1 28.6 50.6 47.2
RF 72.1 57.1 64.7 65.2

Bagging 72.1 57.1 64.7 65.2
CFS-GA NB 67.4 38.1 52.9 48.7 29

BN 69.8 35.7 52.9 48.7
RF 62.8 52.4 57.6 54.0

Bagging 60.5 64.3 62.4 57.5
CFS-BF NB 51.2 40.5 45.9 39.1 4

BN 72.1 28.6 50.6 47.1 330,452)
RF 58.1 57.1 57.6 52.1

Bagging 62.8 50 56.5 52.9
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Figure 6.3: ROC curves for breast lesion characterization using conventional (non-sparse)
texture-based techniques (Bagging, BN, NB, and RF) with leave-one-out cross-
validation. left top is ROI size 48×48, left right is ROI size 56×56 and bottom
is ROI size 64× 64.
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Table 6.7: ROI images of size 64× 64 classification performance (10-fold cross-validation)

FSM CL TPR TNR ACC AUC Dimension
No NB 63.9 37.8 50.7 56.3 451

BN 58.3 24.3 41.1 41.7
RF 72.2 70.3 71.2 69.8

Bagging 61.1 48.6 54.8 51.8
CFS-GA NB 69.4 45.9 57.5 55.6 29

BN 38.9 59.5 49.3 48.9
RF 50 67.6 58.9 62.0

Bagging 61.1 62.2 61.6 55.9
CFS-BF NB 63.9 32.4 47.9 43.2 4

BN 61.1 24.3 42.5 44.2 330,452)
RF 58.3 45.9 52.1 47.5

Bagging 58.3 48.6 53.4 47.7

Table 6.8: Classification performance for breast lesion characterization using Bag of Key-
points classification on ROIs (LOO CV).

ROI size TPR TNR ACC AUC
72×72 100 71.3 86.7 99.8
64×64 77.3 100 88.5 99.6
60×60 92.7 48.3 69.6 85.8
48×48 100 98.3 99.1 100

Summary 92.5± 10.7 79.5± 24.6 86.0± 12.2 96.3± 7.0

the top class separation with ACC of 99.1 was accomplished for ROI size of 48 × 48. We

deduce that the extraction of discriminant features and use of SVM classification drives the

very good results.

6.5 Conventional SRC

Furthermore, Table 6.9 lists the results produced by the conventional SRC method using

leave-one out cross-validation. The top performance was obtained for ROI size of 56 × 56

at 65.9%. After comparing the Tables 6.2, 6.3, 6.4 and 6.9, 6.5, 6.6, 6.7 and Figs. 6.2 and

6.4, we conclude that texture-based classification produces more accurate classification rates

86



than conventional SRC. Similarly to our bone characterization experiments, here we applied

conventional SRC to the texture feature set produced in subsections 2.2, 2.3 and 2.4 and

the top classification accuracy was 56.7% that indicates the limited separation capability of

generic texture features.

Table 6.9: Classification performance for breast lesion characterization using conventional
SRC on ROIs (LOO CV).

ROI size TPR TNR ACC AUC
64×64 32.4 72.2 52.1 50.2
56×56 47.6 51.2 49.4 47.3
48×48 53.3 41.7 47.3 46.4

Summary 44.4±10.8 55.0±15.6 49.6±2.4 48.0±2.0

Figure 6.4: ROC curves for breast lesion characterization using conventional SRC classifi-
cation (LOO CV).

In Table 6.10 and Fig 6.5 we display 10-fold cross-validation results produced by con-

ventional SRC. This method yields 55% ACC and 51.8% AUC, indicating that this approach

does not provide separation between the classes.
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Table 6.10: Classification performance for breast lesion characterization using conventional
SRC on ROIs (10-fold CV).

Size of Block TPR TNR ACC AUC
64×64 51.35 33.33 42.86 39.23
56×56 53.66 56.41 55 51.84
48×48 58.14 42.55 50.0 50.92

Figure 6.5: ROC curves for breast lesion characterization using conventional SRC classifi-
cation (10-fold CV).

6.6 Integrative Sparse Classification

In the last part of this experiment we validated our block-based ensemble classification

system. In Tables 6.11, 6.12 and 6.13 we present the results with minimum ROI size of

48 × 48, 56 × 56 and 64 × 64 pixels that include 48 benign and 45 malignant lesions, 43

benign and 42 malignant lesions and 36 benign and 37 malignant lesions, respectively using

leave-one-out cross-validation. In these tables the rows correspond to classifier ensembles.

Overall, the best accuracy achieved by our system using the BBLL approach was 100% for

block size of 8×8 and 6×6 using τ ∗LLS = 0.025 of 48×48 ROI size, as well as 56×56 with block
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size 8×8 and using τ ∗LLS = 0.025. The ROI size 64×64 with block size 8×8 using τ ∗LLS = 0.01

also preformed high accuracy 97.3%. We note that our method improved the accuracy by

56.2%, 34.1% and 37.6% for the corresponding ROI sizes compared to the traditional SRC

method. This indicates that the block decomposition and sampling combined with classifier

decision fusion yields more accurate solutions than SRC. The ROC graphs in Fig. 6.6 and

6.7 confirm that the BBLL decision function using 8 × 8 blocks yielded the largest AUC.

The BBLL approach contributes to reduction of potential prediction bias. In addition, we

applied DeLong tests between the ROC curves produced by BBLL and BBMAP to find

whether their differences are statistically significant. For breast lesion characterization, the

DeLong’s test p-values for minimum ROI size of 64× 64 and block sizes of 32× 32, 16× 16,

8× 8 and 4× 4 were 0.1, 0.46, 0.39 and 0.009 respectively, suggesting significant differences

for block sizes of 4× 4. For ROI size 56 × 56, the p-values for block sizes of 14× 14, 8× 8

and 4× 4 were 0.0078, 0.34 and 0.15 respectively. Applied to ROI size 48× 48, the p-values

for block size of 16× 16, 12× 12, 8× 8 and 6× 6 were 0.46, 0.81, 0.82 and 0.38 respectively.

We also note that comparisons between Tables 6.2, 6.3, 6.4 and 6.11, 6.12 and 6.13 indicate

that the proposed BBLL ensemble learning approach outperformed the top performing non-

sparse texture-based classifier by 36.6% of leave-one-out cross validation. In addition, Fig.

6.8 displays a graph of the classification rates produced by BoK, SRC, BBMAP and BBLL

ensemble learners with respect to ROI size (left), and the average ACC for each method over

the ROI sizes (right). The summarized (µ ± σ) classification of highest rates over multiple

ROI sizes for BoK, SRC, BBMAP and BBLL are 86.0 ± 12.2, 55.0 ± 15.6, 71.6 ± 13.3 and

97.6± 3.1 respectively. From these experiments we observe that BBLL and BoK are the top

performing approaches, and BBLL yields more consistent classification rates than BoK with

respect to the ROI size for leave-one-out cross-validation.

We also performed 10- and 30-fold cross-validation experiments. In Tables 6.14, 6.16

and 6.18 we present results from 10-fold cross-validation. Tables 6.15, 6.17 and 6.19, show
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Table 6.11: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 48× 48, LOO CV)

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS = 0.025)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
16×16 100 0 48.4 47.6 93.3 2.1 46.2 46.6 88.9 91.7 90.3 89.1
12×12 100 0 48.4 47.6 100 0 48.4 47.6 95.6 100 97.9 97.8
8×8 100 0 48.4 47.6 100 0 48.4 47.6 100 100 100 100
6×6 100 0 48.4 47.6 100 0 48.4 47.6 100 100 100 100

Summary 100 0 48.4 47.6 98.3±3.4 0.5±1.1 47.9±1.1 47.4±0.5 96.1±5.2 97.9±4.2 97.1±4.6 96.1±5.8

Table 6.12: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 56× 56, LOO CV)

Size of Block
BBMAP-R BBLL-R (τLLS = 0) BBLL-R (τLLS = τ ∗LLS = 0.025)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
14×14 88.1 67.4 77.7 71.8 97.6 55.8 76.5 72.5 73.8 90.7 82.4 81.6
8×8 88.1 55.8 71.8 66.5 97.6 53.5 75.3 70.6 81.0 79.1 80.0 77.2
4×4 71.4 51.2 61.2 60.6 73.8 46.5 60 59.2 69.0 60.5 64.7 65.3

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS = 0.006)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
14×14 100 74.4 87.1 82.8 90.5 72.1 81.2 81.2 90.5 97.7 94.1 88.4
8×8 100 30.2 64.7 65.2 100 27.9 63.5 63.6 100 100 100 100
4×4 100 0 49.4 46.6 97.6 7.0 51.8 47.3 97.6 100 98.8 97.6

Summary 100 34.9±37.4 67.1±19.0 64.9±18.1 96.0±4.9 35.7±33.2 65.5±14.8 64.0±17.0 96.0±4.9 99.2±1.3 97.6±3.1 97.8±3.5

Table 6.13: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 64× 64, LOO CV)

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS=-0.01)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
32×32 2.7 97.2 49.3 49.6 21.6 83.3 52.1 53.3 24.3 77.8 50.7 49.6
16×16 59.5 100 79.5 77.9 62.2 97.2 79.5 76.6 86.5 97.2 91.8 90.2
8×8 97.3 100 98.6 97.8 89.2 100 94.5 94.8 94.6 100 97.3 94.9
4×4 97.3 100 98.6 97.8 70.3 100 84.9 86 94.6 86.1 90.4 96.8

Summary 60.2±7.1 83.3±22.3 71.6±13.3 70.7±13.7 60.8±28.5 95.1±8.0 77.8±18.2 77.7±17.9 75.7±32.7 90.1±10.3 82.9±20.7 83.2±20.2

TolCon=1e− 6,TolX=[],TolFun=1e− 8,MaxIter=6,solver method=2(LP) (4th table);

TolCon=1e− 6,TolX=1e− 6,TolFun=1e− 6,MaxIter=10,solver method=4(SOCP) (5th table);

90



Figure 6.6: ROC curves for 48 × 48 (top row), 56 × 56 (bottom row) ROI size breast
lesion characterization using the proposed block-based ensemble method with
BBMAP (left), and BBLL (right) decision functions with leave-one-out cross-
validation.
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Figure 6.7: ROC curves for 64× 64 ROI size breast lesion characterization using the pro-
posed block-based ensemble method with BBMAP (left), and BBLL (right)
decision functions with leave-one-out cross-validation.

results obtained using 30-fold cross-validation. Furthermore, Fig. 6.6, 6.6,and 6.6 display

the ROC graphs for 10- and 30-fold cross-validation. We note that the accuracy increases

when the number of folds increases for the same ROI size. Also, ACC increases for the

same number of folds cross-validation when the ROI size increases. The highest accuracy by

using 10-fold cross-validation is 68.89% and corresponding area under the curve is 73.73% for

48× 48 ROI size with 8× 8 block size. For 20-fold cross-validation, the best accuracy is 75%

and AUC is 74.42% for 64×64 ROI size with 8×8 block size. The best performance over all

the ROI size experiments for k-fold cross-validation is obtained for 30-fold cross validation.

The highest accuracy is 86.67% and corresponding area under the curve is 88.21% for 64×64

ROI size with 16× 16 block size. There are 2 or 3 testing samples for ROI size 64× 64 when

k = 30. We estimated the AUC values of BBLL with optimized threshold τ ∗LLS and BBMAP

by applying DeLong’s statistical test between the ROCs produced by BBMAP and BBLL as

well for k-fold cross-validation. The p-values for ROI size 64×64 with block sizes of 32×32,

16×16, 8×8 and 4×4 were 0.78, 0.49, 0.24 and 0.21 respectively for 10-fold cross-validation,
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Figure 6.8: Graphs of ACC values versus ROI size produced by BoK, SRC, BBMAP and
BBLL (left) and the corresponding average ACC for each method over all
ROI sizes (right), the corresponding AUC of the best ACC from each method
(bottom) using leave-one-out cross-validation.
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Table 6.14: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 48× 48), 10-fold CV.

Size of Block TPR TNR ACC AUC
48×48(SOCP-S) 58.14 42.55 50.0 50.92

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS = 0.02)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
24×24 76.74 31.91 53.33 56.61 76.74 31.91 53.33 56.56 60.47 70.21 65.56 60.42
16×16 83.72 38.30 60.0 62.1 79.07 44.68 61.11 63.63 60.47 74.47 67.78 69.47
12×12 79.07 51.06 64.44 67.19 79.07 53.19 65.56 68.78 62.79 74.47 68.89 73.73
8×8 67.44 63.83 65.56 69.52 69.77 63.83 66.67 70.51 58.14 76.6 67.78 72.09
6×6 67.44 65.96 66.67 70.95 72.09 63.83 67.78 71.40 58.14 76.6 67.78 70.86
4×4 65.12 65.96 65.56 69.22 65.12 65.96 65.56 69.22 55.81 76.6 66.67 69.57

Size of Block TPR TNR ACC AUC
48×48(SOCP-S) 60.47 48.94 54.44 54.68

Size of Block
BBMAP-S BBLL-S (τLLS = 0)

TPR TNR ACC AUC TPR TNR ACC AUC
24×24 9.3 97.87 55.56 52.25 13.95 95.74 56.67 53.19
16×16 2.33 100 53.33 49.98 2.33 97.87 52.22 49.28
12×12 2.33 100 53.33 50.72 0 100 52.22 48.69
8×8 46.51 76.60 62.22 61.75 6.98 93.62 52.22 47.9
6×6 62.79 68.09 65.56 68.33 27.91 85.11 57.78 51.56
4×4 9.30 97.87 55.56 53.29 0 100 52.22 48.69

MaxIter = 10 (top two tables) and MaxIter = 20 (bottom two tables)

and p-values for 30-fold cross-validation were 0.72, 0.54, 0.16 and 0.0086 respectively. The

p-values for ROI size 56 × 56 with block sizes of 14 × 14, 8 × 8 and 4 × 4 were 0.96, 0.33

and 0.61 respectively for 10-fold cross-validation, and p-values for 30-fold cross-validation

were 0.72, 0.12, 0.00044 and 0.00064 respectively. The p-values for ROI size 48 × 48 with

block sizes of 16× 16, 12× 12, 8× 8 and 6× 6 were 0.61, 0.26, 0.33 and 0.66 respectively for

10-fold cross-validation, and p-values for 30-fold cross-validation were 0.12, 0.00048, 0.00044

and 0.0052 respectively.

We also measured the standardized execution times of our BBLL method versus the

ROI size and the block size. For each method we applied cross-validation experiments

and we divided the total execution time by the number of experiments and the number
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Table 6.15: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 48× 48), 30-fold CV.

Size of Block TPR TNR ACC AUC
48×48 (SOCP-S) 46.51 40.43 43.33 42.8

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS = 0.03)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
24×24 81.4 23.4 51.11 54.38 79.07 12.77 44.44 47.11 67.44 68.09 67.78 63.29
16×16 100 21.28 58.89 60.17 95.35 25.53 58.89 60.86 72.09 74.47 73.33 77.04
12×12 100 31.91 64.44 66.25 97.67 31.91 63.33 65.26 74.42 78.72 76.67 85.6
8×8 100 36.17 66.67 68.09 100 31.91 64.44 65.41 79.07 76.60 77.78 85.01
6×6 100 29.79 63.33 63.58 100 29.79 63.33 63.58 79.07 76.60 77.78 84.66
4×4 100 29.79 63.33 63.58 100 29.79 63.33 63.58 79.07 76.60 77.78 85.16

Size of Block TPR TNR ACC AUC
48×48 (SOCP-S) 58.14 42.55 50.0 49.48

Size of Block
BBMAP-S BBLL-S (τLLS = 0)

TPR TNR ACC AUC TPR TNR ACC AUC
24×24 6.98 95.74 53.33 50.47 6.98 93.62 52.22 48.39
16×16 0 100 52.22 48.69 0 97.87 51.11 47.5
12×12 11.63 100 57.78 55.71 0 100 52.22 48.69
8×8 58.14 61.70 60.0 58.98 13.95 97.87 57.78 53.09
6×6 86.05 42.55 63.33 64.42 32.56 82.98 58.89 54.53
4×4 2.33 100 53.33 50.22 0 100 52.22 48.69

MaxIter = 10 (top two tables) and MaxIter = 20 (bottom two tables)
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Figure 6.9: ROC curves for 48× 48 ROI size breast lesion characterization using the pro-
posed block-based ensemble method with BBMAP-S (left), and BBLL-S (right)
decision functions with 10- (top row) and 30-fold (bottom row) cross-validation.
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Table 6.16: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 56× 56, 10-fold CV).

Size of Block TPR TNR ACC AUC
56×56(SOCP-S) 53.66 56.41 55 51.84

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS = 0.01)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
28×28 65.85 56.41 61.25 60.73 65.85 46.15 56.25 54.16 60.98 58.97 60.0 58.72
14×14 90.24 30.77 61.25 63.35 82.93 33.33 58.75 59.35 73.17 48.72 61.25 61.41
8×8 90.24 30.77 61.25 63.35 90.24 33.33 62.5 65.35 63.41 64.10 63.75 67.85

Table 6.17: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 56× 56), 30-fold CV.

Size of Block TPR TNR ACC AUC
56×56(SOCP-S) 56.25 57.14 56.67 47.99

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS = 0.02)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
28×28 62.5 78.57 70 62.72 71.88 60.71 66.67 58.59 71.88 60.71 66.67 60.71 (0)
14×14 100 64.29 83.33 77.46 87.5 64.29 76.67 70.2 62.5 96.43 78.33 82.59
8×8 100 64.29 83.33 77.46 100 64.29 83.33 77.46 68.75 100 83.33 94.87

MaxIter = 10
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Figure 6.10: ROC curves for 56 × 56 ROI size breast lesion characterization using the
proposed block-based ensemble method with BBMAP-S (left), and BBLL-S
(right) decision functions with 10- (top row) and 30-fold (bottom row) cross-
validation.
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Table 6.18: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 64× 64, 10-fold CV.)

Size of Block TPR TNR ACC AUC
64×64(SOCP-S) 51.35 33.33 42.86 39.23

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS=-0.02 )

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
32×32 40.54 90.91 64.29 64.29 32.43 75.76 52.86 51.68 45.95 69.70 57.14 60.44
16×16 59.46 81.82 70.0 69.69 54.05 78.79 65.71 65.93 54.05 78.79 65.71 70.84
8×8 48.65 81.82 64.29 63.64 40.54 87.88 62.86 62.49 67.57 66.67 67.14 71.42

Table 6.19: Classification performance for breast lesion characterization using ensembles
of block-based sparse classifiers (ROI size: 64× 64), 30-fold CV.

Size of Block TPR TNR ACC AUC
72×72(sparsity) 20.59 76.92 45.0 40.05

Size of Block
BBMAP-S BBLL-S (τLLS = 0) BBLL-S (τLLS = τ ∗LLS=-0.02)

TPR TNR ACC AUC TPR TNR ACC AUC TPR TNR ACC AUC
32×32 9.68 100 53.33 48.83 29.03 82.76 55 48.39 75.86 61.67 68.33 65.41
16×16 70.97 100 85 85.65 64.52 96.55 80 80.98 93.55 79.31 86.67 88.21
8×8 74.19 93.1 83.33 82.09 70.97 93.10 81.67 80.65 93.55 72.41 83.33 89.1

MaxIter=10
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Figure 6.11: ROC curves for 64 × 64 ROI size breast lesion characterization using the
proposed block-based ensemble method with BBMAP-S (left), and BBLL-S
(right) decision functions with 10- (top row) and 30-fold (bottom row) cross-
validation.
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Figure 6.12: Graphs of ACC values versus ROI size produced by BoK, SRC, BBMAP and
BBLL (left) and the corresponding average ACC for each method over all
ROI sizes (right), and the corresponding AUC of the best ACC from each
method (bottom) using 10-fold CV.
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of subjects. Then we identified all values by the maximum execution time. Overall the

average standardized execution time of conventional SRC for the MIAS dataset using ROI

sizes 64 × 64, 56 × 56, 48 × 48 were all approximately equal to 0.015 indicating that the

execution times of conventional SRC are not dependent on the ROI size of the lesion. When

we applied to 64 × 64 ROIs classifier ensembles with block sizes of 32 × 32, 16 × 16, 8 × 8,

we measured execution times of 0.038, 0.128, 0.473 respectively. These results suggest that

the computational time for BBLL increases linearly with the number of blocks. We also

calculated the execution times for the BoK method and ROI sizes of 64 × 64, 56 × 56,

48 × 48. The standardized execution times were all approximately equal to 0.422. BoK

applies the keypoint-feature extraction stage, therefore the execution time depends mostly

on the number of keypoints and not very much on the ROI size. We observe that the top

performing BBLL method for 64× 64 ROI size and 8× 8 block size requires about the same

execution time as the top performing BoK for 48× 48 ROI size.
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Chapter VII: CONCLUSION

This dissertation studies the use of sparsity and integrative classification techniques

for characterization of biomedical imaging patterns and separation of healthy from diseased

subjects. Sparse analysis provides an elegant and theoretically sound foundation for rep-

resentation and recognition of patterns. Sparsity-based techniques have been successfully

applied to image reconstruction, signal processing, denoising and classification problems.

We first implemented and tested texture-based descriptors and classification techniques

to evaluate the difficulty of separation and use these techniques as benchmarks for perfor-

mance evaluation of sparse analysis approaches. Despite the fact that there were little to no

visual differences between the two classes, the top performing techniques yielded 67.8% ACC

and 70.9% area-under-the-curve of ROC for bone characterization and 71.2% ACC and 69.8%

AUC for breast lesion characterization. These results support the hypothesis that 2D texture

analysis can contribute to identification of changes in trabecular bone microarchitecture.

In the next stage we proposed integrative block-based sparse classification techniques for

automated lesion characterization. We introduced two Bayesian decision functions based on

maximum a posteriori (MAP) and log likelihood (LL) estimates. We compared our ensemble

of sparse classifiers to conventional SRC, texture-based, and Bag of Keypoints approaches.

We applied our method to diagnosis of osteoporosis in digital radiographs and breast le-

sion characterization in mammograms. The integrative sparse-based method (BBLL-S) pro-

duced classification rates of 100% for bone characterization and as well as 100% for breast le-

sion characterization with leave-one-out cross-validation. For 30-fold cross-validation, BBLL-

S yielded 70.7% ACC and 74.4% AUC for bone characterization and 86.7% ACC and 88.2%

AUC for breast lesion characterization. For 10-fold cross-validation, BBLL-S produced 60.6%

ACC and 62.5% AUC for bone characterization and 68.9% ACC and 73.7% AUC for breast

lesion characterization. Our results indicate that the introduction of patch analysis yields
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more accurate solutions than the compared methods. Our block-based approach produced

better performance than SRC and texture-based classifiers. The performance of Bag of Key-

points was very high, albeit slightly less consistent than BBLL with respect to ROI size in

breast lesion characterization and slightly lower for bone characterization. Also, the BoK

method may be slower than the BBLL learners especially if the block sizes are relatively

large in BBLL. Our results also indicate that BBLL produces more accurate classification

than BBMAP. Another advantage of this method is that it calculates the types of features to

be used without being dependent on the imaging modality or the disease pattern. Therefore

it is expected to be applicable to various clinical applications for identification of subjects

with higher risk of disease and computer-aided diagnosis.
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