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ABSTRACT

Optical metamaterials is a cutting edge technology that is being studied. These Opti-

cal metamaterials possess both negative permittivity and negative permeability that cannot

be found in nature; but can be engineered by using advanced processing technology. The

dynamics of soliton propagation through these optical metamaterials is governed by the non-

linear Schrödinger′s equation(NLSE) with a few perturbation terms. There are a couple of

ways this study can be done. One of them is to get speci�c values of the Super-Gaussian

pulse parameters by the aid of collective variables; to recover bright 1-soliton solution by the

aid of travelling wave hypothesis for bright soliton solutions of power law and dual-power law

media; to obtain doubly periodic functions to the model with mapping method; to retrieve

exact soliton solutions by the method of undetremined coe�cients which is known as Ansatz

scheme; To extract bright and exotic soliton solutions by semi-inverse variational principle;

to illustrate the controllability of the Raman soliton self-frequency shift in non-linear meta-

materials by numerical results.

Population models can be used to understand the Honey Bee Population Dynamics and

other species at interest and also be used to understand the spread of parasites, viruses, and

disease. For example, explore the impact of di�erent death rates of forager bees on colony

growth and development, evaluate the e�ects of arti�cial feeding on bee colony population

dynamics, recognize the importance of pollination to our food systems and economics. In our

model we describe the e�ects of seasonal variations on competing population dynamics. We

begin with the well understood �sher's equation applied to competing species. Competition

is modeled as a non-local e�ect through a convolution integral with an asymmetric kernel

function. Seasonal variations are added by perturbing the competition term with a sinusoidal

term, sin(ft). The extent of the non-local coupling is determined by a parameter δ, with

δ = 0 corresponding to localization; the degree of asymmetry is characterized by α, so that

when α → 0, the problem becomes symmetric non-local coupling, and p sin(ft), describing
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the severity of disturbance, with p = 0 corresponding to static interactions. We study the

case where the model admits a stable coexistence equilibrium solution. We access stability

conditions of this critical point as a function of α and p and determine unstable wave number

bands with δ beyond the stability boundary. We show the evolutionary nonlinear patterns

under varying seasonal forcing with su�ciently non-localization.
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Chapter 1

REVIEW OF LITERATURE

1.1 Optical soliton propagation in Metamaterials

The dynamics of soliton in optical �bers is an ongoing and active area of research in the �eld

of nonlinear optics. This area of research has picked up momentum a few decades ago and is still

burning bright. There are several aspects of this research that are visible in various publications

[1, 3, 4, 29, 32, 33, 35, 36, 37, 49, 66]. These are soliton solutions, soliton perturbation theory,

quasi-particle theory, quasi-stationary soliton solutions and several others.

While previously the study of optical soliton focused on optical �bers, in the current generation

study of soliton the study of a new form of waveguide optical metamaterials [21] is coming into

prominance. Optical metamaterials possess both negative permittivity and negative permeability

properties that cannot be found in nature; but can be engineered by using advanced processing

technology [23]. This material has been fabricated using nano-fabrication technology by several

research groups [23, 24]. They manipulate the periodic structure of photonic crystal as well as

create resonant ring for negative permeability [23, 24]. Recently, by using metamaterials, Shalaev

and others demonstrate optical waveguide in visible and infrared regions [23]. One inherent property

of soliton in optical metamaterials is its dissipation. Di�erent waveguide structures are proposed

using optical metamaterials [23]. As long as optical wave is guided, soliton pulses can evolve

owing to delicate balance between dispersion and nonlinearity. However, it is always a challenge

to compensate for the loss when engineering these types of waveguide using metamaterials. The

theoretical results showed that metamaterials enhance and localize electromagnetic �eld in a small

region that allows more light-matter interaction [22, 23, 24, 25, 26]. In metamaterials, linear and

nonlinear coe�cients of the propagation equation can be turned to achieve any combination of

signs for permittivity and permibility that is not possible in regular materials. These properties of

metamaterials lead to improved propagation of a wider variety of solitary waves, e�cient phase-

matching and modulational instability [25, 26, 27]. Numerical as well as analytical results of soliton

propagation in several nanoscale optical waveguide were reported by several other authors [25,
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26, 27]. Earlier results reveal that similar regular (positive indexed) dielectric material dispersion

plays a pivotal role in supporting short duration soliton pulses. Optical waveguide with selected

wavelengths can be implemented in photonic crystal partially �lled with gold and nano-particles.

Recently, theoretical results are reported for Y -splitter and bend waveguide structures [24].

The dynamics of soliton propagation through these optical metamaterials is governed by the

nonlinear Schrödinger′s equation(NLSE) with a few perturbation terms. This model was �rst

reported during 2011 [21]. With the advent of such a model, a plethora of results have been

reported. One important aspect is the study of the soliton parameter dynamics in a presence

of perturbation terms. There are a couple of ways this study can be done. One of them is the

application of variational principle. In the second chapter we make use of the collective variables

(CV) principle that is often utilized in computational physics.

The third chapter recovers the bright 1-soliton solution, by the aid of travelling wave hypothesis.

This integration scheme is not applicable to retrieve bright soliton solutions for power law and

dual-power law media. Also, it must be noted that in the case of optical �bers there are soliton

solutions that are reported earlier by the same integration scheme, namely traveling wave hypothesis

applicable to �ve forms of nonlinearity that includes power law and dual-power law [5, 6, 7]. However,

for optical metamaterials, the situation is a little di�erent. The governing equations has parameters

that obey constraint relations and prevent integrability by travelling wave hypothesis for power law

and dual-power law. Another disadvantages of this scheme is that one can retrieve only bright 1-

soliton solutions and not dark or singular optical soliton. Later, the focus will be on the application

of additional integration techniques to retrieve dark and singular soliton along with bright-dark

combo optical soliton.

The fourth chapter utilizes a di�erent and unique approach to retrieve soliton solutions. This

is the mapping method [10, 11, 12]. This scheme obtains doubly periodic functions which is of the

form F (u, v, ut, vt, ux, vx, uxxx, vxxx, ...) = 0, where u(x, t) and v(x, t) are traveling wave solutions.

In the limiting case for modulus of ellipticity, soliton emerges from the mathematical analysis. The

scheme is applied to two forms of nonlinear media, the Kerr law and the parabolic law.
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In the �fth chapter we apply the method of undetermined coe�cients in what is known as

the Ansatz scheme [2, 49, 51, 60, 78, 79, 80], to retrieve exact soliton solutions. Bright, dark and

singular soliton solutions are recovered. The method also reveals essential integrability conditions

which stem from the solution structure of the model.

In the sixth chapter we study the dynamics of soliton propagation through these metamaterials.

To do this we use a modi�ed version of the usual nonlinear Schrödinger equation (NLSE) that

normally models pulse propagation through optical �bers. It must be noted that there are several

models, apart from NLSE that study soliton dynamics in non-linear optics. They are Manakov

model, Lakshmanan-Porsezian-Daniel model, Sasa-Satsuma equation, Maxwell-Bloch equation and

many others. The sixth chapter concentrates on the version of NLSE that is applicable to optical

metamaterials [21].

The integrability aspect is the main focus of the sixth chapter. There are several tools that

are available to conduct integrability of these models that fall in the category of nonlinear evolution

equations (NLEEs) in mathematical physics or partial di�erential equations in mathematical sci-

ences. Some of these integration schemes commonly applied to integrate NLEEs are traveling wave

hypothesis [60], mapping methods [54], ansatz approach [2, 49], F -expansion scheme [51], collective

variables method [58], simplest equation method [2], functional variable method [3] and several oth-

ers [1, 2, 3, 4, 28, 29]. These algorithms yield soliton, shock waves and other solutions to the model

that appear with their own integrability conditions [1, 2, 3, 4, 9]. In addition to these exact soliton

solutions, very recently the semi-inverse variational principle has been applied to extract bright and

exotic soliton solutions to the model [30]. This section stays away from the usual norm of seeking

exact soliton solution. The semi-inverse variational principle (SVP) is applied to the model for

metamaterials to obtain analytical soliton solutions to the model. Five forms of nonlinear media

are studied in the sixth chapter. They are Kerr law, power law, parabolic law, dual-power law and

log law nonlinearity. It is with Kerr law, that in addition to bright soliton solutions, exotic soli-

ton solutions are retrieved. These are cosh-Gaussian pulses and bright-dark combo soliton. These

results carry constraint conditions that guarantee the existence of such soliton. Finaly, numerical
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simulations supplement each of these analytical solutions.

The dynamics of temporal optical soliton is a treasure-trove in the area of non-linear optics

[2]-[95]. The starting point is the Maxwell's equation from electromagnetic theory. Electromagnetic

properties of complex materials, with simultaneous negative dielectric permittivity(ε) and magnetic

permeability(µ), also known as double negative material (DNG), have attracted a lot of attention

in research during recent times [21, 23, 67, 68]. Novel and interesting features of these engineered

materials, are also known as metamaterials, and their possible applications to support short dura-

tion optical soliton pulses have been investigated in the seventh chapter in DNG materials in visible

and infrared region by V. Shalaev and others had shown promise to manufacture optical waveguides

with these materials [21, 23]. Moreover, Boardman et. al have given a lot of insight with optical

metamaterials [69, 70, 71, 72, 73], i.e. developing the �rst comprehensive exact theory of strongly

nonlinear guided waves in a double-negative planar metamaterial waveguide. For compact integra-

tion of photonic circuits, wavelength scale structures with high index contrast are a key requirement

of silicon on insulator (SOI). Nanophotonic circuits appear to be the most appealing in photonic

integration circuits [74, 75]. Currently, ridge silicon wire [68, 74, 75] acts as a (220 nm) waveguide

in SOI structures. This structure provided higher con�nement of light; so did higher non-linearity.

Now-Kerr-type materials could also be used to guide lights.

Raman optical soliton pulses evolve due to a delicate balance between dispersion and non-

linearity [21, 68, 76]. Soliton will dissipate in nature while propagating through DNG medium. Loss

compensation is one of the challenges in engineering these types of materials. The dispersion pro�le

of the wavelength structure is critically needed to determine the soliton pulse nature. In particular,

Raman soliton self-frequency shift is induced by the stimulated Raman scattering(SRS) e�ect. Since

the SRS e�ect enables the energy of the short pulse to transfer from higher to lower frequency

continuously by C. V. Raman and K. S. Krishnan [76]. It is possible that the whole spectrum

moved toward the longer wavelength region. The seventh chapter conducts theoretical analysis to

illustrate the controllability of the Raman soliton self-frequency shift in non-linear metamaterials

by numerical results.
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1.2 Population pattern formation under seasonal forcing

My latest research �eld is in the �eld of Population modelling. Population modelling has many

uses from understanding the dynamics of Honey Bee Population [96, 97, 98] and other species at

interest to understanding the spread of parasites [99], viruses [100], and disease [101]. For example,

exploring the impact of di�erent death rates of forager bees on colony growth and development [102],

evaluating the e�ects of arti�cial feeding on bee colony population dynamics [103], and recognizing

the importance of pollination to our food systems and economics [104]. Additionally, contact and

competition among di�erent species within a community matters when it comes to the possibility of

parasite disease outbreak [105], evolution of plant viruses [106] and ecology of tumors [107]. A model

of competing species is developed in [108], which is based on the di�usive logistic model (Fisher's

equation) and extends the scalar model to account for two competing species. In [108] a non-

local competition term is used to model competition between species. This non-local competition

is modelled through a convolution of a kernel, φα,δ, with the population, u, to capture non-local

interactions. The biological phenomenon of the non-local coupling can be attributed to the e�ect

of mobility. If species compete for a sparse resource, then due to mobility the inhibiting e�ect

of depletion of this resource should depend not just on the populations at a point but on some

weighted average of the populations [108]. Additionally, the kernel, φα,δ, used to capture non-local

e�ects can be asymmetric. This asymmetry can be used to capture unsymmetrical terrain or other

e�ects. Recently, there has been a growing interest in the development of predictive modeling tools

to species dynamics [96, 97, 98, 109, 110, 111, 112, 113]. We add periodic variations to our model

to understand how species respond to seasonal changes. The periodic variations are introduced

through a sinusoidal nonlinear perturbation of the competition term.

The scalar model was in [108, 114] and then in [115, 116, 117, 118, 119, 120]. The kernel

function in [108, 114] was symmetric, which meant that the non-local interaction at any speci�ed

point x weights the population symmetrically about x. In these cases we can see unstable, nonlinear

e�ects when the interaction range of the kernel, δ, is su�ciently large. The nonlinear e�ects found

consist of patterns that take the form of islands of nonzero population separated by dead-zones
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where the population is exponentially small. Stability analyses in [115, 116, 117] calculate the

parameters under which non-linear e�ects occur.

Asymmetric non-local interactions, i.e., convolutions with uneven kernel function are found in

[117, 118, 119]. In this case instability was still a function of the degree of non-locality, δ, but the

stability limit �uctuates depending on the degree of asymmetry in the kernel, α. In these cases the

nonlinear patterns are no longer stationary, but more with a velocity depending on α.

In the eighth chapter, we are interested in �nding persistence phenomenon in modeling com-

peting species. In our model, we try to account for various factors including non-local competition,

asymmetrical behavior, and seasonal e�ects. The non-local coupling is modeled through convolution

integrals, which is attributed to the e�ect of mobility, i.e., resource should depend not just on the

populations at a point but on some weighted average of the populations, due to its inhibiting e�ect

of depletion [108, 120]. The asymmetry is introduced via the convolution integral with asymmetric

kernel functions. This asymmetry can arise in many ways. In tumors it can be found as the result

of complex steady-state dynamics of population distribution [121]. Within each tumor, clones can

evolve that harbor selectively advantageous mutations (called drivers), neutral mutations (called

passengers), and deleterious mutations. The temporal e�ect is via sinusoidal forcing. This is likely

to become increasing important in coming years, as the climate is expected to become more variable

[111, 112, 113].

We study the case where the model admits a periodic �uctuating coexistence limit cycle so-

lution. We show that this solution can be de-stabilized by the non-local coupling, access stability

conditions of this critical point as a function of α, determine unstable wave number bands with

δ beyond the stability boundary and compare results with di�erent p. We consider the nonlinear

patterns with su�ciently non-localization under varying p. Patterns consist of arrays of islands,

regions of non-zero population, separated by either near dead-zones where populations are expo-

nentially small and essentially extinct under perturbation, which is stimulated by both Matlab and

CLanguage. We start with modeling and analysing the spread dynamic of coupled populations,

and then focus on the impacts of population interactions on spread behavior to estimate the convo-

6



lutionary pattern of a relative heterogeneous environment. We have derived the stability conditions,

and some nonliear patterns under varying seasonal forcing.
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Chapter 2

SUPER-GAUSSIAN SOLITON IN OPTICAL METAMATERIALS

USING COLLECTIVE VARIABLES

This chapter studies soliton in optical metamaterials by the aid of collective variables. As

an assumption, supper-Gaussian soliton are selected to keep these pulses on a generalized setting.

The numerical simulations of soliton parameter variation are given for speci�c values of the Super-

Gaussian pulse parameters.

2.1 Introduction

The governing equation that will be considered is for optical metamaterials. In 21st cen-

tury, optical �bers are transitioning its way to optical metamaterials for performance enhancement.

Therefore, it is imperative to study the dynamics of soliton in optical metamaterials. This sec-

tion will apply the principle of CV to address this issue. The hypothesis that will be selected is

Super-Gaussian soliton.

The dynamics of soliton in optical metamaterials is governed by the model [1, 3, 4, 29, 37, 49, 66]

iqt + aqxx + c|q|2q = iαqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (2.1)

(2.1) is the nonlinear Schrödinger′s equation (NLSE) that is studied in the context of metamate-

rials. Here is (2.1), a and b are the group velocity dispersion and the self-phase modulation terms

respectively. This pair produces the delicate balance between dispersion and nonlinearity that ac-

counts for the formation of the stable soliton. On the right hand side λ represents the self-steepening

term in order to avoid the formation of shocks and ν is the nonlinear dispersion, while α represents

the intermodel dispersion. Then �nally, θj for j = 1, 2, 3 are the perturbation terms that appears

in the context of metamaterials [49].
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2.2 Mathematical formulation

In the algorithm for CV, the solution of the NLSE is assumed to be split into two compo-

nents. The �rst component constitutes soliton solution while the second one represents the residual

radiation that is commonly known as small amplitude dispersive waves. The hypothesis is that

the soliton solution depends on a collection of variables that possibly represent soliton amplitude,

inverse width, frequency, chirp, center position and others. Introduction of CV increases the phase

space of they dynamical system of the soliton parameters. The residual �eld is set to zero approxi-

mately. The constraint relations result in a nonlinear dynamical system of the �eld variables which

are going to be studied numerically.

The soliton �eld q(t, x) decomposed into two parts as

q(x, t) = f(x, t) + g(x, t), (2.2)

where f represents the pulse con�guration while g represents the residual �eld. Next, the soliton

�eld is assumed to be a function of N independent variables xj for 1 ≤ j ≤ N which are called CVs.

Again, each of these CVs in turn are dependent on the variables t and x. Thus one can rewrite (2.2)

as

q(x, t) = f(x1, x2, ..., xN , t) + g(x, t). (2.3)

With these N CVs for the function f increases the degrees of freedom. This gives an expansion of

the available phase-space of the system. In order for the system to remain in the original phase

space, certain constraints are imposed. These constraints are obtained by con�guring function f so

that it is the best �t for the static solution. The residual free energy (RFE) is

E =

∫ ∞
−∞
|g|2dt =

∫ ∞
−∞
|q − f(x1, x2, ..., xN , t)|2dt. (2.4)
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From this de�nition, let Cj denote the rate of change of RFE with respect to the jth CV xj so that

Cj =
∂E

∂xj
=

∂

∂xj

∫ ∞
−∞
|g|2dt =

∫ ∞
−∞

(
∂g

∂xj
g∗ +

∂g∗

∂xj
g

)
dt. (2.5)

Again from

g(x, t) = q(x, t)− f(x1(x, t), x2(x, t), ..., xN (x, t)), (2.6)

one can rewrite (2.5) as

Cj =<
∂f∗

∂xj
, g > + <

∂f

∂xj
, g∗ >, (2.7)

where the notation

< u, v >=

∫ ∞
−∞

u(t)v(t)dt, (2.8)

was introduced. Next, the rate of change of Cj with respect to the normalized distance is de�ned

as

Ċj =
dCj
dx

= 2< d

dx

(∫ ∞
−∞

∂f∗

∂xj
gdt

)
= 2<

(∫ ∞
−∞

∂f∗

∂xj

∂g

∂x
dt+ ΣN

k=1

∫ ∞
−∞

∂2f∗

∂2xj

∂xk
∂x

gdt

)
, (2.9)

< represents the real part. Thus,

Ċj = 2<
(
<
∂f∗

∂xj
,
∂g

∂x
> + <

∂2f∗

∂xj∂xk
,
∂xk
∂x

> g

)
. (2.10)

Now, Dirac's principle states that if a function is approximately zero, one cannot be set equal to

zero until its variations with respect to all its parameters are made [32, 33, 34, 35, 36]. Hence the

system will evolve so that Cj are minimum and the equations of the constraints are Cj ≈ 0, Ċj ≈ 0.

Substituting (2.2) into (2.1), leads to the equations of motion of the residual �eld g(x, t) which

upon substitution into (2.9) gives

−Ċj = 2<
N∑
k=1

[∫ ∞
−∞

∂f∗

∂xj

∂f

∂xk
dt−

∫ ∞
−∞

∂2f∗

∂xj∂xk
dt

]
dxk
dt

+Rj , (2.11)
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for 1 ≤ j ≤ N . This is equivalent to the matrix equation

Ċ =
∂C

∂X
Ẋ + R, (2.12)

where

X =



x1

x2

...

xN


, (2.13)

and

R =



R1

R2

...

RN


. (2.14)

While the N ×N Jacobian matrix is given by

∂C

∂X
=
∂(C1, C2, ..., CN )

∂(x1, x2, ..., xN )
= (

∂Cj
∂xk

)N×N , (2.15)

with

∂Cj
∂xk

= 2<
(∫ ∞
−∞

∂f∗

∂xj

∂f

∂xk
dt−

∫ ∞
−∞

∂2f∗

∂xj∂xk
dt

)
, (2.16)

for 1 ≤ j, k ≤ N . One can now solve (2.12) for Ẋ that will lead to adiabatic parameter dynamics of

the CVs (soliton parameters) in presence of perturbation terms. The process of solving for Ẋ from

(2.12) requires the inversion of the Jacobian matrix given by (2.15).

2.2.1 Soliton parameter dynamics

In this section the adiabatic parameter dynamics of soliton in optical metamaterials will be

obtained by CV method. For soliton, N=6 as will be illustrated. The equations for all CVs are

going to be obtained by lowest order CV theory [32, 33, 34, 35, 36] that is alternatively referred to
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as bare approximation. When dressing of the soliton and soliton radiation are negligible, the bare

approximation is applied by which the residual �eld is set to zero. Thus, g(t, x) is set to zero.

For super-Gaussian soliton ansatz, one can take the chirped soliton pulse as

f(x1, x2, x3, x4, x5, x6; t) = x1e
− (t−x2)

2m

x23 ei[
x4
2

(t−x2)2+x5(t−x2)+x6], (2.17)

where x1 is the soliton amplitude, x2 is the center position of the soliton, x3 is the inverse width of

the pulse, x4 is the soliton chirp, x5 is the soliton frequency and x6 is the soliton phase. Also m is

the super-Gaussian parameter, where m> 0. In this case, with N=6,

∂C

∂x
=



∂C1
∂x1

∂C1
∂x2

∂C1
∂x3

∂C1
∂x4

∂C1
∂x5

∂C1
∂x6

∂C2
∂x1

∂C2
∂x2

∂C2
∂x3

∂C2
∂x4

∂C2
∂x5

∂C2
∂x6

∂C3
∂x1

∂C3
∂x2

∂C3
∂x3

∂C3
∂x4

∂C3
∂x5

∂C3
∂x6

∂C4
∂x1

∂C4
∂x2

∂C4
∂x3

∂C4
∂x4

∂C4
∂x5

∂C4
∂x6

∂C5
∂x1

∂C5
∂x2

∂C5
∂x3

∂C5
∂x4

∂C5
∂x5

∂C5
∂x6

∂C6
∂x1

∂C6
∂x2

∂C6
∂x3

∂C6
∂x4

∂C6
∂x5

∂C6
∂x6


, (2.18)

while

X =



x1

x2

x3

x4

x5

x6


, (2.19)
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and

R =



R1

R2

R3

R4

R5

R6


. (2.20)

Here

R1 = 2
m−1
m X3

1X
1
m
3 X4(θ1 − θ2 + θ3)Γ(1 +

1

2m
), (2.21)

R2 =
1

m
2−

m+3
m X2

1X
3
m
3 [4Γ(

3

2m
)X2

4 (2
3

2m (α− 3aX5) +X2
1 (λ+ 3X5(θ1 + θ2 + θ3)))]+

2
7

2mm2Γ(2− 1

2m
)X
− 4
m

3 [4(α− 3aX5) + 2
1

2mX2
1 (3λ+ 2ν +X5)(9θ1 + 5θ2 + θ3)]−

41+ 1
2mX

− 2
m

3 X5[2
1

2mX5(aX5 − α)−X2
1 (b+X5(λ+X5(θ1 + θ2 + θ3)))],

(2.22)

R3 =
1

m
2
m+1
m X2

1X
1−m
m

3 X4Γ(1 +
1

2m
)(X2

1 (θ1(6m+ 1) + (θ2 − θ3)(2m− 1))− 23+ 1
2mam), (2.23)

R4 =
1

16m
2−

5
mX2

1X
5
m
3 (16Γ(

5

2m
)X2

4 (2
5

2ma−X2
1 (θ1 + θ2 + θ3))16

1
mΓ(

1

2m
)X
− 4
m

3

(22+ 1
2ma(2m− 3) +X2

1 (θ1(21− 6m)− (θ2 + θ3)(6m− 5)))

−42+ 1
mΓ(

3

2m
)X
− 2
m

3 (2
3

2mX5(α− aX5) +X2
1 (b+X5(λ+X5(λ+X5(θ1 + θ2 + θ3))))),

(2.24)

R5 = − 2

m
2−

3
mΓ(

3

2m
)X2

1X
3
m
3 X4(2

3
2m (α− 2aX5) +X2

1 (λ+ 2X5(θ1 + θ2 + θ3))), (2.25)

R6 =
1

m
2−

m+3
m X2

1X
3
m
3 (4Γ(

3

2m
)X2

4 (2
3

2ma)−X2
1 (θ1 + θ2 + θ3))− 2

7
2mm2Γ(2− 1

2m
)

X
− 4
m

3 (32
1

2mX2
1 (θ1 + θ2 + θ3)− 4a)− 41+ 1

mΓ(
1

2m
)X
− 2
m

3 (2
1

2mX5(α− aX5)+

X2
1 (b+X5(θ1 + θ2 + θ3))))).

(2.26)

Thus, the nonlinear dynamical system (DS) reduces to

ẋ1 =
1

8m
21 1

2mX1X4(X1(θ1(2m− 1) + (θ2 − θ3)(6m+ 1))− 2
1

2m
+3am), (2.27)
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ẋ2 = −α+ 2aX5 − 2
1

2m
−2X2

1 (3λ+ 2ν + 2X5(3θ1 + θ2 − θ3)), (2.28)

ẋ3 = 2−
1

2m
−2X3X4(2

1
2m

+3am+X2
1 (θ1(1− 6m)− (θ2 − θ3)(2m+ 1))), (2.29)

ẋ4 = 15
ξ1

ξ2
, (2.30)

where

ξ1 = 32
2
m
−3mΓ(1− 1

2m
)Γ(

3

2m
)X
− 4
m

3 (32
1

2mX2
1 (θ1 + θ2 + θ3)− 4a)+

32
3

2m
−4Γ(1 +

1

2m
)Γ(

1

2m
)X
− 4
m

3 (2
1

2m
+2a(2m− 3) +X2

1 (θ1(21− 6m)− (θ2 + θ3)(6m− 5)))

−2−
3

2mΓ(1 +
3

2m
)Γ(

3

2m
)X2

4 (2
3

2ma−X2
1 (θ1 + θ2 + θ3))

+482−
5

2m
−4Γ(1 +

1

2m
)Γ(

5

2m
)X2

4 (2
5

2ma−X2
1 (θ1 + θ2 + θ3))

+2−
1

2m (2
1
m − 1)X2

1 Γ(1 +
3

2m
)Γ(

1

2m
)X
− 2
m

3 (b+X5(λ+X5(θ1 + θ2 + θ3))),

and

ξ2 = 5mΓ(
3

2m
+ 1)2 − 9

2
Γ(

5

2m
+ 1)Γ(

1

2m
),

ẋ5 = 2−
3

2m
−2X2

1X4(4(λ+ 2X5(θ1 + θ2 + θ3))− 4
1
m (3λ+ 2ν + 2X5(3θ1 + θ2 − θ3))), (2.31)

where

χ1 = − 9

2m
2−

1
2mΓ(1 +

5

2m
)Γ(

1

2m
)(2

1
2mX5(α− aX5) +X2

1 (b+X5(λ+X5(θ1 + θ2 + θ3)))

−45

16
2−

1
mX

− 2
m

3 Γ(2− 1

2m
)Γ(

5

2m
)(3(θ1 + θ2 + θ3)2

1
2mX2

1 − 4a)

+
9

2m
2−

5
2mX

2
m
3 X2

4 Γ(1 +
5

2m
)Γ(

3

2m
)(2

3
2ma− (θ1 + θ2 + θ3)X2

1 ),

χ2 =
15

2m
2−

3
2mΓ(

3

2m
)(2

2
3mX5(α− aX5) +X2

1 (b+X5(θ1 + θ2 + θ3))))

+
15

2m
2−

7
2mX

2
m
3 X2

4 Γ(
5

2m
)((θ1 + θ2 + θ3)X2

1 − 2
5

2ma)+

15

2m
2

1
2mX

− 2
m

3 Γ(
1

2m
)(X2

1 (3θ1(2m− 7) + (θ2 + θ3)(6m− 5))− 2
1

2m
+2(2m− 3)a).
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ẋ6 =
χ1+Γ(1+ 3

2m
)χ2

5Γ(1+ 3
2m

)2−9Γ(1+ 1
2m

)Γ(1+ 5
2m

)
+ 2aX2

5 − αX5

−2
1

2m
−2X2

1X5(2λ+ 2ν + 2(θ1 + θ2 − θ3)X5). (2.32)

2.2.2 Numerical simulation

The nonlinear dynamical system developed in the previous section will now be plotted to

illustrate the parameter variation numerically. There are two sets of plots with super-Gaussian

pulses. There are with m = 2 in Fig. 2.1 and m = 4 in Fig. 2.2 respectively. The parameter

values chosen, for both cases, are as follows: c1 = 0.001, c2 = 0.25, c3 = 0.001, α = 2.5, θ1 = 0.1, θ2 =

0.1, θ3 = 0.1, a = 0.1, b = 0.1, λ = 0.1, ν = 0.1.

2.3 Conclusions

The dynamics of soliton parameters are studied numerically in this chapter by the aid of CV

approach. Super-Gaussian soliton are considered. The two cases where m = 2 and m = 4 are

studied numerically. This chapter stands on a strong foundation for further future work. While

this chapter addresses Kerr law nonlinearity, later parabolic law nonlinearity will be studied. The

results of those researches will be available soon.
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(a) m = 2 Soliton amplitude variation (b) m = 2 SSoliton center-position variation

(c) m = 2 Soliton inverse-width variation (d) m = 2 Soliton chirp variation

(e) m = 2 Soliton frequency variation (f) m = 2 Soliton phase variation

Figure 2.1: Illustrate the parameter variation numerically with m = 2.
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(a) m = 4 Soliton amplitude variation (b) m = 4 Soliton center-position variation

(c) m = 4 Soliton inverse-width variation (d) m = 4 Soliton chirp variation

(e) m = 4 Soliton frequency variation (f) m = 4 Soliton phase variation

Figure 2.2: Illustrate the parameter variation numerically with m = 4.
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Chapter 3

BRIGHT SOLITON IN OPTICAL METAMATERIALS BY

TRAVELING WAVE HYPOTHESIS

This chapter obtains bright 1-soliton solutions in optical metamaterials by the aid of traveling

wave hypothesis. There are three types of nonlinear media that are considered. They are Kerr law,

parabolic law and log law nonlinearity. There are several constraint relations there obtained for

soliton solutions to exist.

3.1 Governing equation

The dimensionless form of NLSE in optical metamaterials is given by [1, 2, 3, 4, 21, 29, 78, 79,

80]:

iqt + aqxx + F (|q|2)q = iaqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (3.1)

The independent variables are x and t that respectively represent the spatial and temporal variables,

while the dependent variable is q(x, t) which represents the complex valued wave envelope. Also,

a is the coe�cient of group velocity dispersion (GVD). The functional F represents the nonlinear

term. On the right hand side, α is due to inter-modal dispersion, λ represents the self-steepening

term to avoid formation of shock waves, ν is the nonlinear dispersion. The θj for j = 1, 2, 3 terms

appear in the context of metamaterials [1]-[4].

The function F represents, in general, non-Kerr law nonlinear media and is a real-valued

algebraic function and the smoothness of the complex function F (|q|2)q : C 7→ C is needed. Con-

sidering the complex plane C as a two-dimensional linear space R2, the function F (|q|2)q is k times

continuously di�erentiable, so that [6, 7]

F (|q|2)q ∈
∞⋃

m,n=1

Ck
(
(−n, n)× (−m,m) ;R2

)
. (3.2)

The traveling wave hypothesis will be introduced in the following section and 1-soliton solution will
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be obtained for three forms of the nonlinear function F .

3.2 Traveling wave hypothesis

The starting hypothesis to address (3.1) is given by [5, 6, 7]

q (x, t) = g (x− vt) ei(−κx+ωt+σ), (3.3)

where v represents the speed of the soliton and the function g is the amplitude component of the

complex valued function q(x, t). From the phase component, κ is the soliton frequency, ω is the

soliton wave number and σ is the phase constant. Substituting (3.3) into (3.1) and decomposing

into real and imaginary parts lead to

ag
′′ −

(
ω+aκ+ aκ2

)
g +

{
F
(
g2
)
− λκg2 + (θ1 + θ2 + θ3)κ2g2

}
g − (3θ1 + θ2 + θ3) g2g

′′

−6θ1g
(
g
′
)2

= 0, (3.4)

and

(ν+a+ 2aκ) g
′
+ {3λ+ 2ν − 2 (3θ1 + θ2 + θ3)κ} g2g

′
= 0. (3.5)

In (3.4)and (3.5), the notations g
′

= dg/ds and g
′′

= d2g/ds2 are used where

s = x− vt. (3.6)

From the real part equation, setting the coe�cients of linearly independent functions to zero gives

θ1 = 0, (3.7)

and

θ2 + θ3 = 0. (3.8)
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Consequently, from the imaginary part equation it follows from the coe�cients of linearly indepen-

dent functions

3λ+ 2ν = 0, (3.9)

and the speed of the soliton falls out to be

v = −a− 2aκ, (3.10)

which is valid for all forms of nonlinear media. Therefore with these parameter settings, the gov-

erning equation (3.1) modi�es to

iqt + aqxx + F (|q|2)q = iaqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ2|q|2qxx − θ2q

2q∗xx, (3.11)

and the real part equation simpli�es to

ag
′′ −

(
ω+aκ+ aκ2

)
g +

{
F
(
g2
)
− λκg2

}
g = 0. (3.12)

The traveling wave hypothesis of this equation will now be studied. Multiplying both sides of (3.12)

by g
′
and integrating leads to

2a
(
g
′
)2
− 2

(
ω+aκ+ aκ2

)
g2 − λκg4 + 4

∫ g

0
F
(
h2
)
hh
′
dh = 0, (3.13)

upon simpli�cation after choosing the integration constant to be zero, since the search is for a soliton

solution. The next three subsections will focus on the linearity of the ordinary di�erential equation

(ODE) given by (3.13) for Kerr law, Parabolic law and Log law where the functional F is known.

3.2.1 Kerr law

For Kerr law nonlinearity [1],

F(u) = bu, (3.14)
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for a real constant b so that (3.11) reduces to

iqt + aqxx + b|q|2q = iaqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ2|q|2qxx − θ2q

2q∗xx, (3.15)

and hence the real part ODE gives

2a
(
g
′
)2
− 2

(
ω+aκ+ aκ2

)
g2 + (b− λκ) g4 = 0. (3.16)

After separating variables in (3.16) and integrating leads to

g (s) = g (x− vt) = A sech[B (x− vt)], (3.17)

where

A =

√
2 (ω+aκ+ aκ2)

b− λκ
, (3.18)

and

B =

√
2 (ω+aκ+ aκ2)

a
. (3.19)

Hence, bright 1-soliton solution to (3.15) is given by

q (x, t) = A sech[B (x− vt)]ei(−κx+ωt+σ), (3.20)

where the amplitude A of the soliton and the inverse width B of the soliton and given by (3.18)

and (3.19), respectively. It must be noted that these bright soliton exist provided the constraints

(b− λκ)
(
ω+aκ+ aκ2

)
> 0, (3.21)

and

a
(
ω+aκ+ aκ2

)
> 0. (3.22)
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3.2.2 Parabolic law

In this case,

F(u) = b1u+ b2u
2, (3.23)

where b1 and b2 are real-valued constants [5, 6, 7, 9]. Therefore, (3.11) takes the form

iqt + aqxx +
(
b1|q|2 + b2|q|4

)
q = iaqx + iλ

(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ2|q|2qxx − θ2q

2q∗xx, (3.24)

and hence the real part ODE gives

6a
(
g
′
)2
− 6

(
ω+aκ+ aκ2

)
g2 + 3 (b1 − λκ) g4 + 2b2g

6 = 0. (3.25)

After separating variables in (3.25) and integrating leads to

g (s) = g (x− vt) =
A√

D + cosh[B (x− vt)]
, (3.26)

where

A =
2
√

6
(
ω+aκ+ aκ2

)√
3(b1 − λκ)2 + 16b1 (ω+aκ+ aκ2)

, (3.27)

and

B = 2

√
(ω+aκ+ aκ2)

a
, (3.28)

and

D =

√
3 (b1 − λκ)√

3(b1 − λκ)2 + 16b1 (ω+aκ+ aκ2)
. (3.29)

Hence, bright 1-soliton solution to (3.24) is given by

q (x, t) =
A√

D + cosh[B (x− vt)]
ei(−κx+ωt+σ), (3.30)
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where the amplitude A of the soliton and the inverse width B of the soliton are given by (3.27) and

(3.28), respectively. This case introduces a new parameter D that is given by (3.29). The condition

for the existence of the bright soliton is guaranteed for

3(b1 − λκ)2 + 16b1
(
ω+aκ+ aκ2

)
> 0, (3.31)

and (3.22) which follows from (3.27) or (3.29) and (3.28).

3.2.3 Log law

Here,

F (s) = b ln (s) , (3.32)

for real valued constant b, so that equation (3.11) reduces to [5, 6, 7]

iqt + aqxx + bq ln |q|2 = iaqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ2|q|2qxx − θ2q

2q∗xx, (3.33)

and hence the real part ODE gives

2a
(
g
′
)2
−
(
2ω+2aκ+ 2aκ2 + b

)
g2 − 2bg2 ln g = 0. (3.34)

After separating variables in (3.34) and integrating leads to

g (s) = g (x− vt) = Ae−B
2(x−vt)2 , (3.35)

where

A = exp

(
ω+aκ+ aκ2 + b

2b

)
, (3.36)

and

B =

√
b

2a
. (3.37)
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Hence, Gausson solution to (3.33) is given by

q (x, t) = Ae−B
2(x−vt)2ei(−κx+ωt+σ), (3.38)

where the amplitude A of the Gausson and the inverse width B of the Gausson are given by (3.36)

and (3.37), respectively. It must be noted that these bright soliton exist provided the constraints

b 6= 0, (3.39)

ab > 0, (3.40)

hold respectively for (3.36) and (3.37). The equation (3.40) implies that both GVD and nonlinearity

must maintain the same sign for Gausson to exist.

3.3 Conclusions

This chapter recovers bright 1-soliton solution, in optical metamaterials, by the aid of travelling

wave hypothesis. This integration scheme is not applicable to retrieve bright soliton solutions for

power law and dual-power law media. Also, it must be noted that there are soliton solutions that

are reported earlier by this same integration scheme, namely traveling wave hypothesis applicable

to �ve forms of nonlinearity that includes powers law and dual-power law [5, 6, 7]. However, for

optical metamaterials, the situation is a little di�erent. The governing equations have parameters

that obey constraint relations, as discussed in Section-3, and thus prevent integrability by traveling

wave hypothesis for power law and dual-power law.

Another disadvantage of this scheme is that one can retrieve only bright 1-soliton solutions

and not dark or singular optical soliton. Later, the focus will be on the application of additional

integration techniques to retrieve dark and singular soliton along with bright-dark combo optical

soliton. The results of those research will be applied soon. Additionally, soliton perturbation theory

as well as quasi-stationary soliton solutions will be obtained. Finally, the quasi-particle theory, for

suppression of intra-channel collision, will also be developed and reported.
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Chapter 4

SOLITON IN OPTICAL METAMATERIALS BY MAPPING

METHOD

This chapter studies soliton in optical metamaterials by the aid of mapping method. There

are two types of nonlinear media taken into consideration. They are Kerr law and parabolic law

nonlinearity. The constraint conditions, on the parameters, that need to hold for the soliton to

exist, are also listed.

4.1 Overview of mapping method

In this section, we give an analysis of mapping methods which was employed in [10, 11, 12].

The analysis given below is in general for a system of partial di�erential equations (PDE)s [13] but

in this chapter we have applied it for a single PDE.

Consider a nonlinear coupled PDE with two dependent variables u and v and two independent

variables x and t given by

F (u, v, ut, vt, ux, vx, uxxx, vxxx, ...) = 0, (4.1)

where subscripts denote partial derivatives with respect to the corresponding independent variables

and F is a polynomial function of the indicated variables.

Step−1: Assume that (4.1) has a traveling wave solution in the form

u(x, t) = u(ξ) =

l1∑
i=0

Aif
i(ξ); v(x, t) = v(ξ) =

l2∑
i=0

Bif
i(ξ), (4.2)

where ξ = x−λt, Ai, Bi and λ are arbitrary constants, l1 and l2 are integers and i represents integer

powers of f . The �rst derivative of f with respect to ξ denoted by f
′
can be expressed in powers of

f in the form

f ′2 = pf2 +
1

2
qf4 + r, (4.3)
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where p, q and r are arbitrary constants. The motivation for (4.3) was that the squares of the �rst

derivatives of Jacobi elliptic functions JEFs can be expressed in even powers of themselves.

Step−2: Substituting (4.2) into (4.1), the PDE reduces to an ODE. Balancing the highest

order derivative term and the highest order nonlinear term of the ODE, the values of l1 and l2 can

be found.

Step−3: Substituting for u and v and using (4.3), the ODE gives rise to a set of algebraic

equations by setting the coe�cients of various powers of f to zero.

Step−4: From the values of the parameters Ai, Bi, p, q and r, the solution of (4.1) can be

derived.

Thus a mapping relation is established through (4.2) between the solution to (4.3) and that of

(4.1). It is to be noted that if the values of l1 and l2 are integers, we can use the method directly

to get a variety of solutions in terms of hyperbolic functions or JEFs. If they are nonintegers, the

equation may still have solutions are rational expressions involving hyperbolic functions or JEFs.

4.2 Application to metamaterials

The mapping scheme described above will be applied to optical metamaterials. The governing

equation for optical metamaterials is given by the nonlinear Schrödinger′s equation(NLSE) below

iqt + aqxx + F (|q|2)q = iαqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (4.4)

In (4.4), the dependent variable that represents the complex valued wave pro�le is denoted by q

and its complex conjugate is q∗. The independent variables are x and t which represent spatial and

temporal variables. Next the �rst term on the left hand side is linear evolution. The coe�cient of a

is the group velocity dispersion(GVD) and the nonlinearity is represented by the functional F . On

the right hand side, α is the coe�cient of inter-model dispersion, while λ is the self-steepening term

to avoid the formation of shock waves and ν gives the coe�cient of nonlinear dispersion. Finally

the coe�cients of θj for j = 1, 2, 3 are accounted for metamaterials [1, 2, 3, 4, 9].

Also in (4.4), F is a real-valued algebraic function and it is necessary to have the smoothness
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of the complex function F (|q|2)q : C 7→ C. Considering the complex plane C as a two-dimensional

linear space R2, the function F (|q|2)q is k times continuously di�erentiable, so that

F (|q|2)q ∈
∞⋃

m,n=1

Ck((−n, n)× (−m,m);R2). (4.5)

This chapter will consider only two forms of nonlinearity. They are Kerr law and parabolic law that

are discussed in details in the next two subsections.

4.2.1 Kerr law

This law arises when the refractive index of light is intensity dependent. For Kerr law non-

linearity, F (s) = s and therefore this form of nonlinearity is also referred to as cubic nonlinearity.

Most commercial optical �bers obey this Kerr law of nonlinearity. For Kerr law medium, the NLSE

given by (4.4) modi�es to

iqt + aqxx + b|q|2q = iαqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (4.6)

To derive soliton solutions, the starting hypothesis is

q(x, t) = P (x, t)eiϕ, ϕ = −κx+ ωt+ θ, (4.7)

where κ is the wave number, ω is the soliton frequency and θ is the phase constant. Substituting

(4.7) into (4.6) and separating them into real and imaginary parts, we obtain

(ω + ακ+ aκ2)P + [κ(λ− κθ1 − κθ2 − κθ3)− b]P 3 − a∂2P
∂2x

+ 6P (∂P∂x )2θ1

+(3θ1 + θ2 + θ3)P 2∂
2P

∂2x
= 0, (4.8)

and

∂P

∂t
− (α+ 2aκ)

∂P

∂x
= (3λ+ 2v − 6θ1κ− 2θ2κ+ 2θ3κ)P 2∂P

∂x
, (4.9)

respectively.
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Next, considering the traveling wave solution P (x, t) = P (τ) where τ = B(x − vt), where B

and v are constant, (4.9) becomes

(ω + ακ+ aκ2)P + [κ(λ− κθ1 − κθ2 − κθ3)− b]P 3 − aB2P
′′

+ 6PP
′2B2θ1

+(3θ1 + θ2 + θ3)P 2B2P
′′

= 0, (4.10)

where prime denotes di�erentiation with respect to τ . The imaginary part leads to the relations

v = −α− 2aκ, (4.11)

and

3λ+ 2ν − 2κ(3θ1 + θ2 − θ3) = 0, (4.12)

(4.11) gives the speed of the soliton and (4.12) is the constraint relation that must be valid in order

for the soliton to exist.

Now, (4.10) can be written in the form

P
′′

= A1P +A2P
3 +A3PP

′2 +A4P
2P
′′
, (4.13)

where,

A1 =
ω + ακ+ aκ2

aB2
,

A2 =
κ(λ− κ(θ1 + θ2 + θ3)− b)

aB2
,

A3 =
6θ1

a
,

A4 =
3θ1 + θ2 + θ

a
.

(4.14)

Applying the mapping method, we can assume the solution structure of (4.13) in the form [10, 11, 12]

P (τ) = a0 + a1f(τ), (4.15)

where f satis�es (4.3). Substituting (4.15) into (4.13) and using (4.3), we obtain a polynomial in f
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given by

a1pf + a1qf
3 = A1(a0 + a1f) +A2(a3

0 + 3a2
0a1f + 3a0a

2
1f

2 + a3
1f

3)

+A3(a0a
2
1τ + a3

1τf + a0a
2
1pf

2 + a3
1pf

3 + 1
2a0a

2
1qf

4)

+A4(a2
0a1pf + 2a0a

2
1pf

2 + (a2
0a1q + a3

1p)f
3 + 2a0a

2
1qf

4 + a3
1qf

5). (4.16)

Equating the coe�cients of di�erent powers of f in (4.16), we arrive at the following algebraic

equations:

f5 :
1

2
a3

1qA3 + a3
1qA4 = 0⇒ 1

2
A3 +A4 = 0, (4.17)

f4 :
1

2
a0a

2
1qA3 + 2a0a

23
1 qA4 = 0⇒ 1

2
A3 + 2A4 = 0, (4.18)

(4.17) and (4.18) lead us to A3 = 0 and A4 = 0. This gives rise to θ1 = θ2 = θ3 = 0. Form the

coe�cients of f3, f2 and the constant term, we obtain

a0 = 0, a1 = ±
√

q

A2
, A1 = p. (4.19)

So, we can easily see that a1 can be written as

a1 = ±

√
q(ω + ακ+ aκ2)

p(κλ− b)
. (4.20)

Case−1: p = −(1 +m2), q = 2m2, τ = 1.

Here, (4.3) gives f(τ) = sn(τ). In this case, (4.4) gives rise to the periodic wave solution [14]

q(x, t) = ±

√
2m2(ω + ακ+ aκ2)

(1 +m2)(b− κλ)
× sn[B(x− vt)]ei(−κx+ωt+θ). (4.21)

As m→ 1, one recovers dark soliton solution from (4.21)

q(x, t) = ±
√
ω + ακ+ aκ2

b− κλ
× tanh[B(x− vt)]ei(−κx+ωt+θ). (4.22)
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Case−2: p = 2m2 − 1, q = −2m2, τ = 1−m2.

So, (4.3) yields f(τ) = cn(τ). In this case, (4.4) gives rise to the periodic wave solution [14]

q(x, t) = ±

√
2m2(ω + ακ+ aκ2)

(2m2 − 1)(b− κλ)
× cn[B(x− vt)]ei(−κx+ωt+θ). (4.23)

As m→ 1, one obtains bright soliton solution from (4.23)

q(x, t) = ±
√

2(ω + ακ+ aκ2)

b− κλ
× sech[B(x− vt)]ei(−κx+ωt+θ). (4.24)

Case−3: p = −(1 +m2), q = 2, τ = m2.

Here, (4.3) gives f(τ) = ns(τ). Therefore, (4.4) gives rise to the periodic wave solution [14]

q(x, t) = ±

√
2(ω + ακ+ aκ2)

(1 +m2)(b− κλ)
× ns[B(x− vt)]ei(−κx+ωt+θ). (4.25)

As m→ 1, (4.25) leads us to the singular soliton solution

q(x, t) = ±
√

2(ω + ακ+ aκ2)

b− κλ
× coth[B(x− vt)]ei(−κx+ωt+θ). (4.26)

These soliton and doubly periodic solutions, listed in (4.21)-(4.26) immediately introduce the con-

straint condition

(b− κλ)(ω + ακ+ aκ2) > 0. (4.27)

Thus, the soliton and doubly periodic functions will exist provided the constraint relation of the

parameters hold.

4.2.2 Parabolic law

The equation under consideration, for this law of nonlinearity, is

iqt + aqxx + (b1|q|2 + b2|q|4)q =

iαqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (4.28)
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This law is commonly known as the cubic-quintic nonlinearity. The second term of nonlinearity on

the left hand side of (4.28) is large for the case of p-toluene sulfonate crystals. This law arises in the

nonlinear interaction between Langmuir waves and electrons. It describes the nonlinear interaction

between the high frequency Langmuir waves and the ion−acoustic waves by ponderomotive forces.

Substituting (4.25) into (4.28) and considering the traveling wave solution as in section3, the

imaginary part remains the same as before and the real part becomes

P
′′

= A1P +A2P
3 +A3PP

′2 +A4P
2P
′′

+A5P
5, (4.29)

where, A1, A2, A3 and A4 are as in (4.14) with b replaced by b1 and A5 = −b2/(aB2).

Assuming the solution of (4.29) in the form of (4.15) and using (4.3), we get a �fth degree

polynomial in f . The coe�cients of di�erent powers of f give rise to a set of algebraic equations

whose solutions give

a0 = 0, a1 =

√
apB2 − ω − ακ− aκ2

6B2τθ1
, (4.30)

and get the constraint condition

qτA2
3 + 2qτA3A4 − 2A1A5 + 2pA5 = 0, (4.31)

Case−1:p = −(1 +m2), q = 2m2, τ = 1.

Here, (4.3) gives f(τ)sn(τ). In this case, (4.28) gives rise to the periodic wave solution [14]

q(x, t) = ±

√
−a(1 +m2)B2 + ω + ακ+ aκ2

6B2θ1
× sn[B(x− vt)]ei(−κx+ωt+θ), (4.32)

As m→ 1, (4.32) leads us dark soliton solution

q(x, t) = ±

√
−2aB2 + ω + ακ+ aκ2

6B2θ1
× tanh[B(x− vt)]ei(−κx+ωt+θ). (4.33)

Case−2: p = 2m2 − 1, q = −2m2, τ = 1−m2.
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So, (4.3) yields f(τ) = cn(τ). In this case, (4.28) gives rise to the periodic wave solution [14]

q(x, t) = ±

√
−a(2m2 − 1)B2 − ω − ακ− aκ2

6B2θ1
× cn[B(x− vt)]ei(−κx+ωt+θ). (4.34)

As m→ 1, (4.34) does not give rise to a solitary wave solution.

Case−3: p = −(1 +m2), q = 2, τ = m2.

Here, (4.3) gives f(τ) = ns(τ). In this case, (4.28) gives rise to the periodic wave solution [14]

q(x, t) = ±

√
−a(1 +m2)B2 + ω + ακ+ aκ2

6B2m2θ1
× ns[B(x− vt)]ei(−κx+ωt+θ). (4.35)

As m→ 1, (4.35) leads us to the singular solitary wave solution

q(x, t) = ±

√
−2aB2 + ω + ακ+ aκ2

6B2m2θ1
× coth[B(x− vt)]ei(−κx+ωt+θ). (4.36)

It needs to be noted that the doubly periodic functions, for this law of nonlinearity, given by (4.32)

and (4.35) will exist provided

θ1[a(1 +m2)B2 + ω + ακ+ aκ2] < 0. (4.37)

Consequently, dark soliton and singular soliton will exist if

θ1(2aB2 + ω + ακ+ aκ2) < 0. (4.38)

Finally, the periodic wave solution given by (4.34) will exist with constraint condition

θ1[a(2m2 − 1)B2 − ω − ακ+ aκ2] > 0. (4.39)
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4.3 Generalization

This chapter retrieved soliton solutions to the NLSE in optical metamaterials with Kerr and

parabolic law nonlinearity. The mapping method is applied to obtain these solutions. The results

of this chapter came with certain constraints that must hold for these soliton to exist. These

soliton solutions are recovered after a limiting process applied to doubly periodic functions when

the modulus of ellipticity approached unity. This approach is therefore a very unique method to

derive soliton solutions.

Later the results will be extended to the case when several perturbation terms will be con-

sidered. Better yet, soliton perturbation theory will be applied to give the adiabatic variation of

these soliton parameters. Several other integration tools will be adopted to obtain soliton and other

solutions. The results of those researches are awaited at this time.

33



Chapter 5

SOLITON PROPAGATION THROUGH NANOSCALE

WAVEGUIDES IN OPTICAL METAMATERIALS

This chapter studies the dynamics of soliton propagation through optical metamaterials. The

proposed model will be studied with �ve forms of nonlinearity. They are Kerr law, power law,

parabolic law, dual-power law and log-law. The integration scheme that will be adopted is the

method of undetermined coe�cients. Bright, dark and singular soliton solutions will be obtained.

The essential conditions for the existence of these soliton will naturally emerge.

5.1 Governing equation and mathematical analysis

The dynamics of soliton in optical metamaterials is governed by the nonlinear Shrödinger′s

equation (NLSE) which in the dimensionless form is given by [1, 2, 3, 4, 6, 7, 9, 15, 16, 17, 18, 19,

20, 21, 23, 24, 25, 27, 26, 28, 29, 30, 49, 51, 60, 78, 79, 80]:

iqt + aqxx +F
(
|q|2
)
q = iαqx + iλ

(
|q|2q

)
x

+ iν
(
|q|2
)
x
q+ θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (5.1)

(5.1) is the NLSE that is studied in the context of metamaterials. Here in (5.1), a is the group

velocity dispersion. This section produces the delicate balance between dispersion and nonlinearity

that accounts for the formation of the stable soliton. On the right-hand side λ represents the

self-steepening term in order to avoid the formation of shocks and ν is the nonlinear dispersion,

while α represents the inter-modal dispersion. This arises from the fact that group velocity of light

in multi-mode �bers depends on chromatic dispersion as well as the propagation mode involved.

Next, θj for j = 1, 2, 3 are the perturbation terms that appear in the context of metamaterials

[17, 20, 21, 23, 25, 26, 66]. Finally, the independent variables are x and t that represent spatial and

temporal variables respectively with the dependent variable q(x, t) being the complex-valued wave

pro�le.

The real-valued algebraic functional F must possess smoothness of the complex-valued function

34



F
(
|q|2
)
q : C 7→ C. Treating the complex plane C as two-dimensional linear space R2, the function

F
(
|q|2
)
q is k times continuously di�erentiable provided

F (|q|2)q ∈
∞⋃

m,n=1

Ck
(
(−n, n)× (−m,m) ;R2

)
. (5.2)

In order to start with the analysis of (5.1), the starting hypothesis is

q (x, t) = P (x, t) eiφ. (5.3)

In (5.3), P (x, t) represents amplitude portion of the wave while φ (x, t) is the phase component that

is given by

φ = −κx+ ωt+ θ, (5.4)

where κ gives the soliton frequency and ω being the soliton wave number while θ represent the

phase constant. After substituting (5.3) into (5.1) and decomposing into real and imaginary parts

lead to (
ω+aκ+ aκ2

)
P − a∂2P

∂x2
+ 6θ1P

(
∂P
∂x

)2−
P 3{b− λκ+ κ2 (θ1 + θ2 + θ3)}+ P 2∂

2P

∂x2
(3θ1 + θ2 + θ3) = 0, (5.5)

and

∂P

∂t
− (a+ 2aκ)

∂P

∂x
= (3λ+ 2ν − 6θ1κ− 2θ2κ+ 3θ3κ)P 2∂P

∂x
, (5.6)

respectively. The imaginary part equation (5.6) implies the relations

ν = −a− 2aκ, (5.7)

and

3λ+ 2ν = 2κ (3θ1 + θ2 − θ3) . (5.8)
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This follows from the fact that the amplitude portion P (x, t) can be written in terms of the wave

g(x − vt) with v being the speed of the wave. The two relations (5.7) and (5.8) are obtained by

setting the coe�cients of linearly independent functions from (5.6) to zero. These two expressions

serve as the existence condition for the soliton that is commonly referred to as constraint relation.

The speed of the soliton stays the same for all laws of non-linearity, namely for all forms of the

function F introduced in (5.1) and for all kinds of soliton. The constraint relation (5.8) however

modi�es with power and dual-power laws. It is the real part equation that will be further analyzed

in detail for various nonlinear forms of F in the following sections.

5.2 Kerr law

This law is also known as the cubic nonlinearity and is considered to be the simplest known

form of nonlinearity. Most optical �bers that are commercially available nowadays obey this Kerr

law of nonlinearity. Therefore, in this �rst section the attention will be on optical metamaterials

with cubic nonlinearity. In this case F (u) = bu for some non-zero constants [18]. Therefore, the

governing equation given by (5.1) with Kerr law nonlinearity reduces to [49].

iqt + aqxx + b|q|2q = iαqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (5.9)

For Kerr law nonlinearity the results of bright, dark and singular soliton have been already reported

in the past [2, 49]. Therefore, this section will just list the results from these earlier published

[2, 49]. It is only the singular soliton of the second type that will be derived in detail.

5.2.1 Bright soliton

For Kerr law nonlinear medium, bright 1-soliton solution in optical metamaterials is given by

[49]

q(x, t) = Asech[B (x− vt)]ei(−κx+ωt+θ), (5.10)
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where A is the amplitude and B is the inverse width of the soliton. The relation between amplitude

and width is given by (
b− λκ− 5θ1κ

2
)
A2 − 3θ1A

2B2 − 2aB2 = 0. (5.11)

The soliton frequency is

ω = aB2 − aκ2 − aκ, (5.12)

and the additional constraint condition is

6θ1 + θ2 + θ3 = 0. (5.13)

5.2.2 Dark soliton

For Kerr law, dark soliton solution is given by [49]

q(x, t) = A tanh[B (x− vt)]ei(−κx+ωt+θ). (5.14)

In this case, the parameters A and B are referred to as free parameters and these are connected as

(
b− λκ− 5θ1κ

2
)
A2 + 6θ1A

2B2 + 2aB2 = 0, (5.15)

and the wave number is

ω = −
(
ακ+ aκ2 + 2aB2 + 6θ1A

2B2
)
. (5.16)

together with the constraint condition (5.13) that also remains valid here.

5.2.3 Singular soliton (Type-I)

In this case, singular soliton solution of �rst kind is [2]

q(x, t) = Acsch[B (x− vt)]ei(−κx+ωt+θ), (5.17)
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where the free parameters A and B are connected as in (5.11). The wave number is also located in

(5.12) while the same constraint (5.13) holds here.

5.2.4 Singular soliton (Type-II)

In this case, the starting hypothesis is given by [6, 7]

P (x, t) = Acothpτ, (5.18)

where

τ = B (x− vt) . (5.19)

In this case, A and B are free parameters and p is unknown exponent. Substituting this hypothesis

into (5.5) and (5.6), the real and imaginary parts are

ap(p− 1)B2cothp−2τ −
{

2ap2B2 +
(
ω + aκ+ aκ2

)}
cothpτ + ap (p+ 1)B2cothp+2τ

+A2
[{
b− λκ+ κ2 (θ1 + θ2 + θ3)

}
+ 12θ1p

2B2 + 2p2B2 (3θ1 + θ2 + θ3)
]

coth3pτ

−A2B2
{

6θ1p
2 + p (p− 1) (3θ1 + θ2 + θ3)

}
coth3p−2τ

−A2B2
{

6θ1p
2 + p (p+ 1) (3θ1 + θ2 + θ3)

}
coth3p+2τ = 0,

(5.20)

and

ν + a+ 2aκ+A2 (3λ+ 2ν − 6θ1κ− 2θ2κ+ 3θ3κ) coth2pτ = 0, (5.21)

respectively. By virtue of balancing principle for optical soliton, equating the exponents 3p and

p+ 2 from real part equation (5.20) gives

p = 1. (5.22)

Next, setting the coe�cients of undetermined coe�cients or linearly independent functions, from

(5.20) to zero yields the constraint relation (5.13), the wave number given by (5.12) and the relation

between the free parameters A and B as in (5.11). The imaginarty part equation leads to (5.7) and

(5.8).
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Therefore, singular 1-soliton solution of Type-II in Kerr law medium is

q(x, t) = A coth[B (x− vt)]ei(−κx+ωt+θ). (5.23)

where the de�nition of parameters and their respective constraints are all in place.

5.3 Power law

This law of nonlinearity also arises in nonlinear plasmas that solves the problem of small K-

condensation in weak turbulence theory. It also arises in the context of nonlinear optics. Physically,

various materials, including semiconductors, exhibit power law nonlinearities. For power, F (u) =

bun, where n is the power law nonlinearity parameter. It is important to note that 0 < n < 2 to

prevent wave collapse and in particular n 6= 2 to prevent self-focusing singularity [18]. In this case,

NLSE given by (5.1) modi�es to

iqt + aqxx + b|q|2nq = iαqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (5.24)

This equation will now be further analyzed in the following sections to obtain four forms of soliton.

5.3.1 Bright soliton

The starting hypothesis for bright soliton is given by [6, 7, 18]

P (x, t) = Asechpτ, (5.25)

which upon substitution, simpli�es real and imaginary part equations (5.5) and (5.6) to

ap2B2 −
(
ω + aκ+ aκ2

)
− ap (p+ 1)B2sech2τ + (b− λκ)A2nsech2npτ

A2
{

(θ1 + θ2 + θ3)κ2 − p2B2 (9θ1 + θ2 + θ3)
}

sech2pτ

+A2B2
{

6θ1p
2 + p (p+ 1) (3θ1 + θ2 + θ3)

}
sech2npτ = 0,

(5.26)
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and

ν + a+ 2aκ+A2n ((2n+ 1)λ+ 2nν) sech2npτ −A2 {2κ (3θ1 + θ2 − θ3)} sech2npτ = 0, (5.27)

respectively. From balancing principle, equating the exponents 2np and 2, from real part (5.26)

gives

p =
1

n
. (5.28)

Next, setting the coe�cients of linearly independent functions, in (5.26), to zero reveals the wave

number

ω =
1

n2

{
aB2 − n2

(
aκ+ aκ2

)}
, (5.29)

width of the soliton

B = nκ

√
θ1 + θ2 + θ3

9θ1 + θ2 + θ3
, (5.30)

and the amplitude-width relation as

n2 (b− λκ)A2n = a(n+ 1)B2. (5.31)

From (5.30) and (5.31), the amplitude of the soliton is

A =

[
a (n+ 1)κ2 (θ1 + θ2 + θ3)

(b− λκ) (9θ1 + θ2 + θ3)

]1/2n

. (5.32)

The amplitude and width of the soliton will exist provided

(θ1 + θ2 + θ3) (9θ1 + θ2 + θ3) > 0, (5.33)

and

a (b− λκ) > 0, (5.34)
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which follows from (5.30) and (5.32) respectively. The next constraint relation that stems out from

the coe�cient of sech2p+2τ in (5.26) is

6θ1+ (n+ 1) (3θ1 + θ2 + θ3) = 0. (5.35)

The imaginary part equation given by (5.27) leads to the speed v given by (5.7) as well as the

following set of constrainsts:

(2n+ 1)λ+ 2nν = 0, (5.36)

and

3θ1 + θ2 − θ3 = 0. (5.37)

Thus, bright 1-soliton solution in optical metamaterials with power law nonlinearity is

q(x, t) = Asech1/n[B (x− vt)]ei(−κx+ωt+θ), (5.38)

with the de�nition of parameters and necessary constraints in place, as indicated.

5.3.2 Dark soliton

For dark soliton solution, the starting hypothesis is given by [6, 7, 18]

P (x, t) = Atanhpτ, (5.39)

which upon substituting into the real and imaginary part equations (5.5) and (5.6) simpli�es to

ap(p− 1)B2tanhp−2τ −
{
ω + aκ+ aκ2 + 2ap (p+ 1)B2

}
tanhpτ

+ap (p+ 1)B2tanhp+2τ + (b− λκ)A2ntanh(2n+1)pτ

−A2B2p {6θ1p+ (p− 1) (3θ1 + θ2 + θ3)} tanh3p−2τ

+A2
[
12p2B2θ1 + p (2p+ 1)B2 (3θ1 + θ2 + θ3) + κ2 (θ1 + θ2 + θ3)

]
tanh3pτ

−pA2B2 {6pθ1 + (p+ 1) (3θ1 + θ2 + θ3)} tanh3p+2τ = 0,

(5.40)

41



and

ν + a+ 2aκ+A2n {(2n+ 1)λ+ 2nν} tanh2npτ − 2κA2 (3θ1 + θ2 − θ3) tanh2pτ = 0, (5.41)

respectively. Now, setting the coe�cient of stand-alone linearly independent function tanhp−2τ to

(5.22). Again from balancing principle, equating the exponents (2n + 1)p and p + 2 gives (5.28).

From (5.22) and (5.28),

n = 1. (5.42)

Thus, dark soliton with power law nonlinearity condenses to Kerr law nonlinearity. The imaginary

part equation (5.41) leads to (5.7), (5.36) and (5.37) with (5.42).

Therefore, dark 1-soliton solution for power law nonlinearity is also given by (5.14) with the

wave number as in (5.16) and the relation between the free parameters as in (5.15). The constraint

(5.13) remains valid, in this case.

5.3.3 Singular soliton (Type-I)

The starting hypothesis for singular soliton (Type-I) is given by [6, 7]

P (x, t) = Acschpτ, (5.43)

which upon substitution, simpli�es (5.5) and (5.6) respectively to

ap2B2 −
(
ω + aκ+ aκ2

)
− ap (p+ 1)B2 csch2τ + (b− λκ)A2ncshh2npτ

A2
{

(θ1 + θ2 + θ3)κ2 − p2B2 (9θ1 + θ2 + θ3)
}

csch2pτ

+A2B2
{

6θ1p
2 + p (p+ 1) (3θ1 + θ2 + θ3)

}
csch2p+2τ = 0,

(5.44)

and

ν + a+ 2aκ+A2n {(2n+ 1)λ+ 2nν} csch2npτ − 2κA2 (3θ1 + θ2 − θ3) csch2pτ = 0. (5.45)
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From balancing principle applied to real part equation (5.44) equating the exponents 2np and 2

gives the same value p as in (5.28). Next, from the linearly independent functions, similarly as in

bright soliton, the same results (5.29)-(5.35) fall out.

The imaginary part equation (5.45) leads to (5.7), (5.36) and (5.37), namely the speed and

necessary constraints.

Thus, singular 1-soliton solution in optical metamaterials with power law nonlinearity is

q(x, t) = A csch1/n[B (x− vt)]ei(−κx+ωt+θ), (5.46)

with the de�nition of parameters and necessary constraints in place.

5.3.4 Singular soliton (Type-II)

With Kerr law nonlinear medium, singular soliton hypothesis is given by [6, 7]

P (x, t) = Acothpτ, (5.47)

which upon substituting into (5.17) and (5.18), the real and imaginary part equations reduce to

ap(p− 1)B2cothp−2τ −
{
ω + aκ+ aκ2 + 2ap (p+ 1)B2

}
cothpτ

+ap (p+ 1)B2cothp+2τ + (b− λκ)A2ncoth(2n+1)pτ

−A2B2p {6θ1p+ (p− 1) (3θ1 + θ2 + θ3)} coth3p−2τ

+A2
[
12p2B2θ1 + p (2p+ 1)B2 (3θ1 + θ2 + θ3) + κ2 (θ1 + θ2 + θ3)

]
coth3pτ

−pA2B2 {6pθ1 + (p+ 1) (3θ1 + θ2 + θ3)} coth3p+2τ = 0,

(5.48)

and

ν + a+ 2aκ+A2n {(2n+ 1)λ+ 2nν} coth2npτ − 2κA2 (3θ1 + θ2 − θ3) coth2pτ = 0, (5.49)

respectively. Similarly, as in dark soliton solutions relation (5.42) falls out. Therefore, singular

soliton of the second type, with power law nonlinearity, will exist if power law nonlinearity boils
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down to Kerr law.

The imaginary part equation (5.6) which leads to (5.7), (5.36) and (5.37) along with (5.40).

Therefore, singular 1-soliton solution for power law nonlinearity is also given by (5.23) with param-

eter de�nitions and constraints as in dark soliton with Kerr law.

5.4 Parabolic law

This law is alternatively known as the cubic-quintic nonlinearity and is studied in nonlinear

interaction between Langmuir waves and electrons. It describes the nonlinear interaction between

the high frequency Langmuir wave and the ion-acoustic waves by pondermotive forces. It takes the

form F (u) = b1u + b2u
2 for non-zero constants b1 and b2. For parabolic law medium, the NLSE

given by (5.1) changes to

iqt +aqxx +
(
b1|q|2 + b2|q|4

)
q = iαqx + iλ

(
|q|2q

)
x

+ iν
(
|q|2
)
x
q+ θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx.

(5.50)

The rest of this section will focus on the details of retrieving soliton solutions to this model along

with their conditions for existence.

5.4.1 Bright soliton

For bright soliton with parabolic law, the starting hypothesis is [6,27,28]

p(x, t) =
A

(D + cosh τ)p
, (5.51)

where A is the amplitude of the soliton and D is a newly introduced parameter and the usual

de�nition of τ is carried over from (5.19) with the unknown exponent p. Substituting (5.50) into
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(5.5) and (5.6) gives

ω + aκ+ aκ2 − ap2B2

(D + cosh τ)p
−
A2
{
b1 − λκ+ κ2 (θ1 + θ2 + θ3)− p2B2 (9θ1 + θ2 + θ3)

}
(D + cosh τ)3p

+
ap (2p+ 1)B2D

(D + cosh τ)p+1−
A2B2

{
12θ1p

2D + p (2p+ 1)D (3θ1 + θ2 + θ3)
}

(D + cosh τ)3p+1 − b2A
4

(D + cosh τ)5p

−
ap (p+ 1)B2

(
D2 − 1

)
(D + cosh τ)p+2 +

A2B2
(
D2 − 1

) {
6p2θ1B

2 + p (p+ 1) (3θ1 + θ2 + θ3)
}

(D + cosh τ)3p+2 = 0,

(5.52)

and

ν + a+ 2aκ+
A2 {3λ+2ν−2κ (3θ1 + θ2 + θ3)}

(D + cosh τ)2p =0, (5.53)

respectively. By balancing principle, applied to (5.52), equating the exponents 3p and p+ 1 or the

pair 5p and p+ 2 leads to

p =
1

2
, (5.54)

Next, from the undetermined coe�cients of linearly independent functions, one recovers the wave

number

ω =
1

4

(
aB2 − 4aκ2 − 4aκ

)
, (5.55)

and the constraint

5θ1 + θ2 + θ3 = 0. (5.56)

From the remaining linearly independent functions, the amplitude and the width are

A =
{

1
2b2θ1

[
−D

(
θ1

(
b1 − λκ− 4θ1κ

2
)

+ ab2
)

±
√
D2{θ1 (b1 − λκ− 4θ1κ2) + ab2}2 − 3ab2θ1 (D2 − 1) (b1 − λκ− 4θ1κ2)

]}1/2

,
(5.57)

subject to the conditions

b2θ1

[
−D

(
θ1

(
b1 − λκ− 4θ1κ

2
)

+ ab2
)

±
√
D2{θ1 (b1 − λκ− 4θ1κ2) + ab2}2 − 3ab2θ1 (D2 − 1) (b1 − λκ− 4θ1κ2)

] > 0, (5.58)
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and

D2
{
θ1

(
b1 − λκ− 4θ1κ

2
)

+ ab2
}2 − 3ab2θ1

(
D2 − 1

) (
b1 − λκ− 4θ1κ

2
)
> 0. (5.59)

The width of the soliton is connected to the amplitude by the relation

B = A

√
b1 − λκ− 4θ1κ2

aD + θ1A2
. (5.60)

Now the imaginary part equation (5.53) in this case gives (5.7) and (5.8). Finally, bright 1-soliton

solution to optical metamaterials with parabolic law nonlinearity is

q(x, t) =
A√

D + cosh [B (x− vt)]
ei(−κx+ωt+θ), (5.61)

where the parameter de�nitions and constraints are all in place.

5.4.2 Dark soliton

For dark optical soliton [6, 7],

P (x, t) = (A+B tanh τ)p, (5.62)

where, in this case

τ = µ (x− vt) . (5.63)
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Here A, B and µ are all free parameters. With (5.62), (5.5) and (5.6) respectively reduce to

ap(p− 1)µ2
(
A2 −B2

)2
(A+B tanh τ)p−2 − 2p(p− 1)Aaµ2

(
A2 −B2

)
(A+B tanh τ)p−1

−
{
B2
(
ω + aκ+ aκ2

)
− 2ap2µ2

(
3A2 −B2

)}
(A+B tanh τ)p + ap(p+ 1)µ2(A+B tanh τ)p+2

+
[
2µ2p2

(
B2 − 3A2

)
(9θ1 + θ2 + θ3) +B2

{
b1 − λκ+ κ2 (θ1 + θ2 + θ3)

}]
(A+B tanh τ)3p

−µ2p
(
A2 −B2

)2 {p (9θ1 + θ2 + θ3)− (3θ1 + θ2 + θ3)} (A+B tanh τ)3p−2

+2µ2pA
(
A2 −B2

)
{2p (9θ1 + θ2 + θ3)− (3θ1 + θ2 + θ3)} (A+B tanh τ)3p−1

+2µ2pA {2p (9θ1 + θ2 + θ3) + (3θ1 + θ2 + θ3)} (A+B tanh τ)3p+1

−2Aaµ2p (2p+ 1) (A+B tanh τ)p+1 + b2B
2(A+B tanh τ)5p

−µ2p {p (9θ1 + θ2 + θ3) + (3θ1 + θ2 + θ3)} (A+B tanh τ)3p+2 = 0,

(5.64)

and

ν + a+ 2aκ− {3λ+2ν−2κ (3θ1 + θ2 + θ3)} (A+B tanh τ)2p = 0. (5.65)

Again balancing exponents 3p + 1 with p + 2, from (5.64), leads to the same value of p as given

by (5.54). There are more exponent pairs in (5.64) that will lead to (5.54) by virtue of the same

principle. The coe�cient of stand-alone linearly independent function (A+B tanh τ)p gives

A = ±B. (5.66)

The undetermined coe�cients of the remaining linearly independent functions from (5.64) yield the

same constraint (5.4.3) along with the wave number

ω = aµ2 − aκ− aκ2, (5.67)

and the relation between the free parameters

A =
2aµ2

b1 − λκ− 4θ1 (µ2 + κ2)
, (5.68)
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which stays valid as long as

λκ+ 4θ1(µ2 + κ2) 6= b1. (5.69)

Next the imaginary part equation (5.65), relations (5.7) and (5.8) are valid.

Therefore, dark 1-soliton solution with parabolic law is given by

q(x, t) =
√
A {1± tanh [µ (x− vt)]}ei(−κx+ωt+θ), (5.70)

with the respective parameters and constraints as indicated.

5.4.3 Singular soliton (Type-I)

For �rst type of singular soliton, the starting hypothesis is [6, 7],

P (x, t) =
A

(D + sinh τ)p
, (5.71)

where A and consequently D are free parameters. With the hypothesis (5.5) and (5.6) respectively

transform to

ω + aκ+ aκ2 − ap2B2

(D + sinh τ)p
+
ap (2p+ 1)B2D

(D + sinh τ)p+1 −
ap (p+ 1)B2

(
D2 + 1

)
(D + sinh τ)p+2

−
A2
{
b1 − λκ+ κ2 (θ1 + θ2 + θ3)− 6θ1p

2B2 − p2B2 (3θ1 + θ2 + θ3)
}

(D + sinh τ)3p

−
A2B2

{
12θ1p

2D + p (2p+ 1)D (3θ1 + θ2 + θ3)
}

(D + sinh τ)3p+1 − b2A
4

(D + sinh τ)5p

+
A2B2

(
D2 + 1

) {
6p2θ1B

2 + p (p+ 1) (3θ1 + θ2 + θ3)
}

(D + sinh τ)3p+2 = 0,

(5.72)

and

ν + a+ 2aκ+
A2 {3λ+2ν−2κ (3θ1 + θ2 − θ3)}

(D + sinh τ)2p =0. (5.73)

48



Proceeding in the same way as in bright soliton, from real part equation (5.72), relations - are all

recovered. The free parameter A in this case is

A =
{

1
2b2θ1

[
D
(
θ1

(
b1 − λκ− 4θ1κ

2
)

+ ab2
)

±
√
D2{θ1 (b1 − λκ− 4θ1κ2) + ab2}2 + 3ab2θ1 (D2 + 1) (b1 − λκ− 4θ1κ2)

]}1/2

,
(5.74)

subject to the conditions

b2θ1

[
D
(
θ1

(
b1 − λκ− 4θ1κ

2
)

+ ab2
)

±
√
D2{θ1 (b1 − λκ− 4θ1κ2) + ab2}2 − 3ab2θ1 (D2 + 1) (b1 − λκ− 4θ1κ2)

] > 0, (5.75)

and

D2
{
θ1

(
b1 − λκ− 4θ1κ

2
)

+ ab2
}2

+ 3ab2θ1

(
D2 + 1

) (
b1 − λκ− 4θ1κ

2
)
> 0, (5.76)

The parameters A and B are related as

B = A

√
b1 − λκ− 4θ1κ2

aD − θ1A2
. (5.77)

Next, the imaginary part equation (5.73), relations (5.7) and (5.8) are obtained.

Finally, singular 1-soliton solution to optical metamaterials with parabolic law nonlinearity is

given by

q(x, t) =
A√

D + sinh [B (x− vt)]
ei(−κx+ωt+θ), (5.78)

where the parameter de�nitions and constraints are all in place.

5.4.4 Singular soliton (Type-II)

For singular soliton of second type [6, 7],

P (x, t) = (A+B coth τ)p, (5.79)
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with the same de�nition of τ as in (5.63). Substitution of (5.79) into (5.5) and (5.6) implies

ap(p− 1)µ2
(
A2 −B2

)2
(A+B coth τ)p−2 − 2p(2p− 1)Aaµ2

(
A2 −B2

)
(A+B coth τ)p−1

−
{
B2
(
ω + aκ+ aκ2

)
− 2ap2µ2

(
3A2 −B2

)}
(A+B coth τ)p + ap(p+ 1)µ2(A+B coth τ)p+2

+
[
2µ2p2

(
B2 − 3A2

)
(9θ1 + θ2 + θ3) +B2

{
b1 − λκ+ κ2 (θ1 + θ2 + θ3)

}]
(A+B coth τ)3p

−µ2p
(
A2 −B2

)2 {p (9θ1 + θ2 + θ3)− (3θ1 + θ2 + θ3)} (A+B coth τ)3p−2

+2µ2pA
(
A2 −B2

)
{2p (9θ1 + θ2 + θ3)− (3θ1 + θ2 + θ3)} (A+B coth τ)3p−1

+2µ2pA {2p (9θ1 + θ2 + θ3) + (3θ1 + θ2 + θ3)} (A+B coth τ)3p+1

−µ2p {p (9θ1 + θ2 + θ3) + (3θ1 + θ2 + θ3)} (A+B coth τ)3p+2

−2Aaµ2p (2p+ 1) (A+B coth τ)p+1 + b2B
2(A+B coth τ)5p = 0,

(5.80)

and

ν + α+ 2aκ− {3λ+2ν − 2κ (3θ1 + θ2 + θ3)} (A+B coth τ)2p = 0, (5.81)

respectively. These expressions lead to (5.7)-(5.9) as well as (5.66)-(5.69).

Therefore, singular 1-soliton solution of Type-II with parabolic law in optical metamaterials is

given by

q(x, t) =
√
A(1± coth(µ(x− vt)))ei(−κx+ωt+θ), (5.82)

with the respective parameters and constraints are discussed.

5.5 Dual-power law

This model describes saturation on nonlinear refractive index and its exact soliton solutions

are known. The e�ective NLSE, with this form of nonlinearity, serve as a basic model to describe

spatial soliton in photovoltaic-photo refractive materials such as LiNbO3. Optical nonlinearities in

many organic and polymer materials are governed with such form of nonlinearity. The governing
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NLSE in optical metamaterials for dual-power nonlinearity is

iqt + aqxx +
(
b1|q|2n + b2|q|4n

)
q

= iαqx + iλ
(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx,

(5.83)

for F (u) = b1|u|2n + b2|u|4n, with non-zero b1 and b2, where n is the power law parameter. This

section will now comprehensively derive the soliton solutions to NLSE in the following subsections.

5.5.1 Bright soliton

With the same starting hypothesis as given by (5.51), the real part (5.5) and (5.6) reduce to

ω + aκ+ ακ2 − αp2B2

(D + cosh τ)p
−
A2
{
κ2 (θ1 + θ2 + θ3)− p2B2 (9θ1 + θ2 + θ3)

}
(D + cosh τ)3p

+
ap (2p+ 1)B2D

(D + cosh τ)p+1 −
A2B2

{
12θ1p

2D + p (2p+ 1)D (3θ1 + θ2 + θ3)
}

(D + cosh τ)3p+1

+
A2B2

(
D2 − 1

) {
6p2θ1B

2 + p (p+ 1) (3θ1 + θ2 + θ3)
}

(D + cosh τ)3p+2

−
ap (p+ 1)B2

(
D2 − 1

)
(D + cosh τ)p+2 − (b1 − λκ)A2n

(D + cosh τ)(2n+1)p
− b2A

4n

(D + cosh τ)(4n+1)p
= 0,

(5.84)

and

ω + aκ+ 2ακ+
{(2n+ 1)λ+ 2nυ}A2n

(D + cosh τ)2np − 2κ (3θ1 + θ2 − θ3)A2

(D + cosh τ)2p = 0, (5.85)

respectively. The imaginary part equation leads to the constraints given by (5.7), (5.36) and (5.37).

By balancing principle applied to real part (5.84) equating the exponents, (4n+1) p and p + 2,

implies

p =
1

2n
. (5.86)

Next, from the undetermined coe�cients of linearly independent functions, one covers the wave

number

ω =
1

4n2

(
αB2 − 4n2αn2 − 4n2aκ

)
, (5.87)
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and the constraint

3 (2n+ 3) θ1 + (2n+ 1) (θ2 + θ3) = 0. (5.88)

From the remaining linearly independent functions, the amplitude of the soliton is

A =

[
−

(2n+1)
(
D2 − 1

)
(b1 − λκ)

2 (n+ 1) b2D

]1/2n

, (5.89)

provided

b2D
(
D2 − 1

)
(b1 − λκ) < 0, (5.90)

and the width is

B =
n (b1 − λκ)

D (n+ 1)

√
−(2n+1) (D2 − 1)

ab2
, (5.91)

that stays valid for

b2D
(
D2 − 1

)
< 0. (5.92)

Finally, bright 1-soliton solution to optical metamaterials with dual-power law nonlinearity is given

by

q(x, t) =
A

(D + cosh [B (x− vt)])1/2n
ei(−κx+ωt+θ), (5.93)

where the parameter de�nitions and constraints are all in place.
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5.5.2 Dark soliton

With the same starting hypothesis given by (5.62), the real and imaginary part (5.5) and (5.6)

are

ap(p− 1)µ2
(
A2 −B2

)2
(A+B tanh τ)p−2 − 2p(2p− 1)Aaµ2

(
A2 −B2

)
(A+B tanh τ)p−1

−
{
B2
(
ω + aκ+ aκ2

)
− 2ap2µ2

(
3A2 −B2

)}
(A+B tanh τ)p + ap(p+ 1)µ2(A+B tanh τ)p+2

+
[
2µ2p2

(
B2 − 3A2

)
(9θ1 + θ2 + θ3) +B2κ2 (θ1 + θ2 + θ3)

]
(A+B tanh τ)3p

−µ2p
(
A2 −B2

)2 {p (9θ1 + θ2 + θ3)− (3θ1 + θ2 + θ3)} (A+B tanh τ)3p−2

−2µ2pA
(
B2 −A2

)
{2p (9θ1 + θ2 + θ3)− (3θ1 + θ2 + θ3)} (A+B tanh τ)3p−1

+2µ2pA {2p (9θ1 + θ2 + θ3) + (3θ1 + θ2 + θ3)} (A+B tanh τ)3p+1−

µ2p {p (9θ1 + θ2 + θ3) + (3θ1 + θ2 + θ3)} (A+B tanh τ)3p+2 + (b1 − λκ)B2(A+B tanh τ)(2n+1)p

−2Aaµ2p (2p+ 1) (A+B tanh τ)p+1 + b2B
2(A+B tanh τ)(4n+1)p = 0,

(5.94)

and

ν + a+ 2aκ−{(2n+ 1)λ+2nν} (A+B tanh τ)2np− 2κ (3θ1 + θ2 + θ3) (A+B tanh τ)2p = 0.

(5.95)

Again balancing exponents 3p + 1 with p + 2 leads to the same value of p as given by

(5.54). Next, equating the exponents (2n + 1)p and p + 2 leads to (5.42). This shows that

dark soliton for dual-power law collapse to the case of parabolic law. Therefore, all results

from parabolic law dark soliton given by (5.4.3) and (5.66)-(5.69) remain valid. In addition,

the imaginary part equation leads to (5.7) and (5.8). Finally, dark 1-soliton solution to

dual-power law nonlinearity is given by (5.70), with all de�nition of parameters and their

respective constraints in place.
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5.5.3 Singular soliton (Type-I)

In this case, substituting the starting hypothesis given by (5.71) into (5.5) and (5.6)

gives
ω + aκ+ ακ2 − αp2B2

(D + sinh τ)p
+
ap (2p+ 1)B2D

(D + sinh τ)p+1 −
ap (p+ 1)B2 (D2 + 1)

(D + sinh τ)p+2

−A
2 {κ2 (θ1 + θ2 + θ3)− p2B2 (9θ1 + θ2 + θ3)}

(D + sinh τ)3p

−A
2B2 {12θ1p

2D + p (2p+ 1)D (3θ1 + θ2 + θ3)}
(D + sinh τ)3p+1

+
A2B2 (D2 + 1) {6p2θ1B

2 + p (p+ 1) (3θ1 + θ2 + θ3)}
(D + sinh τ)3p+2

− (b1 − λκ)A2n

(D + sinh τ)(2n+1)p
− b2A

4n

(D + sinh τ)(4n+1)p
= 0,

(5.96)

and

ν + α + 2aκ+
{(2n+ 1)λ+ 2nϑ}A2n

(D + sinh τ)2np − 2κ (3θ1 + θ2 − θ3)A2

(D + sinh τ)2p = 0, (5.97)

respectively. The imaginary part equation clear leads to (5.7), (5.26) and (5.37).

While the balancing principle from real part (5.96) yields (5.86), the remaining unde-

termined coe�cients lead to (5.87) and (5.88) as well. The free parameters A and B are

now

A =

[
−(2n+1) (D2 + 1) (b1 − λκ)

2 (n+ 1) b2D

]1/2n

, (5.98)

provided

b2D (b1 − λκ) < 0, (5.99)

and

B =
n (b1 − λκ)

D (n+ 1)

√
−(2n+1) (D2 + 1)

ab2

, (5.100)

only if

ab2 < 0, (5.101)

54



Finally, singular 1-soliton solution to optical metamaterials with dual-power law nonlinearity

is

q(x, t) =
A

(D + sinh [B (x− vt)])1/2n
ei(−κx+ωt+θ), (5.102)

where the parameter de�nitions and constraints are all in place.

5.5.4 Singular soliton (Type-II)

With the starting hypothesis given by (5.79), the real and imaginary parts (5.5) and

(5.6) are

ap(p− 1)µ2(A2 −B2)
2
(A+B coth τ)p−2 − 2p(2p− 1)Aaµ2 (A2 −B2) (A+B tanh τ)p−1

−{B2 (ω + aκ+ aκ2)− 2ap2µ2 (3A2 −B2)} (A+B coth τ)p

+ [2µ2p2 (B2 − 3A2) (9θ1 + θ2 + θ3) +B2κ2 (θ1 + θ2 + θ3)] (A+B coth τ)3p

−µ2p(A2 −B2)
2 {p (9θ1 + θ2 + θ3)− (3θ1 + θ2 + θ3)} (A+B coth τ)3p−2

−2µ2pA (B2 − A2) {2p (9θ1 + θ2 + θ3)− (3θ1 + θ2 + θ3)} (A+B coth τ)3p−1

+2µ2pA {2p (9θ1 + θ2 + θ3) + (3θ1 + θ2 + θ3)} (A+B coth τ)3p+1

−µ2p {p (9θ1 + θ2 + θ3) + (3θ1 + θ2 + θ3)} (A+B coth τ)3p+2

−2Aaµ2p (2p+ 1) (A+B coth τ)p+1 + (b1 − λκ)B2(A+B coth τ)(2n+1)p

+ap(p+ 1)µ2(A+B coth τ)p+2 + b2B
2(A+B coth τ)(4n+1)p = 0,

(5.103)

and

ν + α + 2aκ+ ((2n+ 1)λ+ 2nν)(A+B coth τ)2np

−2κ(3θ1 + θ2 + θ3)(A+B coth τ)2p = 0.
(5.104)

Once again, proceeding along the same lines as in the case of dark soliton, (5.54) and

(5.42) are recovered. Thus, this form of the singular soliton of Type-II exists whenever dual-

power law reduces to parabolic law nonlinearity. Hence, all results from (5.7), (5.36), (5.37)

and (5.66)-(5.69) hold. Finally, singular 1-soliton solution for dual power law is given by
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(5.82) along with the parameters and constraints as described.

5.6 Log law

In this case F (u) = b lnu for non-zero constant b. This law permits closed form exact

expressions Gaussian beams. The advantage of this model is that the radiation from the

periodic soliton is absent as the linearized problem contains discrete spectrum only [18]. For

log-law medium, the model given by (5.1) modi�es to

iqt + aqxx + F
(
ln |q|2

)
q = iαqx + iλ

(
|q|2q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2q

)
xx

+ θ2|q|2qxx + θ3q
2q∗xx.

(5.105)

The solutions of NLSE in log-law nonlinear medium lead to Gaussian soliton that are occa-

sionally referred to as Gausson [6, 7]. Therefore, the starting hypothesis for (5.105) is given

by [6, 7]

P (x, t) = Ae−τ
2

, (5.106)

where A is the amplitude and B is the inverse width of the Gausson. Substituting this

hypothesis into (5.5) and (5.6), the real and imaginary parts respectively simplify to

−(4aB2 − 2b)τ 2 + A2(λκ− κ2(θ1 + θ2 + θ3)− 2B2(3θ1 + θ2 + θ3))e−2τ2

+(ω + ακ+ aκ2 + 2aB2 − 2b lnA) + A2(24B2θ1 + 4B2(3θ1 + θ2 + θ3))τ 2e−2τ2 = 0,

(5.107)

and

ν + α + 2aκ+ A (3λ+ 2ϑ− 2κ (3θ1 + θ2 + θ3)) = 0. (5.108)

From the undetermined coe�cients of linearly independent functions in (5.107), the wave

number is

ω = −ακ− 2aκ2 − 2aB2 + 2b lnA, (5.109)
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and the width of Gausson is given by

B =

√
λκ− κ2 (θ1 + θ2 + θ3)

2 (3θ1 + θ2 + θ3)
, (5.110)

with the condition (
λκ− κ2 (θ1 + θ2 + θ3)

)
(3θ1 + θ2 + θ3) > 0. (5.111)

Substituting the width B from (5.110), the wave number from (5.109) reduces to

ω = −aλκ+ 2aκ2θ1 + (3θ1 + θ2 + θ3) (ακ− 2b lnA)

3θ1 + θ2 + θ3

, (5.112)

which holds provided

3θ1 + θ2 + θ3 6= 0. (5.113)

Next, setting the coe�cient of the fourth linearly independent function in (5.106), namely

τ 2e−2τ2 to zero, gives

9θ1 + θ2 + θ3 = 0. (5.114)

Finally, the coe�cient of τ 2 from (5.107) leads to the width of Gaussian as

B =

√
b

2a
, (5.115)

which shows that these Gausson will exist provided

ab > 0. (5.116)

This means that GVD and the nonlinear term in (5.105) must both carry the same sign for

Gaussons to exist. This imaginary part equation (5.108) yields (5.7) and (5.8). Equating the

two values of the width B of the soliton from (5.110) and (5.115) leads to another constraint
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between the frequency and coe�cients of the model (5.105) as follows:

αλκ− 2bθ1 =
(
b+ ακ2

)
(3θ1 + θ2 + θ3) . (5.117)

From (5.111) and (5.114), one can recover

θ1κ (λ+ 8θ1κ) < 0, (5.118)

which can be treated as another constraint. Next substituting (5.115) into (5.109) leads to

an alternate expression to the wave number:

ω = b (2 lnA− 1)− κ (α + aκ) . (5.119)

Thus, the Gausson solution to optical metamaterials with log-law nonlinearity is given by

q(x, t) = Ae−B
2(x−vt)2ei(−κx+ωt+θ), (5.120)

where the parameter de�nitions and constraints are all listed above.

5.7 Conclusions

This chapter obtained soliton solutions in optical metamaterials with �ve forms of nonlinear

media. For Kerr law nonlinearity, there are three forms of soliton that are already reported earlier;

therefore this paper derived only singular soliton (Type-II). For the remaining laws all soliton

solutions and their derivations are comprehensively reported in this chapter. These solutions come

with respective integrability criteria that are listed as constraint conditions. These solutions will be

immensely useful in the literature of optical metamaterials.

These soliton solutions will be a great asset in all future investigations in this area of nonlinear
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optics. In the presence of perturbation terms these soliton will dictate the adiabatic parameter

dynamics and other such features that will be obtained. The quasi-particle theory of optical soliton

interaction will be reported. Later bifurcation analysis of soliton in optical metamaterials will be

carried out. Other integration schemes will be applied to these models and those will reveal addi-

tional solutions, such as plane waves and periodic singular solutions. The semi-inverse variational

principle will extract exotic soliton such as cosh-Gaussian pulses and bright-dark combo optical

soliton. All of these are currently under investigation. The results of those research will be reported

gradually and sequentially. Finally, the study will be extended to DWDM systems so that e�cient

soliton transmission can be conducted in parallel, thus improving performance enhancement. These

just form a tip of the iceberg.
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Chapter 6

BRIGHT AND EXOTIC SOLITON IN OPTICAL

METAMATERIALS BY SEMI-INVERSE VARIATIONAL

PRINCIPLE

This chapter addresses soliton in optical metamaterials. The semi-inverse variational principle

is utilized to secure bright soliton solutions to the governing model. There are �ve forms of nonlin-

earity that are studied in this paper. They are Kerr law, power law, parabolic law, dual-power law

and �nally the log law nonlinearity. In particular for Kerr law nonlinearity, there are two additional

forms of soliton solutions obtained. They are cosh-Gaussian pulses and bright-dark combo soliton

and these are collectively being referred to as exotic soliton. There are several constraint conditions

that naturally emerge for these soliton to exist.

6.1 Introduction

The semi-inverse variational principle (SVP) will be applied to the model for metamaterials

to obtain analytical soliton solutions to the model. There are �ve forms of nonlinear media that

will be studied in this paper. They are Kerr law, power law, parabolic law, dual-power law and log

law nonlinearity. It is only for Kerr law, that in addition to bright soliton solutions, exotic soliton

solutions will be retrieved by the application of SVP. These are cosh-Gaussian pulses and bright-

dark combo soliton. These results will carry constraint conditions that will guarantee the existence

of such soliton. Finally, numerical simulations supplement each of these analytical solutions.

6.2 Governing equation

The dimensionless form NLSE that governs the propagation of soliton through optical meta-

materials is given by [78, 79]

iqt + aqxx + F (|q|2)q = iαqx + iλ(|q|2q)x + iν(|q|2)xq + θ1(|q|2q)xx + θ2|q|2qxx + θ3q
2q∗xx. (6.1)
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In this model q(x, t) represents the complex valued wave function with the independent variables

being x and t that represent spatial and temporal variables respectively. The �rst term represents the

temporal evolution of nonlinear wave, while the coe�cient a is the group velocity dispersion (GVD).

The functional F , which is the source of nonlinearity, is a real-valued algebraic function where it

is necessary to have the smoothness of the complex function F
(
|q|2
)
q : C 7→ C. Treating the

complex plane C as a two-dimensional linear space R2, the function F
(
|q|2
)
q is k times continuously

di�erentiable, so that

F (|q|2)q ∈
∞⋃

m,n=1

Ck((−n, n)× (−m,m);R2). (6.2)

From the right hand side of (6.1), α represents the coe�cient of inter-modal dispersion. This arises

when the group velocity of light propagating through a metamaterial is dependent on propagation

mode in addition to chromatic dispersion. The factors λ and ν are accounted for self-steepening for

preventing shock-waves, and nonlinear dispersion. Finally, the terms with θj for j = 1, 2, 3 arise in

the context of optical metamaterials [21].

This model equation will now be studied for �ve forms of nonlinear media as indicated earlier.

The subsequent section now introduces SVP in a succinct manner which will be applied to the

model to retrieve soliton solutions.

6.3 Semi-inverse variational principle

To apply the SVP to (6.1), the starting hypothesis is the traveling wave argument given by

q(x, t) = g(s)eiφ, (6.3)

where g(s) represents the shape of the wave pro�le, and

s = x− vt, (6.4)
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with v being the speed of the wave. The phase component φ(x, t) is de�ned as

φ(x, t) = −κx+ ωt+ θ, (6.5)

where κ represents the soliton frequency, and ω the wave number while θ the phase constant.

Therefore by substituting the hypothesis (6.3) into (6.1) and decomposing into real and imaginary

parts one gets for the real portion

(ω+ακ+aκ2)g−[κ2(θ1+θ2+θ3)−κλ]g3−cF (g2)g−ag′′+6θ1g(g
′
)2+(3θ1+θ2+θ3)g2g

′′
= 0, (6.6)

and for the imaginary part

(v + α+ 2aκ) g′ + {3λ+ 2ν − 2κ(3θ1 + θ2 + θ3)} g2g′ = 0, (6.7)

the notations g′ = dg/ds, g′′ = d2g/ds2 and so on, are introduced in (6.6) and (6.7) for convenience.

From the imaginary part equation given in (6.7), setting the coe�cients of the linearly independent

functions to zero yield the constraint condition

3λ+ 2ν = 2κ(3θ1 + θ2 + θ3), (6.8)

and consequently the soliton speed, irrespective of the nonlinearity under consideration, falls out to

be

v = −(α+ 2aκ). (6.9)

Then, the 1-soliton solution hypothesis is, in general, taken to be

g(s) = Af(Bs), (6.10)

where A is the amplitude, B is the inverse width of the soliton or Gausson, and s is as de�ned

in (6.4). The functional f in (6.10) depends on the nonlinearity to be considered in the following
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sections. The SVP states that the amplitude can be retrieved from the coupled system of equations

given by

∂J

∂A
= 0, (6.11)

∂J

∂B
= 0, (6.12)

where J represents the stationary integral. In the next sections, SVP will be applied to (6.1) for

Kerr law, power law, parabolic law, dual-power law and log-law nonlinearities in order to obtain

bright and exotic soliton solutions.

6.3.1 Kerr law

For Kerr law nonlinearity F (u) = u. Thus, with this nonlinearity the NLSE (6.1) is rewritten

as

iqt + aqxx + c ln |q|2q = ßαqx + iλ(|q|2q)x + iν(|q|2)xq + θ1(|q|2q)xx + θ2|q|2qxx + θ3q
2q∗xx. (6.13)

In this scenario, the real part (6.6) becomes

(
ω + ακ+ aκ2

)
g−
{
c+ κ2(θ1 + θ2 + θ3)− κλ

}
g3−ag′′+6θ1g

(
g′
)2

+(3θ1+θ2+θ3)g2g′′ = 0. (6.14)

Now, multiplying the last equation by g′ and integrating once leads to

2
(
ω + ακ+ aκ2

)
g2 −

(
c+ 4κ2θ1 − κλ

)
g4 − 2a

(
g′
)2

+ 12θ1g
2
(
g′
)2

= K, (6.15)

whenever

3θ1 = θ2 + θ3. (6.16)
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In (6.15), K represents the arbitrary constant of integration, thus the stationary integral is de�ned

as

J =

∫
R

K ds, (6.17)

where K is given by

K =
{

2(ω + ακ+ aκ2)g2 −
(
c+ 4κ2θ1 − κλ

)
g4 − 2a

(
g′
)2

+ 12θ1g
2
(
g′
)2}

. (6.18)

The study for Kerr law nonlinearity will be now split into three subsections. These are on bright

soliton and exotic soliton. There are two kinds of exotic soliton that will be considered. They are

cosh-Gaussian pulses as well as combo soliton. The details are described in the following subsections.

Bright soliton

For Kerr law nonlinearity, the hypothesis to be taken is

g(s) = Asech(Bs). (6.19)

Then, after substituting (6.19) into (6.18) the integration leads to

J =
4
(
ω + ακ+ aκ2

)
A2

B
−

4
(
c+ 4κ2θ1 − κλ

)
A4

3B
− 4aA2B

3
+

16θ1A
4B

5
. (6.20)

Consequently, (6.11) and (6.12), after simpli�cation are given by

5
(
c+ 4κ2θ1 − κλ

)
A2 + 10aB2 − 36θ1A

2B2 = 0, (6.21)

which, upon solving, reveals the relation between the amplitude and inverse width of the soliton as

B = A

√
5 (c+ 4κ2θ1 − κλ)

36θ1A2 − 10a
, (6.22)
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Figure 6.1: Bright soliton with Kerr law nonlinearity.

whenever (
c+ 4κ2θ1 − κλ

) (
18θ1A

2 − 5a
)
> 0. (6.23)

Therefore the bright soliton solution for NLSE (6.1) with Kerr law nonlinearity (6.13) is given by

q(x, t) = Asech[B(x− vt)]ei(−κx+ωt+θ), (6.24)

where the amplitude A and inverse width of the soliton B are associated by (6.22) while the speed

is de�ned by the expression (6.9). In this case the solution is possible whenever (6.8), (6.16), and

(6.23) are satis�ed.

The �gure in Fig. 6.1 shows a surface plot of a single bright soliton solution in optical meta-

materials. Here, a = 0.1, c = 1, α = 0.1, λ = −0.1, ν = 0.21, θ1 = 0.1, θ2 = 0.2, θ3 = 0.1.

Cosh-Gaussian pulses

For cosh-Gaussian pulse solution, we assume a solution of the form

g(s) = Ae−B
2s2 cosh(Bs). (6.25)
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Then, after substituting (6.25) into (6.18) the integration leads to

J = γ(1
2)[√

2(1+e
1
2 )(ω+ακ+aκ2)A2

2B − (3+e+e
1
4 )(c−κλ+4θ1κ2)κ2A4

16B − e
1
4
√

2A2B
2 − 3(1+e+2e

1
4 )θ1A4B

8

]
.

(6.26)

As a consequence, (6.11) and (6.12), after simpli�cation are given by

4
√

2
(

1 + e
1
2

) (
ω + ακ+ aκ2

)
−
(

3 + e+ 4e
1
4

) (
c− κλ+ 4θ1κ

2
)
κ2A2

−4e
1
2

√
2aB2 − 6

(
1 + e+ 2e

1
4

)
θ1A

2B2 = 0,

(6.27)

and

8
√

2
(

1 + e
1
2

) (
ω + ακ+ aκ2

)
−
(

3 + e+ 4e
1
4

) (
c− κλ+ 4θ1κ

2
)
κ2A2

8e
1
2

√
2aB2 + 6

(
1 + e+ 2e

1
4

)
θ1A

2B2 = 0,

(6.28)

respectively. Then, uncoupling the last two equations leads to the inverse width of the pulse as

B =

−
√

2
(

1 + e
1
2

) (
ω + ακ+ aκ2

)
3
{√

2e
1
2a+

(
1 + e+ 2e

1
4

)}


1
2

, (6.29)

subject to domain restriction

(
ω + ακ+ aκ2

){√
2e

1
2a+

(
1 + e+ 2e

1
4

)}
< 0. (6.30)

Therefore we conclude that the cosh-Gaussian pulse soliton solution for NLSE (6.1) is given by

q(x, t) = Ae−B
2(x−vt)2 cosh[B(x− vt)]ei(−κx+ωt+θ), (6.31)

where parameters A and B are associated by (6.29) while the speed is de�ned by the expression

(6.9). The solution is possible whenever the constraint conditions (6.8), (6.16), and (6.30) are

satis�ed.

The �gure in Fig. 6.2 shows a surface plot of a single cosh-Gaussian pulse in optical meta-
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Figure 6.2: Cosh-Gaussian pulse with Kerr law.

materials. Here, a = 0.5, c = 1, α = −0.1, λ = 1, ν = −0.9, θ1 = 0.1, θ2 = 0.2, θ3 = 0.1.

Combo soliton

To retrieve combo soliton solutions from (6.1) the hypothesis to be considered is

g(s) = A sech(Bs) tanh(Bs). (6.32)

Thus, by substituting this ansatz into (6.18) and carrying out the corresponding integration, the

stationary integral yields

J =
4
(
ω + ακ+ aκ2

)
A2

3B
−

4
(
c− κλ+ 4θ1κ

2
)
κ2A4

35B
− 28aA2B

15
+

16θ1A
4B

21
. (6.33)

Consequently, the expressions (6.11) and (6.12), in this case, take the form

35
(
ω + ακ+ aκ2

)
− 6

(
c− κλ+ 4θ1κ

2
)
κ2A2 − 49aB2 + 10θ1A

2B2 = 0, (6.34)

and

35
(
ω + ακ+ aκ2

)
− 3

(
c− κλ+ 4θ1κ

2
)
κ2A2 + 49aB2 − 20θ1A

2B2 = 0. (6.35)
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Upon subtraction, one recovers

3(c− κλ+ 4θ1κ
2)κ2A2 + 98aB2 − 30θ1A

2B2 = 0. (6.36)

This relation gives

B =

√
3 (c− κλ+ 4θ1κ2)κ2A2

30θ1A2 − 98a
, (6.37)

subject to the constraint condition

(
c− κλ+ 4θ1κ

2
) (

15θ1A
2 − 49a

)
> 0. (6.38)

Finally, the combo soliton solution for NLSE (6.1) is given by

q(x, t) = Asech[B(x− vt)] tanh[B(x− vt)]ei(−κx+ωt+θ), (6.39)

where the parameters A and B are associated by (6.37) while the speed is de�ned by the expression

(6.9). The solution is possible whenever the constraint conditions (6.8), (6.16), and (6.38) are

satis�ed.

The �gure in Fig. 6.3 shows a surface plot of a single combo soliton solution in optical meta-

materials. Here, a = −0.5, c = 1, α = −0.1, λ = 0.1, ν = −0.75, θ1 = 0.1, θ2 = 0.2, θ3 = 0.1.

6.3.2 Power law

For power law nonlinearity F (u) = un, whenever

0 < n < 2, (6.40)

to prevent wave collapse. Next, to avoid self-focusing singularity, it is also needed to have

n 6= 2. (6.41)
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Figure 6.3: Combo-soliton with Kerr law.

Thus, with this nonlinearity NLSE (6.1) is rewritten as

iqt+aqxx+ c |q|2n q = iαqx+ iλ
(
|q|2 q

)
x

+ iν
(
|q|2
)
x
q+θ1

(
|q|2 q

)
xx

+θ2 |q|2 qxx+θ3q
2q∗xx. (6.42)

For this nonlinearity (6.6) becomes

(
ω + ακ+ aκ2

)
g−
{
κ2(θ1 + θ2 + θ3)− κλ

}
g3−cg2n+1−ag′′+6θ1g

(
g′
)2

+(3θ1 +θ2 +θ3)g2g′′ = 0.

(6.43)

So that the corresponding stationary integral (6.17) is

J =

∫
R

{
2
(
ω + ακ+ aκ2

)
g2 − (4κ2θ1 − κλ)g4 − 2c

g2(n+1)

n+ 1
− 2a

(
g′
)2

+ 12θ1g
2
(
g′
)2}

ds. (6.44)

Then, by substituting the hypothesis

g(s) = Asech
1
n (Bs), (6.45)

into (6.44) and integrating over the entire real line, whenever the condition (6.16) is satis�ed, the

stationary integral reduces to

J =
2
(
ω + ακ+ aκ2

)
A2

B
P1 −

(
4κ2θ1 − κλ

)
A4

B
P2 −

4cA2n+2

B
P3 − 4aA2BP4 + 24θ1A

4BP5,(6.46)
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where

P1 =
Γ
(

1
2

)
Γ
(

1
n

)
Γ
(

1
2

+ 1
n

) , (6.47)

P2 =
Γ
(

1
2

)
Γ
(

2
n

)
Γ
(

1
2

+ 2
n

) , (6.48)

P3 =
Γ
(

1
2

)
Γ
(

1
n

)
(n+ 1)(n+ 2)Γ

(
1
2

+ 1
n

) , (6.49)

P4 =
1

n22
2
n

× 2F1

(
2 +

2

n
,

2

n
;
3

2
+

2

n
;
1

2

)
×B

(
2

n
,
3

2

)
, (6.50)

P5 =
1

n22
4
n

× 2F1

(
2 +

4

n
,

4

n
;
3

2
+

4

n
;
1

2

)
×B

(
4

n
,
3

2

)
. (6.51)

Here 2F1 (c1, c2; c3; z) is the Gauss' hypergeometric function usually de�ned in terms of power

series as

2F1 (c1, c2; c3; z) = 1 +
c1c2

1!c3

z +
c1(c1 + 1)c2(c2 + 1)

2!c3(c3 + 1)
z2 + . . . =

∞∑
n=0

(c1)n(c2)n
(c3)n

zn

n!
, (6.52)

which converges inside the unit disk

|z| < 1. (6.53)

The term Γ(z) represents the Gamma function and is de�ned by the Euler integral

Γ(z) =

∫
R≥0

tz−1e−tdt, (6.54)

and B(l,m) is the Beta function which is generally de�ned as

B(l,m) =

∫ 1

0

xl−1(1− x)m−1dx. (6.55)
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Then, equations (6.11) and (6.12), in this case, after simpli�cation, are

(
ω + ακ+ aκ2

)
P1−

(
4κ2θ1 − κλ

)
A2P2−2c(n+1)A2nP3−2aB2P4+24θ1A

2B2P5 = 0, (6.56)

and

2
(
ω + ακ− aκ2

)
P1 −

(
4κ2θ1 − κλ

)
A2P2 − 4cA2nP3 + 4aB2P4 − 24θ1A

2B2P5 = 0. (6.57)

From (6.56) and (6.57) one can get the relation between the amplitude and inverse width

of the soliton as

B =

√
(ω + ακ+ aκ2)P1 + 2c(n− 1)A2nP3

48θ1A2P5 − 6aP4

, (6.58)

whenever {(
ω + ακ+ aκ2

)
P1 + 2c(n− 1)A2nP3

} (
8θ1A

2P5 − aP4

)
> 0. (6.59)

Thus, the soliton solution for NLSE (6.1) with power law nonlinearity (6.42) is

q(x, t) = Asech
1
n [B(x− vt)]ei(−κx+ωt+θ), (6.60)

where the amplitude A and inverse width of the soliton B are related by (6.58) while the

speed is de�ned by the expression (6.9). The bright soliton solution in this case is possible

when the solvability conditions (6.8), (6.16), and (6.59) are satis�ed.

The �gure in Fig. 6.4 shows a surface plot of a single bright soliton solution in optical

metamaterials. Here, a = 0.1, c = 1, α = 0.1, λ = 1, ν = −0.9, θ1 = 0.1, θ2 = 0.2, θ3 = 0.1,

with n = 1/2.
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Figure 6.4: Bright soliton with Power law.

6.3.3 Parabolic law

The parabolic law is also known as the cubic-quintic form of nonlinearity and is given

by F (u) = c1u+ c2u
2. Thus, NLSE with parabolic law nonlinearity becomes

iqt+aqxx+
(
c1 |q|2 + c2 |q|4

)
q = iαqx+iλ

(
|q|2 q

)
x
+iν

(
|q|2
)
x
q+θ1

(
|q|2 q

)
xx

+θ2 |q|2 qxx+θ3q
2q∗xx.

(6.61)

The real part (6.6) for parabolic law takes the form

(ω + ακ+ aκ2) g

−{c1 + κ2 (θ1 + θ2 + θ3)− κλ} g3 + c2g
5 − ag′′ + 6θ1g (g′)2 + (3θ1 + θ2 + θ3)g2g′′ = 0.

(6.62)

and the corresponding stationary integral is

J =

∫
R

{
6
(
ω + ακ+ aκ2

)
g2 − 3

(
c1 + 4κ2θ1 − κλ

)
g4 + 2c2g

6 − 6a (g′)
2

+ 36θ1g
2 (g′)

2
}
ds.

(6.63)

For parabolic law the ansatz to be consider is of the form

g(s) =
A√

D + cosh(Bs)
, (6.64)
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where D is an arbitrary constant. By substituting this hypothesis into (6.63) and carrying

out the integration the stationary integral takes the form

J =
12 (ω + α + aκ2)A2

B
M1−

2 (c1 + 4κ2θ1 − κλ)A4

B
M2+

2c2A
6

5B
M3−aA2BM4+

3θ1A
4B

5
M5,

(6.65)

where

M1 = 2F1

(
1, 1;

3

2
;
1−D

2

)
, (6.66)

M2 = 2F1

(
2, 2;

5

2
;
1−D

2

)
, (6.67)

M3 = 2F1

(
3, 3;

7

2
;
1−D

2

)
, (6.68)

M4 = 2F1

(
3, 1;

5

2
;
1−D

2

)
, (6.69)

M5 = 2F1

(
4, 2;

7

2
;
1−D

2

)
, (6.70)

for

−1 < D < 3. (6.71)

This restriction for parameter D follows from (6.66) by virtue of (6.53). Then identities

(6.11) and (6.12) in this case, after simpli�cation, become

60(ω+α+aκ2)M1−20(c1+4κ2θ1−κλ)A2M2+6c2A
4M3−5aB2M4+6θ1A

2B2M5 = 0, (6.72)

and

60(ω+α+aκ2)M1−10(c1+4κ2θ1−κλ)A2M2+2c2A
4M3+5aB2M4−3θ1A

2B2M5 = 0, (6.73)
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Figure 6.5: Bright soliton with Parabolic law.

respectively. From (6.72) and (6.73) one obtains

B = A

√
4c2A2M3 − 10 (c1 + 4κ2θ1 − κλ)M2

10aM4 − 9θ1A2M5

, (6.74)

whenever {
2c2A

2M3 − 5
(
c1 + 4κ2θ1 − κλ

)
M2

} (
10aM4 − 9θ1A

2M5

)
> 0. (6.75)

Thus for parabolic law nonlinearity, 1-soliton solution is given by

q(x, t) =
A√

D + cosh[B(x− vt)]
ei(−κx+ωt+θ), (6.76)

with the parameters as de�ned.

The �gure in Fig. 6.5 shows a surface plot of a single bright soliton solution in optical

metamaterials. Here, a = 0.1, c1 = c2 = 0.1, α = 0.1, λ = 1, ν = −0.9, θ1 = 0.1, θ2 = 0.2,

θ3 = 0.1 and D = 2.

6.3.4 Dual-power law

The dual-power law nonlinearity is a generalization of the parabolic law and is generally

represented as F (u) = c1u
n+c2u

2n with nonzero constants c1 and c2. Notice that when n = 1
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this model condenses to parabolic law. Thus, NLSE model in this case is given by

iqt + aqxx +
(
c1 |q|2n + c2 |q|4n

)
q =

iαqx + iλ
(
|q|2 q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2 q

)
xx

+ θ2 |q|2 qxx + θ3q
2q∗xx.

(6.77)

For dual-power law, the real part (6.6) takes the form

(
ω + ακ+ aκ2

)
g −

{
κ2 (θ1 + θ2 + θ3)− κλ

}
g3

−ag′′ + 6θ1g (g′)
2

+ (3θ1 + θ2 + θ3)g2g′′ − c1g
2n+1 − c2g

4n+1 = 0.

(6.78)

Thus, the stationary integral (6.17) modi�es to

J =

∫
R

Kds, (6.79)

where

K = 2(ω + aκ+ ακ2)g2 − (4κ2θ1 − κλ)g4 − 2a (g′)2 + 12θ1g
2 (g′)2 − 2c1

n+1
g2n+2 − 2c2

2n+1
g4n+2.

For dual power law the hypothesis to be considered is of the form

g(s) =
A

[D + cosh(Bs)]
1
2n

, (6.80)

where D is an arbitrary constant. By substituting this hypothesis into (6.79) and carrying

out the integration, the stationary integral takes the form

J =
4(ω + α + aκ2)A2

B
Q1 −

2(c1 + 4κ2θ1 − κλ)A4

B
Q2 − aA2BQ3 + 6θ1A

4BQ4 −
2c1A

2n+2

(n+ 1)B
Q5

− c2A
4n+2

(2n+ 1)B
Q6,

(6.81)
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where

Q1 =
1

2
1
n

× 2F1

(
1

n
,

1

n
;
1

2
+

1

n
;
1−D

2

)
×B

(
1

n
,
1

2

)
, (6.82)

Q2 =
1

4
1
n

× 2F1

(
2

n
,

2

n
;
1

2
+

2

n
;
1−D

2

)
×B

(
2

n
,
1

2

)
, (6.83)

Q3 =
1

n22
1
n

× 2F1

(
2 +

1

n
,

1

n
;
3

2
+

1

n
;
1−D

2

)
×B

(
1

n
,
3

2

)
, (6.84)

Q4 =
1

n24
1
n

× 2F1

(
2 +

2

n
,

2

n
;
3

2
+

2

n
;
1−D

2

)
×B

(
2

n
,
3

2

)
, (6.85)

Q5 =
1

2
1
n

× 2F1

(
1 +

1

n
, 1 +

1

n
;
3

2
+

1

n
;
1−D

2

)
×B

(
1 +

1

n
,
1

2

)
, (6.86)

Q6 =
1

2
1
n

× 2F1

(
2 +

1

n
, 2 +

1

n
;
5

2
+

1

n
;
1−D

2

)
×B

(
2 +

1

n
,
1

2

)
. (6.87)

Then, by �nding (6.11) and (6.12) of J given by (6.81) one get after simpli�cation

4 (ω + α + aκ2)Q1 − 4 (4κ2θ1 − κλ)A2Q2 − aB2Q3

+12θ1A
2B2Q4 − 2c1A

2nQ5 − c2A
4nQ6 = 0,

(6.88)

and

4
(
ω + α + aκ2

)
Q1 − 2

(
κ2θ1 − κλ

)
A2Q2 + aB2Q3

−6θ1A
2B2Q4 −

2c1A
2n

n+ 1
Q5 −

c2A
4n

2n+ 1
Q6 = 0.

(6.89)

After adding (6.88) and (6.89) and solving for B one get

B =

√
(n+ 1)(2n+ 1) (4κ2θ1 − κλ)A2Q2 + c1nA2nQ5 + c2nA4nQ6

(n+ 1)(2n+ 1) (9θ1A2Q4 − aQ3)
, (6.90)

which forces the condition

{
(n+ 1)(2n+ 1)

(
4κ2θ1 − κλ

)
A2Q2 + c1nA

2nQ5 + c2nA
4nQ6

} (
9θ1A

2Q4 − aQ3

)
> 0,

(6.91)
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in order for the soliton to exist. The �nal form of 1-soliton solution in metamaterials with

dual-power law nonlinearity is given by

q(x, t) =
A

{D + cosh[B(x− vt)]}
1
2n

ei(−κx+ωt+θ), (6.92)

with the de�nition of its appropriate parameters.

The �gure in Fig. 6.6 shows a surface plot of a single bright soliton solution in optical

metamaterials. Here, a = 0.1, c1 = c2 = 0.1, α = 0.1, λ = 1, ν = −0.9, θ1 = 0.1, θ2 = 0.2,

θ3 = 0.1 and D = 2 with n = 2 and n = 2, respectively .

(a) n = 1 (b) n = 2

Figure 6.6: Bright soliton with Dual-power law.

6.3.5 Log law

In the case of log law nonlinearity, F (u) = lnu. The logarithmic law of nonlinearity

has an edge over the usual Kerr law nonlinearity. Thus, NLSE (6.1) for this nonlinearity is

given by

iqt + aqxx + c ln |q|2 q

= iαqx + iλ
(
|q|2 q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2 q

)
xx

+ θ2 |q|2 qxx + θ3q
2q∗xx.

(6.93)
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Hence (6.6) modi�es to

(
ω + ακ+ aκ2

)
g −

{
κ2(θ1 + θ2 + θ3)− κλ

}
g3 − cg ln g

−ag′′ + 6θ1g (g′)
2

+ (3θ1 + θ2 + θ3) g2g′′ = 0,

(6.94)

and the stationary integral (6.17) takes the form

J =

∫
R

{
2(ω + ακ+ aκ2)g2 − (4κ2θ1 − κλ)g4 + cg2 − 2cg2 ln g − 2a (g′)

2
+ 12θ1g

2 (g′)
2
}
ds.

(6.95)

For log law the ansatz to be taken is:

g(s) = Ae−B
2s2 . (6.96)

Substituting this hypothesis into the stationary integral (6.95) and performing the corre-

sponding integration yields

J = Γ

(
1

2

)
[√

2 (ω + aκ2)A2

B
− (4κ2θ1 − κλ)A4

2B
−
√

2c(4 lnA− 3)A2

4B
−
√

2aA2B

2
+ 3θ1A

4B

]
.

(6.97)

Then equations (6.11) and (6.12) for log law nonlinearity, after simpli�cation, are respectively

given by

4
√

2
(
ω + aκ2

)
− 4

(
4κ2θ1 − κλ

)
A2 −

√
2c (4 lnA− 1)− 2

√
2aB2 + 24θ1A

2B2 = 0, (6.98)

and

4
√

2
(
ω + aκ2

)
− 2

(
4κ2θ1 − κλ

)
A2 −

√
2c (4 lnA− 3) + 2

√
2aB2 − 12θ1A

2B2 = 0. (6.99)
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Figure 6.7: Bright soliton (Gausson) with Log law.

From the last two identities one can get the relation between the amplitude and the inverse

width of the soliton as

B =

√
(4κ2θ1 − κλ)A2 +

√
2c

18θ1A2 − 2
√

2a
. (6.100)

The last relation imposes the inequality

{(
4κ2θ1 − κλ

)
A2 +

√
2c
}(

18θ1A
2 − 2

√
2a
)
> 0, (6.101)

in order for the soliton to exist. Finally, the Gaussons for metamaterials is given by

q(x, t) = Ae−B
2(x−vt)2ei(−κx+ωt+θ), (6.102)

where all the parameters are respectively de�ned with their corresponding domain restric-

tions.

The �gure in Fig. 6.7 shows a surface plot of a single bright soliton solution in optical

metamaterials. Here, a = 0.1, c = 1, α = 0.1, λ = 1, ν = −0.9, θ1 = 0.1, θ2 = 0.2, θ3 = 0.1.
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6.4 Conclusions

This chapter applied SVP to extract bright and a couple of exotic soliton solutions. There

are �ve nonlinear forms that were studied. For Kerr law nonlinearity, a couple of exotic soliton

were obtained in addition to bright soliton. These are analytical solutions that are not exact. The

numerical simulations are provided for each of the cases where the intensity of the soliton are plotted.

There are domain restrictions, also referred to as constraint conditions for each such soliton that

are listed. These guarantee the existence of such soliton studied in this chapter.

The results of this chapter stand on a very strong footing. Later, these research results will

be applied to di�erent situations such as optical couplers. DWDM systems and several others.

In addition, polynomial law nonlinearity and triple-power law nonlinearity are to be considered in

future.
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Chapter 7

RAMAN SOLITON IN NANOSCALE OPTICAL WAVEGUIDES,

WITH METAMATERIALS, HAVING POLYNOMIAL LAW

NON-LINEARITY

Raman optical soliton pulses evolve due to a delicate balance between dispersion and non-

linearity [21, 68, 76]. Soliton will dissipate in nature while propagating through double negative

material(DNG) medium. Loss compensation is a challenge to engineer these types of materials.

Dispersion pro�le of the wavelength structure is critically needed to determine the soliton pulse

nature. In particular, Raman soliton self-frequency shift in metamaterials is induced by the stim-

ulated Raman scattering (SRS) e�ect. Since the SRS e�ect enables the energy of the short pulse

transferred from higher to lower frequency continuously by C. V. Raman and K. S. Krishnan [76].

It is possible that the whole spectrum moves toward the longer wavelength region. The chapter

conducts theoretical analysis to illustrate the controllability of the Raman soliton self-frequency

shift in non-linear metamaterials by numerical results.

7.1 Governing model

The dimensionless form nonlinear Schrödinger′s equation (NLSE) that governs the propaga-

tion of raman soliton through optical metamaterials, with polynomial law nonlinearity, is given by

[1, 2, 4, 21, 29, 3, 78, 79, 80]

iqt + aqxx +
(
c1 |q|2 + c2 |q|4 + c3 |q|6

)
q

= iαqx + iλ
(
|q|2 q

)
x

+ iν
(
|q|2
)
x
q + θ1

(
|q|2 q

)
xx

+ θ2 |q|2 qxx + θ3q
2q∗xx. (7.1)

In this model q(x, t) represents the complex valued wave function with the independent variables

being x and t that represent spatial and temporal variables respectively. The �rst term represents

the temporal evolution of nonlinear wave, while the coe�cient a is the group velocity dispersion

(GVD). The coe�cients of cj for j = 1, 2, 3 corresponds to the nonlinear terms. Together, they

form polynomial law nonlinearity. It must be noted here that when c2 = c3 = 0 and c1 6= 0, the
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model (7.1) collapses to Kerr law nonlinearity. However, if c3 = 0 and c1 6= 0 and c2 6= 0, one

arrives at parabolic law nonlinearity. Thus, polynomial law stands as an extension version to Kerr

and parabolic laws.

On the right hand side of (7.1), α represents the coe�cient of inter-modal dispersion. This arises

when the group velocity of light propagating through a metamaterial is dependent on propagation

mode in addition to chromatic dispersion. The factors λ and ν are accounted for self-steepening

for preventing shock-waves, and nonlinear dispersion. Finally, the terms with θj for j = 1, 2, 3

arise in the context of optical metamaterials where functional variable method and �rst integral

approach lead to bright and singular 1-soliton solution, as well as continuous waves [3]; the ansatz

method of integration is employed to extract the 1-soliton solutions and numerical simulations are

given to expose the dissipative e�ects [1]; the simplest equation approach also leads to topological

soliton, rational solution and singular periodic solution [2]; the mapping method is applied to obtain

soliton solutions with Kerr and Parabolic law [29]; by the aid of collective variables, the numerical

simulations of soliton parameter variation are given for speci�c values of the super-Gaussian pulse

parameters [81]; a theoretical investigation on the controllability of the Raman soliton self-frequency

shift in the metamaterials [21]; bright 1-soliton solution is derived by the aid of traveling wave

hypothesis in Kerr law, parabolic law and log law nonlinearity [60].

This model equation has studied for �ve forms of nonlinear media by the aid of ansatz method

[1, 77], traveling wave hypothesis [60] as well as mapping methods [29] and collective variables

approach [81]. This chapter will employ the traveling wave hypothesis to secure solutions to the

model (7.1) that is with polynomial law nonlinearity. The starting hypothesis is the traveling wave

argument given by [60, 78, 79]

q(x, t) = g(s)eiφ, (7.2)

where g(s) represents the shape of the wave pro�le, and

s = x− vt, (7.3)

82



with v being the speed of the wave. The phase component φ(x, t) is de�ned as

φ(x, t) = −κx+ ωt+ θ, (7.4)

where κ represents the soliton frequency, and ω the wave number while θ the phase constant.

Therefore by substituting the hypothesis (7.2) into (7.1) and decomposing into real and imaginary

parts one obtains the real part as:

ag′′ −
(
ω + ακ+ aκ2

)
g + (c1 − κλ) g3 + c2g

5 + c3g
7 = 0, (7.5)

and the imaginary part as:

v + α+ 2aκ+ {3λ+ 2ν − 2κ(3θ1 + θ2 − θ3)} g2 = 0. (7.6)

The notations g′ = dg/ds, g′′ = d2g/ds2, and so on, are introduced in (7.5) for convenience.

From the imaginary part equation (7.6), upon setting the coe�cients of linearly independent

functions to zero gives

v = −α− 2aκ, (7.7)

and the relation

3λ+ 2ν = 2κ(3θ1 + θ2 − θ3). (7.8)

Equation (7.8) serves as the constraint condition between soliton parameters and its coe�cients,

while (7.7) reveals the soliton velocity in polynomial law medium.

From the real part equation (7.5), multiplying both sides by g′ and integrating after separation

of variables yields the implicit solution:

x− vt
2
√

3a
g3

√
6 (λκ− c1) g2 − 4c2g4 − 3c3g6 + 12 (ω + ακ+ aκ2)

= −Π

(
1− g2

g3
; sin−1

[
g3 − g2

g3 − g2

]
|g2 − g3

g1 − g3

)√
(g2 − g1) (g2 − g2) (g2 − g3)

g1 − g3
, (7.9)
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where incomplete elliptic integral of third kind is de�ned as

Π (n;φ|α) =

∫ φ

0

dθ(
α− n sin2 θ

)√
1− sin2 α sin2 θ

, (7.10)

and

g1 = − 1

9c3

{
4c2 −

2
(
8c2

2 − 27c1c3 + 27c3λκ
)

R
1
3

+R
1
3

}
, (7.11)

g2 = − 1

9c3

{
4c2 −

(
1 + i

√
3
) (

8c2
2 − 27c1c3 + 27c3λκ

)
R

1
3

−
(
1− i

√
3
)
R

1
3

2

}
, (7.12)

g3 = − 1

9c3

{
4c2 −

(
1− i

√
3
) (

8c2
2 − 27c1c3 + 27c3λκ

)
R

1
3

−
(
1 + i

√
3
)
R

1
3

2

}
, (7.13)

with

R = 2r +

√
r2 − 8

(
8c2

2 − 27c1c3 + 27c3λκ
)3
, (7.14)

and

r = 2
{

32c3
2 − 162 (λκ− c1) c2c3 − 729c2

2

(
ω + ακ+ aκ2

)}
, (7.15)

Equation (7.14) prompts the constraint condition

r2 > 8
(
8c2

2 − 27c1c3 + 27c3λκ
)3
, (7.16)

that must remain valid for the existence of the solution.

From a historic standpoint, it must be noted that such an algorithm has already been applied

in the past for the study of soliton propagation through optical �bers [78, 79]. During the second
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Figure 7.1: Soliton pro�le with Polynomial law nonlinearity.

round, this analysis was carried out in presence of spatio-temporal dispersion (STD) in addition to

GVD [78].

Fig. 7.1 shows the pro�le of the soliton solution in formula (7.9) for selected parameter values.

In this case, a = 1, c1 = 10, c2 = −10, 000, c3 = 5, α = 100, λ = −2, ν = −1, ω = 1, κ = 1.

7.2 Generalization

In this part, the triple-power law, i.e. the extension of parabolic law nonlinearity that is given

by

iqt + aqxx +
(
c4 |q|2n + c5 |q|4n + c6 |q|6n

)
q

= iαqx + iλ
(
|q|2 q

)
x

+ iν
(
|q|2
)
x
q + θ4

(
|q|2 q

)
xx

+ θ5 |q|2 qxx + θ6q
2q∗xx. (7.17)

Therefore, the NLSE (7.17) transforms to

x− vt =
√

2a (n+ 1) (2n+ 1) (3n+ 1)

∫
dg

g
√
Q (g)

, (7.18)

were

Q (g) = (n+ 1) (2n+ 1) (3n+ 1)
(
2
(
ω+aκ+ ακ2

)
+ κλg2

)
−2 (2n+ 1) (3n+ 1) c4g

2n − 2 (n+ 1) (3n+ 1) c5g
4n − 2 (n+ 1) (2n+ 1) c6g

6n. (7.19)
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Assume λ = 0, integrating (7.18) leads to

(x− vt)n√
a (n+ 1) (2n+ 1) (3n+ 1)√

(3n+ 1)((n+ 1)(2n+ 1)(ω + aκ+ ακ2) + (2n+ 1)c4g2n + (n+ 1)c5g4n) + (n+ 1)(2n+ 1)c6g6ng6

= −Π

(
1− g5

g6
; sin−1

[
g6 − g2n

g6 − g5

]
|g5 − g6

g4 − g6

)√
(g2n − g4) (g2n − g5) (g2n − g6)

g4 − g6
,

(7.20)

where

g4 =
1

3(1 + 3n+ 2n2)

[
2(1 + 4n+ 3n2)− 2

1
3h1

5R
+

R

5 ∗ 2
1
2

]
, (7.21)

g5 =
1

3(1 + 3n+ 2n2)

[
2(1 + 4n+ 3n2) +

(
1 + i

√
3
) h1

5 ∗ 2
2
3R
−
(

1− i
√

3
) R

10 ∗ 2
1
2

]
, (7.22)

g6 =
1

3(1 + 3n+ 2n2)

[
2(1 + 4n+ 3n2) +

(
1− i

√
3
) h1

5 ∗ 2
2
3R
−
(

1 + i
√

3
) R

10 ∗ 2
1
2

]
, (7.23)

with R1 being given by

R1 = (r1 +
√

4h3
1 + r2

1)
1
3 , (7.24)

r1 = 4502000 + 675κ+ 67500κ2 + 54024000n+ 8100κn+ 810000κ2n+ 261114000n2 + 675ω+

40500(κ+ 100κ2)n2 + 648272000n3 + 109350(κ+ 100κ2)n3 + (868842000 + 172125κ)n4

+17212500κ2n4 + 594216000n5 + 157950(κ+ 100κ2)n5 + 162054000n6 + 78300(κ+ 100κ2 + ω)n6

+16200(κ+ 100κ2 + ω)n7 + 8100nω + 40500n2ω + 109350n3ω + 172125n4ω + 157950n5ω, (7.25)

h1 = −(150100 + 1200800n+ 3452200n2 + 4202400n3 + 1800900n4). (7.26)

Fig. 7.2 shows the pro�le of the soliton solution in formula(7.20) for selected parameter values. In

this case, a = 100, c4 = −10000, c5 = −10, c6 = 10, α = 100, ν = −1, ω = 1, κ = 1 and n = 2.
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Figure 7.2: Soliton pro�le with Polynomial law nonlinearity.

7.3 Conclusions

This paper gives raman soliton solutions in optical metamaterials that is studied with poly-

nomial law and triple law nonlinearity. The analytical results are supplemented with numerical

simulation. This paper is an extension to the ones that were studied earlier in optical �bers [78, 79].

The results of this paper are encouraging to conduct further research in this �eld.

In future, additional perturbation terms such as Raman scattering, saturable ampli�ers, higher

order dispersions and several others will be included. Additionally, soliton in optical metamaterials

will be considered with STD in addition to GVD. There are several other forms of nonlinear media

that are yet to be explored. These are saturable law, exponential law, triple power law, threshold

law. In particular the triple-power law nonlinearity that is a direct generalization of polynomial law

will be studied. Although this law is investigated in optical �bers, the results are unknown at this

stage for optical metamaterials. Furthermore, optical metamaterials will be handled in the context

of couplers. From a mathematical perspective, the governing NLSE will be analyzed with fractional

temporal evolution. This will lead to the attainment of slow-light soliton in optical metamaterials

in order to address Internet bottleneck that is a growing concern in this industry. The results of all

of these research will be gradually disseminated elsewhere.
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Chapter 8

EVOLUTIONARY PATTERN FORMATION FOR COMPETING

POPULATIONS WITH ASYMMETRIC NON-LOCAL

COUPLING UNDER SINUSOIDAL TEMPORAL SEASONAL

FORCING

Population models can be used to understand the Honey Bee Population Dynamics [96, 97, 98]

and other species at interest and also be used to understand the spread of parasites [99], viruses [100],

and disease [101]. For example, explore the impact of di�erent death rates of forager bees on colony

growth and development [102], evaluate the e�ects of arti�cial feeding on bee colony population

dynamics [103], recognize the importance of pollination to our food systems and economics [104].

Additionally, contact and competition among di�erent species within a community matters when

it comes to the possibility of parasite disease outbreak [105], evolution of plant viruses [106] and

ecology of tumors [107]. A model of competing species is developed in [108], which is based on

the di�usive logistic model (Fisher's equation) and extends the scalar model to account for two

competing species. In [108] a non-local competition term is used to model competition between

species. The nonlinear term uses a convolution of a kernel, φα,δ, with the population, u, to capture

non-local interactions. The biological phenomenon of the non-local coupling can be attributed to

the e�ect of mobility. If species compete for a sparse resource, then due to mobility the inhibiting

e�ect of depletion of this resource should depend not just on the populations at a point but on

some weighted average of the populations [108]. Additionally, the kernel, φα,δ, used to capture

non-local e�ects is asymmetric. This asymmetry can be used to capture unsymmetrical terrain or

other e�ects. Recently, there has been a growing interest in the development of predictive modeling

tools to species dynamics [96, 97, 98, 109, 110, 111, 112, 113]. We add seasonal variations to our

model to understand how species respond to larger disturbances such as changes in climate. The

seasonal forcing is through a sinusoidal nonlinear perturbation of the competition term.

The scalar model was initially shown in [108, 114] and then in [115, 116, 117, 118, 119, 120].

The kernel function in [108, 114] was symmetric, which was equivalent that the non-local interaction
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at any speci�ed point x weights the population symmetrically about x. In these cases we can see

unstable, nonlinear e�ects when the interaction range of the kernel, δ, is su�ciently large. In this

case we see stationary, nonlinear patterns. The patterns were built up by islands of nonzero popu-

lation separated by dead-zones where the population was exponentially small. Stability analyses in

[115, 116, 117] considered the e�ort of the kernel function in destabilizing this equilibrium. In the

unstable cases, nonlinear patterns consisted of islands separated by dead-zones.

Asymmetric non-local interactions, i.e., convolutions with uneven kernel function brought out

complex valued Fourier transforms in [117, 118, 119]. In this case instability was still a function of

the degree of non-locality, δ, but the stability limit �uctuates depending on the degree of asymmetry

in the kernel, α. In these cases the nonlinear patterns are no longer stationary, but more with a

velocity depending on α.

In this paper, we are interested in �nding persistence phenomenon in modeling competing

species. In our model, we try to account for various factors including non-local competition, asym-

metrical behavior, and seasonal e�ects. The non-local coupling is modeled through convolution

integrals, which is attributed to the e�ect of mobility, i.e., resource should depend not just on the

populations at a point but on some weighted average of the populations, due to its inhibiting e�ect

of depletion [108, 120]. The asymmetry is introduced via the convolution integral with non-even

kernel functions. This asymmetry can arise in many ways. In tumors it can be found as the result

of complex steady-state dynamics of population distribution [121]. Within each tumor, clones can

evolve that harbor selectively advantageous mutations (called drivers), neutral mutations (called

passengers), and deleterious mutations. The temporal e�ect is via sinusoidal forcing. This is likely

to become increasing important in coming years, as the climate is expected to become more variable

[111, 112, 113].

We study the case where the model admits a stable coexistence Limit Cycle solution. We

show that this solution can be de-stabilized by the non-local coupling, access stability conditions

of this critical point as a function of α, determine unstable wave number bands with δ beyond the

stability boundary and compare results with di�erent p. We consider the nonlinear patterns with
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su�ciently non-localization under varying p. Patterns consist of arrays of islands, regions of non-

zero population, separated by either near dead-zones where populations are exponentially small and

essentially extinct under perturbation, which is stimulated by both Matlab and CLanguage. We

start with modeling and analysing the spread dynamic of coupled populations, and then focus on

the impacts of population interactions on spread behavior to estimate the convolutionary pattern of

a relative heterogeneous environment. We have derived the stability conditions, and some nonlinear

patterns under varying seasonal forcing.

8.1 Governing model

The model consisting of two coupled integro-di�erential equations was initially introduced

in [108] and developed in [114]-[121], with u and v denoting competing species. The model is

ut̃ = d1ux̃x̃ + a1u− u(b1u ∗ φ̃α,δ̃ + c1v ∗ φ̃α,δ̃), (8.1a)

vt̃ = d2vx̃x̃ + a2v − v(b2v ∗ φ̃α,δ̃ + c2u ∗ φ̃α,δ̃). (8.1b)

The parameters of d1 and d2 describe the di�usion of the system. The parameters a1 and a2 describe

the natural linear net rate of change of the populations (linear birth rate minus linear death rate)

for u and v, respectively. We always assume a1 > 0, a2 > 0 so that extinction of both species

(u=v=0) is unstable. We take b1, b2, c1 and c2 as positive, so that the quadratic terms in fact

correspond to a reduction of the natural growth rate (or enhanced death rate) of the populations

due to intra species (b1uφ̃α,δ̃ ∗u, b2vφ̃α,δ̃ ∗ v) and inter species (c1uφ̃α,δ̃ ∗ v, c2vφ̃α,δ̃ ∗u) competition,

or overpopulation. Therefore, we take the standard assumptions of logistic population evolution-

linear growth and quadratic decay. We use u · φα,δ̃ ∗ u in place of pure quadratic decay to represent

the computation over a range rather than at a local point. The parameters δ̃ and α in the kernel

represent range of competition, δ̃, and asymmetry, α, respectively.

We account for the temporal seasonal forcing factor based on previous research. In our model,

we are interested in �nding persistence phenomenon in modeling competing species by accounting

for various factors including non-local competition, asymmetrical behavior and seasonal e�ects. This
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is likely to become increasing important in coming years, as the climate is expected to become more

variable [111, 112, 113]. We introduce seasonal variances through the term (1 + p sin(ft)), where p

is the magnitude of seasonal e�ects and f is the frequency factor,

ut̃ = d1ux̃x̃ + a1u− (1 + p sin(f̃ t̃))u(b1u ∗ φ̃α,δ̃ + c1v ∗ φ̃α,δ̃), (8.2a)

vt̃ = d2vx̃x̃ + a2v − (1 + p sin(f̃ t̃))v(b2v ∗ φ̃α,δ̃ + c2u ∗ φ̃α,δ̃). (8.2b)

Here u and v are the population densities for the two competing species, t̃ and x̃ denote time and

space, ut̃ and ux̃x̃ denote partial derivatives and ∗ denotes spatial convolution, i.e.,

φ̃α,δ̃ ∗ ω(x̃, t̃) =

∫ ∞
−∞

φ̃α,δ̃(ỹ)ω(x̃− ỹ, t̃)dỹ, (8.3)

where φ̃α,δ̃ is a speci�ed even, nonnegative kernel function such that

∫ ∞
−∞

φ̃α,δ̃(ỹ)dỹ = 1, (8.4)

, where δ̃ represents the spatial extend of the kernel function, with δ̃ → 0 corresponding to the local

pattern; α denotes the degree of asymmetry, with α → 0 corresponding to symmetric non-local

coupling. So that φ̃α,δ̃ behaves like a δ-function.

We non-dimensionalize by setting

t = a1t̃;U =
b1
a1
u;V =

b2
a1
u;Ut =

b1
a2

1

ut;Vt =
b2
a2

1

vt; f =
ω

a1
;h1 =

c1

b2
;h2 =

c2

b1
; ζ =

a2

a1
; d =

d2

d1
, (8.5)

and assume the non-dimensional kernel function

φα,δ = φ̃α,δ̃. (8.6)
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From equations (8.3)-(8.6), we get

φα,δ ∗ ω(x, t) =

∫ ∞
−∞

φα,δ(y)ω(x− y, t)dy, (8.7)

and ∫ +∞

−∞
φα,δ(y)dy = 1. (8.8)

The parameter δ is a measure of the spatial extent of the kernel function relative to the reference

length. We will always assume that φα,δ is exponentially small for large y.

From the system (8.2) and the non-dimensionalized parameter set (8.5) and (8.6), we have

Ut = Uxx + U − (1 + p sin(ft))U(U ∗ φα,δ + h1V ∗ φα,δ), (8.9a)

Vt = dVxx + ζV − (1 + p sin(ft))V (V ∗ φα,δ + h2U ∗ φα,δ), (8.9b)

where uppercase letter U and V denote non-dimensional quantities. Therefore, for any set of

dimensional di�usivities and kinetic parameters, the dimensional model (8.2) is equivalent to the

system (8.9).

In view of (8.9), critical points, i.e., spatially uniform stationary solutions U0 and V0 satisfy

the algebraic system of equations

U0t = U0 − (1 + p sin(ft))U0(U0 + h1V0), (8.10a)

V0t = ζV0 − (1 + p sin(ft))V0(V0 + h2U0). (8.10b)

By (8.10) and (8.9), the solution of U0 = V0 = 0 corresponds to extinction of both species, which is

unstable.

We consider the coexistence critical point, where not both U0 and V0 are zero. We are trying

to examine solutions in limit cycle (L.C.) with temporal forcing caused by 1 + p sin(ft). We can't

have a steady state solution, but we examine the numerical solution approaches a limit cycle, in

which solutions are uniform in space and change periodically in temporal space. We get the L.C.
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solution by using the perturbation method. Assume

U0 = U (0) + pU (1) + p2U (2) + ..., (8.11a)

V0 = V (0) + pV (1) + p2V (2) + .... (8.11b)

Substitute (8.11) into (8.10), we get

U
(0)
t + pU

(1)
t + p2U

(2)
t + ... = (U0 + pU (1) + p2U (2) + ...)− (1 + p sin(ft))∗

[U (0) + pU (1) + p2U (2) + ...+ h1V
(0) + h1pV

(1) + h1p
2V (2) + ...](U (0) + pU (1) + p2U (2) + ...), (8.12)

V
(0)
t + pV

(1)
t + p2V

(2)
t + ... = ζ(V 0 + pV 1 + p2V 2 + ...)− (1 + p sin(ft))∗

[V (0) + pV (1) + p2V (2) + ...+ h2U
(0) + h2pU

(1) + h2p
2U (2) + ...](V (0) + pV (1) + p2V (2) + ...). (8.13)

Thus from (8.12) and (8.13), the coe�cient of O(p0),

U
(0)
t = U (0) − U (0)2 − h1V

(0)U (0), (8.14a)

V
(0)
t = ζV (0) − V (0)2 − h2V

(0)U (0). (8.14b)

Then

U (0) =
1− h1ζ

1− h1h2
, (8.15a)

V (0) =
ζ − h2

1− h1h2
. (8.15b)

Also from (8.12) and (8.13), the coe�cient of O(p1),

U
(1)
t + U (0)U (1) + h1U

(0)V (1) = −U (0) sin(ft), (8.16a)

V
(1)
t + h2V

(0)U (1) + V (0)V (1) = −ζV (0) sin(ft). (8.16b)
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Suppose

U (1) = A sin(ft) +B cos(ft), (8.17a)

V (1) = C sin(ft) +D cos(ft), (8.17b)

through (8.16) and (8.17), we get



A

B

C

D


=



f U (0) 0 h1U
(0)

U (0) −f h1U
(0) 0

0 h2V
(0) f V (0)

h2V
(0) 0 V (0) −f



−1

0

−U (0)

0

−ζV (0)


. (8.18)

Then



A

B

C

D


= − 1

T



[f2 + V (0)2 − h1h2V
(0)2]U (0)2 + ζ

[
f2 + (h1h2 − 1)U (0)V (0)

]
h1U

(0)V (0)

−[f2 + V (0)2 + h1h2U
(0)V (0)]fU (0) + ζ[U (0) + V (0)]h1U

(0)V (0)f[
f2 + (h1h2 − 1)U (0)V (0)

]
h2U

(0)V (0) + ζ
[
f2 + U (0)2 − h1h2U

(0)2
]
V (0)2[

U (0) + V (0)
]
h2U

(0)V (0)f − ζ
[
f2 + U (0)2 + h1h2U

(0)V (0)
]
fV (0)


,

where

T = f 4 + 2f 2h1h2U
(0)V (0) + f 2(U (0)2 + V (0)2) + (h1h2 + 1)2(U (0)V (0))2.

Therefore, from (8.11)-(8.18), the L.C. solution

U0 = U (0) + pU (1), (8.19a)

V0 = V (0) + pV (1), (8.19b)

where expressions of U (0), V (0), U (1) and V (1) are found in (8.15), (8.17) and (8.18).
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We will consider the following asymmetric Gaussian kernel function

φα,δ(y) =
1

δ
√
π
exp(−(

y − δα
δ

)2). (8.20)

The equation (8.20) in (8.2) describes a non-local coupling which is an asymmetric weighted

average. In addition, for any given spatial location x, (8.20) implies that the primary contri-

bution to the integral terms in (8.2) does not come from the solution at the given point x, but

rather at the displaced point x−δα. Therefore, (8.20) de-emphasizes the local, self-regulating

properties of properties of (8.2) in controlling the exponential growth in population due to

the positive linear net birth rates in favor of a long-range control at the displace point x−δα.

8.2 Stability analysis

In this section, we perform a linear analysis to determine stability boundaries. We

consider the following two parameter sets for the asymmetric kernel function (8.20). It is

already known that the equilibrium solution (U0, V0) is stable for all δ with the symmetric

Gaussian Kernel [120, 121]. The de-stabilization has been found for Gaussian is due solely

to the asymmetry (α > 0) [121]. Rather than at a �xed time we will study the stability

situation under the sinusoidal temporal perturbation dynamics.

Assuming  U

V

 =

 U0 + εŨeλt

V0 + εṼ eλt

 , (8.21)

substituting into (8.9), replacing φα,δ by φ and keeping only �rst order terms in ε leads to

(λ− 1 + (U (0)φ̂+ h1V
(0)φ̂)(1 + p sin(ft)))Ũ = Ũxx − (1 + p sin(ft))U0(Ũ ∗ φ+ h1Ṽ ∗ φ),

(λ− ζ + (V (0)φ̂+ h2U
(0)φ̂)(1 + p sin(ft)))Ṽ = dṼxx − (1 + p sin(ft))V0(Ṽ ∗ φ+ h2Ũ ∗ φ).

(8.22)
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Next take Fourier transform of (8.22),

Û =

∫ ∞
−∞

Ũeikxdx, V̂ =

∫ ∞
−∞

Ṽ eikxdx, φ̂ =

∫ ∞
−∞

φeikxdx. (8.23)

and let β = kδ and χ = 1
δ2
, where k is the Fourier scaling number.

Write the Fourier transform of the kernel as

φ̂ = φR + iφI , (8.24)

where φR and φI are the real and imaginary parts of φ̂, respectively.

Take Fourier transform in x of (8.22) to obtain,

(λ+ p sin(ft))Û = −(χβ2)Û − (1 + p sin(ft))U0((φR + iφI)Û + h1(φR + iφI)V̂ ),

(λ+ ζp sin(ft))V̂ = −(χβ2)dV̂ − (1 + p sin(ft))V0((φR + iφI)V̂ + h2(φR + iφI)Û).

(8.25)

When p = 0, it is the same as in[121]. However we are more interested in the behavior for

nonzero p. We note that if O(ζ − 1) ≈ O(p), then we can de�ne (8.25) to be

(λ+ p sin(ft))Û = −(χβ2)Û − (1 + p sin(ft))U0((φR + iφI)Û + h1(φR + iφI)V̂ ),

(λ+ p sin(ft))V̂ = −(χβ2)dV̂ − (1 + p sin(ft))V0((φR + iφI)V̂ + h2(φR + iφI)Û).

(8.26)

So, the matrix form of (8.26) is

λ̃I

 Û

V̂

 = M

 Û

V̂

 , (8.27)

where

M =

 −((χβ2)2)− (1 + p sin(ft))U0(φR + iφI) −h1(1 + p sin(ft))U0(φR + iφI)

−h2(1 + p sin(ft))V0(φR + iφI) −d(χβ2)− (1 + p sin(ft))V0(φR + iφI)

 .
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and λ̃ = λ + p sin(ft). Linear stability requires that the eigenvalues of M be either in the

left half plane or on the imaginary axis conditions, i.e., trace(M) ≤ 0 and det(M) ≥ 0.

Therefore,

−(1 + d)(χβ2)− (1 + p sin(ft))(U0 + V0)(φR + iφI) ≤ 0,

det[M − λ̃I] = −(1 + p sin(ft))2h1h2U0V0(φR + iφI)
2

(λ̃+ (χβ2) + (1 + p sin(ft))U0(φR + iφI))(λ̃+ (χβ2)d+ (1 + p sin(ft))V0(φR + iφI)) ≥ 0.

(8.28)

Assume λ̃ = iω(t), where ω(t) is real, we have

−ω2 + iω(1 + p sin(ft))(U0 + V0)(φR + iφI) + (dU0 + V0)χβ2(1 + p sin(ft))(φR + iφI)+

iωχβ2(1 + d) + (χβ2)2d+ (1 + p sin(ft))2(1− h1h2)U0V0(φ2
R − φ2

I + 2iφRφI) ≥ 0,

From the imaginary part, it follows

ω = −χβ
2(1 + p sin(ft))(dU0 + V0) + 2(1 + p sin(ft))2(1− h1h2)U0V0φR

χβ2(1 + d) + (1 + p sin(ft))(U0 + V0)φR
φI , (8.29)

By the real part, it has

(χβ2)4s2d+ (χβ2)3(1 + p sin(ft))(2dθ + sζ)sφR +

(χβ2)2(1 + p sin(ft))2((sζθ − ζ2 − s2σ)φ2
I + (dθ2 + 2sζθ + s2σ)φ2

R)

(χβ2)(1 + p sin(ft))3((2sσ + ζθ)θφ2
R + (θ2 − 4σ)ζφ2

I)φR

(1 + p sin(ft))4(θ2 − 4σ)φ2
Rφ

2
Iσ + (1 + p sin(ft))4σθ2φ4

R ≥ 0,

(8.30)

where

θ = U0 + V0, ζ = dU0 + V0, D = 1− h1h2, σ = U0V0D, s = 1 +D.

Next, we consider both species have the same di�usivity, i.e., d = 1. We de�ne κ = σ
θ2
,φ = φI

φR
,

and Z = 2β2

θφR
χ and �nd that s = 2 and ζ = 0. We have 0 < κ < 1

4
due to D > 0.

97



We can then rewrite (8.30) as

Z4 + 4Z3(1 + p sin(ft)) + Z2(1 + p sin(ft))2((1− 4κ)φ2 + (5 + 4κ)) + 4(1 + p sin(ft))4κ

+2Z(1 + p sin(ft))3((4κ+ 1) + (1− 4κ)φ2) + 4(1 + p sin(ft))4(1− 4κ)κφ2 ≥ 0.

(8.31)

If we assume κ0 = (1−4κ)(1+p sin(ft))2, so that 0 < κ0 < 1, and U = Z+(1+p sin(ft)),

(8.31) can be rewritten as

(U2 + κ0φ
2)(U2 − κ0) ≥ 0. (8.32)

By (8.32), we have

χ ≥ f(β), (8.33)

where f(β) = − θ
2
(1 + p sin(ft) ∓

√
1− 4 σ

θ2
(1 + p sin(ft)))φR

β2 , and φR < 0 is necessary but

not su�cient for instability, which is in accord with paper [121] when p = 0. We note

that for more general case when p is nonzero, we actually have λ̃ < −p. This is because

λ̃ = λ+ p sin(ft), thus λ̃max = −p.

We examine the stable boundary by using the following two di�erent sets of parameters:

d1 = 1, d2 = 1, ã1 = 49, ã2 = 1, b̃1 = 25, b̃2 = 3, c̃1 = 10, c̃2 = 4. (8.34)

d1 = 1, d2 = 4, ã1 = 49, ã2 = 1, b̃1 = 25, b̃2 = 3, c̃1 = 10, c̃2 = 4. (8.35)

ASYMMETRIC GAUSSIAN

Upon Fourier transforming (8.20) and using the de�nition of β we have

φ̂ = e−
β2

4 (cos(αβ) + i sin(αβ))),

so that

φR = e−
β2

4 cos(αβ), φI = e−
β2

4 sin(αβ). (8.36)
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Use the explicit Fourier transform of (8.20) to rewrite (8.30) as

(χβ2e
β2

4 )4s2d+ (χβ2e
β2

4 )3(1 + p sin(ft))(2dθ + sζ)s cos(αβ)+

(χβ2e
β2

4 )2(1 + p sin(ft))2((sθζ − ζ2 − s2σ) sin2(αβ) + (dθ2 + 2sζσ + s2σ) cos2(αβ))+

(χβ2e
β2

4 )(1 + p sin(ft))3((2sσ + ζθ)θ cos2(αβ) + (θ2 − 4σ)ζ sin2(αβ)) cos(αβ)+

+(1 + p sin(ft))4((θ2 − 4σ) sin2(αβ) + θ2 cos2(αβ))σ cos2(αβ) = 0,

(8.37)
dλ̃

dδ
=

2

δ
χβ2 2(χβ2)d+ (dU0 + V0)(1 + p sin(ft))(φR + iφI) + (1 + d)λ

(χβ2)(1 + d) + (dU0 + V0)(1 + p sin(ft))(φR + iφI) + 2λ
, (8.38)

If d = 1, (8.38) reduces to
dλ̃

dδ
=

2

δ
χβ2. (8.39)

As λ̃ is monotonically increasing, both eigenvalues cross the real axis once when d = 1.

There is a single stability boundary in δ.

Using the parameter set (8.34) and under p = 0, the unstable regions are visualized in

Fig. 8.1a, where we plot f(β) against β and in Fig. 8.1b, δ(α) is shown for asymmetric

Gaussian kernel function. The seasonal forcing doesn't play an obvious roll in the stability

analysis process.

8.3 Computational Analysis

We solve (8.2) using a pseudo-spectral predictor-corrector method. Periodicity is

assumed on the interval −L ≤ x ≤ L and L = 1500. The unknowns are updated in Fourier

space where the spatial derivatives and convolutions are computed under sinusoidal temporal

seasonal forcing. Nonlinear terms are computed in physical space and then transformed to

Fourier space for the solution update with seasonal forcing. We integrate the solutions in

time until steady state conditions or consistent solutions are obtained.

In our computations, we concentrate on the asymmetric Gaussian (8.20) with temporal
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(a) f(β) and for asymmetric Gaussian func-

tion with p = 0. 1/δ2 for δ = .845, 1.3 and

5. Parameters are give in (8.34). If δ = .845,

coexistence critical points (U0, V0) is stable. If
δ = 1.3, coexistence critical points (U0, V0) is

unstable in the �rst region. If δ = 5, coexis-

tence critical points (U0, V0) is unstable in the

�rst and second region.

(b) δ(α) for asymmetric Gaussian function

with p = 0. Parameters are given in (8.34).

Figure 8.1: f(β) and δ

seasonal forcing. We mainly depict results for fully nonlinear patterns away from the stability

boundary. We also capture and compare the nonlinear patterns near stability boundary

under di�erent sinusoidal disturbance via (1+p sin(ft)) through varying values of p. Di�erent

seasonal forcing can push the long-time behavior to di�erent steady state. The amplitude

declines and the width becomes narrower of the islands as the amplitude(p) of seasonal

forcing increases. When δ is far from the stability boundary, the semi-extinction, where

the population is nonzero and above the truncation level of the calculations occurs in the

nonlinear regime. Di�erent sinusoidal patterns for both U and V are found and compared

near the stability boundary under varying temporal seasonal forcing(di�erent p), in which

the wave pattern is in accordance with [117] when p = 0 .

We use the parameter sets (8.34) or (8.35) and L = 1500 to �nd the following nonlinear

patterns. The variables in our calculations are δ, α, p and initial conditions. The results

in [121] for asymmetric non-local coupling indicate that there are generally many stable
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patterns. In [121] it is shown that nonlinear patterns for asymmetric coupling consisted

of stationary stationary arrays of islands, where the populations are nonzero, separated by

dead-zones, where the populations are exponentially small and can be considered essentially

extinct(true dead-zones). The island/dead-zone patterns propagate. Additionally, for some

patterns the islands of V are separated by zones in which the population is nonzero and

above the truncation level of the calculations(near-dead-zones or semi-extinction). It is also

the similar case with temporal seasonal forcing here. For initial conditions, we perturb out

limit cycle, (U0, V0) with a sin wave of mode m and consider initial conditions of the form

U(x, 0) = U0 + 0.01 sin(mx
π

L
), (8.40a)

V (x, 0) = V0 + 0.01 sin(mx
π

L
), (8.40b)

We present results for 5 di�erent values of p, p = 0, 0.1, 0.2, 0.3 and 0.5. In all cases, there are

two di�erent patterns that we �nd: (i) traveling waves, (ii) colony formation(type I ),

(iii) Adjustment of wave frequency.

In the following table, we tabulate solutions for Travelling wave solutions and colony

formation. S.E denotes if the wave extinct or not. It is not necessary that the same steady

state pattern results from the same initial conditions.

Solutions for L=1500 with i = 0, 1, 2, 3 and 5

Nature of solution I.C. S.E.

p.id100TWa m=5 Y

p.id100TWb m=5 Y

p.id150TWPDB m=5 N

p.id100CIb m=5 Y

p.id150CIIb m=5 N

Our notation for each pattern is as follows:
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• Each pattern identi�er begins with p and a number which indicates p. For example, p.35

indicates p = 0.35.

• There is then the d which indicates δ. For example, d100 indicates δ = 100.

• There then follows either TW and C indicating that the pattern is either a traveling

wave or colony formation. CI indicates colony formation(type I ) and CII indicates

colony formation(type II ) which is Adjustment of wave frequency.

• We note that there can be two patterns of the same type depending on whether (8.34) or

(8.35) is employed. When this occurs, we distinguish the two parameters by appending an

a or b to the end of the pattern for (8.34) and (8.35), respectively.

• We employ lowercase letters a or b to identify convention for α = 1, and uppercase letters

A or B to indicate α = 0.75.

We list properties of these islands solutions,

1: The island is distributed around their midpoint. We solve the problem using a Fourier

spectral method. The spatial derivatives and convolutions are computed in Fourier space.

Nonlinear terms are computed in physical space and then transform to Fourier for the solution

update. We assume periodicity on the interval −L ≤ x ≤ L, and L = 1500. We focus on

asymmetric Gaussian (8.20). Furthermore, we show results for fully nonlinear patterns,

away from the stability boundary with varying seasonal forcing. When p = 0, our results

are similar in [121]. Besides, all of our results indicate that the transition at the stability

boundary (Their structure is similar to a Trigonometry function curve), which is in accord

with [121].

2: The amplitude and extent of the islands is slightly di�erent for varying p. The larger the

p, the smaller the amplitude and the narrower the extent. For these parameters, the tail of

the island includes a small region where species with small p is essentially extinct.

3: The islands are surrounded by dead-zone where the populations exhibit semi-extinction.

For example, in the dead-zone, say at x = 1050 in Fig. 8.2a, U and V are of the order of
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10−4.

Thus, within each dead-zone both species are essentially extinct. It is reasonable for V

to be the more vulnerable species. Since the relative linear net growth rate ζ for V in (8.35), is

less that the unity in (8.34). The enhanced di�usivity for V in (8.35) can inhibit extinction

for V , while some patterns found with (8.35) allow for the survival of V . The enhanced

di�usion for V (convolution integral) may be small due to the interspecies competition be

less e�ective in pushing V to extinct since V spreads more and competition may be small

due to narrowness of the U -island. Under sinusoidal temporal seasonal forcing, i.e., p is

nonzero. We found patterns consisting of arrays with one larger and one smaller repeating

format of islands. The larger of the temporal seasonal forcing, the smaller of the amplitude

and the narrower of the extent. It is not unreasonable for the species. The enhanced

temporal forcing weakens the enhancement of the amplitude and degree of extension. It is

more reasonable because the amount of species varies more under isometric environment and

thereby interspecies competition may be less e�ective due to seasonal forcing.

First, we illustrate traveling wave solutions. We consider a sample population. In

Fig. 8.2a, the solution is characterized by 5 identical islands of nonzero population, sepa-

rated by dead-zones where populations are essentially zero. As p is varied, the only di�erence

is in the amplitude and width of islands in the computational domain. In order to clarify the

structure of the islands, we amplify the Fig. 8.2a to get the Fig. 8.2b, where the solution

is over just one island. As p increases, the amplitude is smaller and width becomes narrower.

In Fig. 8.2c, we plot U and V under temporal seasonal forcing with p = 0.3 at a �xed point

in time. V for the V p.3d100TWa solution is essentially zero. Additionally, we have scaled

V for the V p.3d100TWa solution by a factor of 10 in order to show both species in the same

�gure. It is the pattern that is constructed by 5 arrays of islands. We note that the islands

of both species are asymmetric about their midpoint. We believe this is due to the isometric

periodic conditions. We next illustrate the Up.3d150CIb solution. In Fig. 8.3a, we plot a
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(a) U and V for Up.id100TWb and

V p.id100TWb solutions at a �xed time, i =
0, 3, and 5.

(b) Ampli�ed U and V for Up.id100TWb and
V p.id100TWb solutions at a �xed time, i =
0, 3, and 5.

(c) With solid p = 0.3, U and V for
Up.3d100TWa and V p.3d100TWa solutions
at a �xed time.

Figure 8.2: Ud100TWa and V d100TWa solutions at a �xed time.

space-time surface of U as a function of t and x. As time evolves, islands propagate to the

left, but there is also a counter propagating wave where the pattern jumps, the propagating

island vanishes and a slightly displaced colony forms which continues the propagation. We

term this behavior Colony formation(type I ).

In order to describe the process ofColony formation(type I), we consider the Up.3d150CIb

solution from x = 500 to x = 1000 in eight (uniformly spaced) values of t. From t0 to t1,

there is a small decrease in the amplitude of the original island. At t2, there is incipient
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colony formation as the parent island decreases in the amplitude. From t3 to t4, the sub-

sequent colony growth is at the expense of the original island. Finally, the colony pattern

forms as the parent island is no longer visible (t5 − t7) giving the appearance of jumps in

the visualization in Fig. 8.3b. Still, the formed colony pattern is constructed by arrays of

islands which are surrounded by dead-zones. We call this is Colony formation(type I ).

(a) Surface plot of U(x, t) for Up.3d150CIb
solution.

(b) U(x, t) for Up.3d150CIb solution at times

t0 − t7.

Figure 8.3: Up.3d150CIb solution when time goes.

In the series Figs. 8.4, we study the process ofColony formation(type I ) for varying

p.

The larger amplitude of the seasonal forcing, the smaller of the amplitude of the island,

105



(a) U for Up.id100CIb solution where i =
0,1,2,3 and 5 at time t0.

(b) U for Up.id100CIb solution where i =
0,1,2,3 and 5 at time t1.

(c) U for Up.id100CIb solution where i =
0,1,2,3 and 5 at time t2.

(d) U for Up.id100CIb solution where i =
0,1,2,3 and 5 at time t3.

Figure 8.4: Ud150CIb solutions when time goes.

which is in accord with the conclusion in Traveling waves in Figs. 8.2.

Next, we analyze the process of colony formation for V p.3d100CIIB solution. In

Fig. 8.5, we show a space-time surface plot for V indicating the uniform propagation speed

and the splitting of the amplitude of adjacent islands.

This can be further illustrated in Fig. 8.6, where line plots of U at various times

encompass colony formation for the islands from x = −1500 to x = 1500. From t1 to t2,

there is a small decrease in the amplitude of the parent island. At t3, there is incipient colony

formation as the parent island decreases in the amplitude. From t4 to t5, the subsequent
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colony growth is at the expense of the original island. At t6, the traveling shaped pattern

forms as the inter-media wave. Finally, the colony pattern forms as the parent island is no

longer visible (t7− t8) giving the appearance of jumps in the visualization in Fig. 8.6. The

formed colony pattern is constructed by arrays of islands which are travelling wave shaped

and not semi-extinction. We call this as Adjustment of wave frequency.

Figure 8.5: V p.3d100CIIB solution when time goes.

(a) at t1 (b) at t2 (c) at t3 (d) at t4

(e) at t5 (f) at t6 (g) at t7 (h) at t8

Figure 8.6: V p.3d100CIIB when time goes.
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8.4 Conclusions

We have focused on a system of competing populations with non-local interactions under

sinusoidal temporal seasonal forcing. The system is a two-species extension of the Fisher

equation with the non-locality due to convolution integrals against speci�ed kernel functions

and seasonal forcing by sinusoidal type functions. While previous studies have disregarded

seasonal variation and have concentrated on depicting competing species at static structures,

we considered the e�ect of asymmetry in the non-local interaction with seasonal forcing. We

introduced three parameters (i) δ, describing the extent of the non-local interaction, with

δ = 0 corresponding to local interaction, (ii) α, describing the degree of asymmetry, with

α = 0 corresponding to symmetric non-local interaction, and (iii) p, describing the seasonal

forcing, with p = 0 corresponding to static structure and devoid of any dynamics.

We considered the case where the coexistence limit cycle solution,(U0, V0) is stable for

local interactions and is de-stabilized as the non-locality(δ) is increased with sinusoidal sea-

sonal forcing which is in accordance with previous studies [120, 121]. We further considered

asymmetric Gaussian kernel function. We performed a linear stability analysis of (U0, V0)

and determined stability boundary as a function of α and p. As δ is increased beyond the

stability boundary, we found transition of traveling waves. We also found in most cases in

island/dead-zone structure, but with a modulation in the amplitude and width of the islands

with seasonal forcing(by p). The larger of the p value, the lower of the amplitude and the

narrower of the width.

In addition, we found patterns of colony formation, where an island generates a nearby

colony which subsequently grows as the patient island declines, until the parent island has

vanished and propagation continues with the colony with seasonal forcing. This stabilizes the

adjacent dead-zone, leading to development of a small colony which then in turn serves to fur-

ther deplete the parent island. We �nd two colony patterns: (i) colony formation(type I );

the formed colony pattern is constructed by arrays of islands which are surrounded by dead-
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zones, (ii) Adjustment of wave frequency; the formed colony pattern is constructed by

arrays of islands which are travelling wave shaped and not semi-extinction. We showed

evolutionary colony patterns under varying seasonal forcing with su�cient non-localization.

The larger amplitude of the seasonal forcing, the smaller of the amplitude of the island.

Understanding and quantifying seasonal forcing such as climatic conditions or patterns

of human aggregation contribute to our fundamental understanding of epidemic dynamics;

how micro-environmental changes can alter the �tness e�ects of mutations, which increase

the rate of other genetic changes in a heterogeneous tissue containing not only cancer cells,

but also stromal and immune cells. This paper is an extension to the ones that were studied

earlier in population pattern formation [120, 121]. Future studies will have to take the

temporal dynamics of tumors cells population into account to allow for a systems view on

cancer progression.
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Chapter 9

CONCLUSIONS

9.1 Part I: Optical Soliton Propagation in Metamaterials

The dynamics of soliton propagation through these optical metamaterials is governed by the

nonlinear Schrödinger′s equation(NLSE) with a few perturbation terms.

In the second chapter, we study soliton in optical metamaterials by the aid of collective vari-

ables. As an assumption, supper-Gaussian soliton are selected to keep these pulses on a generalized

setting. The numerical simulations of soliton parameter variation are given for speci�c values of the

Super-Gaussian pulse parameters.

The dynamics of soliton parameters are studied numerically in this chapter by the aid of CV

approach. Super-Gaussian soliton are considered. The two cases where m = 2 and m = 4 are

studied numerically. This chapter stands on a strong foundation for further future work. While

this chapter addresses Kerr law nonlinearity, later parabolic law nonlinearity will be studied. The

results of those researches will be available soon.

In the third chapter, we recover bright 1-soliton solution, in optical metamaterials, by the aid

of travelling wave hypothesis. This integration scheme is not applicable to retrieve bright soliton

solutions for power law and dual-power law media. Also, it must be noted that there are soliton

solutions that are reported earlier by this same integration scheme, namely traveling wave hypothesis

applicable to �ve forms of nonlinearity that includes powers law and dual-power law [5, 6, 7].

However, for optical metamaterials, the situation is a little di�erent. The governing equations have

parameters that obey constraint relations, as discussed in Section-3, and thus prevent integrability

by traveling wave hypothesis for power law and dual-power law.

Another disadvantage of this scheme is that one can retrieve only bright 1-soliton solutions

and not dark or singular optical soliton. Later, the focus will be on the application of additional

integration techniques to retrieve dark and singular soliton along with bright-dark combo optical

soliton. The results of those research will be applied soon. Additionally, soliton perturbation theory
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as well as quasi-stationary soliton solutions will be obtained. Finally, the quasi-particle theory, for

suppression of intra-channel collision, will also be developed and reported.

In the fourth chapter, we retrieve soliton solutions to the NLSE in optical metamaterials with

Kerr and parabolic law nonlinearity. The mapping method is applied to obtain these solutions. The

results of this chapter came with certain constraints that must hold for these soliton to exist. These

soliton solutions are recovered after a limiting process applied to doubly periodic functions when

the modulus of ellipticity approached unity. This approach is therefore a very unique method to

derive soliton solutions.

Later the results will be extended to the case when several perturbation terms will be con-

sidered. Better yet, soliton perturbation theory will be applied to give the adiabatic variation of

these soliton parameters. Several other integration tools will be adopted to obtain soliton and other

solutions. The results of those researches are awaited at this time.

In the �fth chapter, we obtain soliton solutions in optical metamaterials with �ve forms of

nonlinear media. For Kerr law nonlinearity, there are three forms of soliton that are already reported

earlier; therefore this paper derived only singular soliton (Type-II). For the remaining laws all soliton

solutions and their derivations are comprehensively reported in this chapter. These solutions come

with respective integrability criteria that are listed as constraint conditions. These solutions will be

immensely useful in the literature of optical metamaterials.

These soliton solutions will be a great asset in all future investigations in this area of nonlinear

optics. In the presence of perturbation terms these soliton will dictate the adiabatic parameter

dynamics and other such features that will be obtained. The quasi-particle theory of optical soliton

interaction will be reported. Later bifurcation analysis of soliton in optical metamaterials will be

carried out. Other integration schemes will be applied to these models and those will reveal addi-

tional solutions, such as plane waves and periodic singular solutions. The semi-inverse variational

principle will extract exotic soliton such as cosh-Gaussian pulses and bright-dark combo optical

soliton. All of these are currently under investigation. The results of those research will be reported

gradually and sequentially. Finally, the study will be extended to DWDM systems so that e�cient
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soliton transmission can be conducted in parallel, thus improving performance enhancement. These

just form a tip of the iceberg.

In the sixth chapter, we apply SVP to extract bright and a couple of exotic soliton solutions.

There are �ve nonlinear forms that were studied. For Kerr law nonlinearity, a couple of exotic

soliton were obtained in addition to bright soliton. These are analytical solutions that are not

exact. The numerical simulations are provided for each of the cases where the intensity of the

soliton are plotted. There are domain restrictions, also referred to as constraint conditions for each

such soliton that are listed. These guarantee the existence of such soliton studied in this chapter.

The results of this chapter stand on a very strong footing. Later, these research results will

be applied to di�erent situations such as optical couplers. DWDM systems and several others.

In addition, polynomial law nonlinearity and triple-power law nonlinearity are to be considered in

future.

In the seventh chapter, we give raman soliton solutions in optical metamaterials that is studied

with polynomial law and triple law nonlinearity. The analytical results are supplemented with

numerical simulation. This paper is an extension to the ones that were studied earlier in optical

�bers [78, 79]. The results of this paper are encouraging to conduct further research in this �eld.

In future, additional perturbation terms such as Raman scattering, saturable ampli�ers, higher

order dispersions and several others will be included. Additionally, soliton in optical metamaterials

will be considered with STD in addition to GVD. There are several other forms of nonlinear media

that are yet to be explored. These are saturable law, exponential law, triple power law, threshold

law. In particular the triple-power law nonlinearity that is a direct generalization of polynomial law

will be studied. Although this law is investigated in optical �bers, the results are unknown at this

stage for optical metamaterials. Furthermore, optical metamaterials will be handled in the context

of couplers. From a mathematical perspective, the governing NLSE will be analyzed with fractional

temporal evolution. This will lead to the attainment of slow-light soliton in optical metamaterials

in order to address Internet bottleneck that is a growing concern in this industry. The results of all

of these research will be gradually disseminated elsewhere.
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9.2 Part II: Evolutionary Pattern Formation for Competing Populations under

Seasonal Forcing

In this project, we are interested in �nding persistence phenomenon in modeling competing

species. In our model, we have considered the e�ect of asymmetry in the non-local interaction

with seasonal forcing. We introduced three parameters (i) δ, describing the extent of the non-local

interaction, with δ = 0 corresponding to local interaction, (ii) α, describing the degree of asymmetry,

with α = 0 corresponding to symmetric non-local interaction, and (iii) p, describing the seasonal

forcing, with p = 0 corresponding to static structure and devoid of any dynamics.

We considered the case where the coexistence limit cycle solution,(U0, V0) is stable for local

interactions and is de-stabilized as the non-locality(δ) is increased with sinusoidal seasonal forcing

which is in accordance with previous studies [120, 121]. We further considered asymmetric Gaus-

sian kernel function. We performed a linear stability analysis of (U0, V0) and determined stability

boundary as a function of α and p. As δ is increased beyond the stability boundary, we found tran-

sition of traveling waves. We also found in most cases in island/dead-zone structure, but with

a modulation in the amplitude and width of the islands with seasonal forcing(by p). The larger of

the p value, the lower of the amplitude and the narrower of the width.

In addition, we found patterns of colony formation, where an island generates a nearby

colony which subsequently grows as the patient island declines, until the parent island has van-

ished and propagation continues with the colony with seasonal forcing. This stabilizes the ad-

jacent dead-zone, leading to development of a small colony which then in turn serves to further

deplete the parent island. We �nd two colony patterns: (i) colony formation(type I ); the

formed colony pattern is constructed by arrays of islands which are surrounded by dead-zones,

(ii) Adjustment of wave frequency; the formed colony pattern is constructed by arrays of is-

lands which are travelling wave shaped and not semi-extinction. We showed evolutionary colony

patterns under varying seasonal forcing with su�cient non-localization. The larger amplitude of

the seasonal forcing, the smaller of the amplitude of the island.

Understanding and quantifying seasonal forcing such as climatic conditions or patterns of
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human aggregation contribute to our fundamental understanding of epidemic dynamics; how micro-

environmental changes can alter the �tness e�ects of mutations, which increase the rate of other

genetic changes in a heterogeneous tissue containing not only cancer cells, but also stromal and

immune cells. This chapter is an extension to the ones that were studied earlier in population

pattern formation [120, 121]. Future studies will have to take the temporal dynamics of tumors

cells population into account to allow for a systems view on cancer progression.
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