To: Dr. Saundra F. DeLauder, Dean of Graduate Studies and Research
The members of the Committee approved the Thesis of Chiao Zhang as presented on $\qquad$ April 15, 2015 .

We recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science with a major in $\qquad$ Applied Mathematics .


Department $\qquad$ Math $\qquad$ 4/15/2015


Date

$\qquad$ Date


APPROVED


Department Math
Date


Program Director

Dean, School of Graduate Studies and Research
Date


# GRAPH-BASED ANALYSIS IN COMPUTER VISION: PRINCIPLES, ALGORITHMS AND APPLICATIONS 

by

CHAO ZHANG

## A THESIS

Submitted in partial fulfillment of the requirements for
the degree of
Master of Science
in the
Applied Mathematics
Graduate Program of
Delaware State University

DOVER, DELAWARE
May 2015

## COPYRIGHT

Copyright (c) 2015 by Chao Zhang. All rights reserved.

## DEDICATION

This thesis is dedicated to my beloved wife, Ying Yâng.

## ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Sokratis Makrogiannis, who has provided me with valuable encouragement and guidance in every stage of the writing of this thesis. Without his enlightening instruction, impressive kindness and patience, I could not have completed my thesis.

I would also like to extend my sincere thanks to Dr. Fengshan Liu for all his kindness and help. My special appreciation goes to Dr. Yucui Guo, whose help means a lot to me.

I would also like to thank other members of my thesis committee, Dr. Jinjie Liu, Dr. Xiquan Shi and Dr. David Pokrajac for taking the time to read this thesis and for giving helpful suggestions.

I wish to thank College of Mathematics, Natural Sciences and Technology and Delaware State University for providing me with the opportunity, resources and the scholarships that made this research possible.

My sincere appreciation also goes to the faculty and staff of Department of Mathematical Sciences.

I wish to acknowledge the US Department of Defense through the grant "Center for Advanced Algorithms" (W911NF-11-2-0046) for their support.

Last but not least, my thanks would go to my beloved parents for their loving considerations and great confidence in me through all these years. I also owe my sincere gratitude to my wife who gave me her help and time during the writing of this thesis.


#### Abstract

Graph theoretic image segmentation enjoys great popularity in the image analysis domain. The image segmentation task may be translated as a graph-based optimization problem for finding the optimal graph partitioning. Normalized cut (N-cut) is an algebraic graph optimization technique applied in image segmentation. Despite the fact that N -cut produces good results for a variety of images, it has some weaknesses, such as high computational cost and over-segmentation. In this paper I adopt the watershed transform to address these problems. Watershed can improve slow computing speed and produce a closed outline of objects. However, watershed itself has the drawback of over-segmentation. Therefore, I propose to first apply watershed, then build a graph from the watershed regions and find the N -cuts of the watershed region graph to improve segmentation accuracy.

The first goal of this thesis is to study graph theoretic algorithms in the literature mainly formulating image segmentation as a graph optimization problem. The second goal is to reduce the complexity of this problem by optimizing region-based graph structures. The third goal is to validate the performance of the existing and the proposed methods and test the hypothesis that region-based analysis reduces the complexity of optimization problem.

I also compare the results produced by watershed, N -cut, and the proposed technique. The results show that the proposed technique in this paper guarantees precision, reduces calculation complexity and improves the problem of over segmentation.


## TABLE OF CONTENTS

TITLE PAGE ..... i
COPYRIGHT
DEDICATION ..... ii
ACKNOWLEDGEMENTS ..... iii
ABSTRACT ..... iv
TABLE OF CONTENTS ..... v
LIST OF TABLES ..... vii
LIST OF FIGURES OR ILLUSTRATIONS ..... viii
ACRONYMS ..... xi
CHAPTER 1 INTRODUCTION ..... 1
1.1 Motivation ..... 1
1.2 Preview ..... 1
1.2.1 Edge Detection Algorithms ..... 3
1.2.2 Thresholding ..... 3
1.2.3 Region-Based Segmentation ..... 4
1.2.4 Normalized Cuts ..... 5
1.2.5 Watershed ..... 6
1.3 Thesis organization ..... 7
CHAPTER 2 ALGORITHM OF IMAGE SEGMENTATION BASED ON NORMALIZED CUTS AND WATERSHED ..... 9
2.1 The concept of Graph Theory and Digital Image ..... 9
2.1.1 Definitions ..... 9
2.1.2 Degree of a vertex ..... 10
2.1.3 Digital Image ..... 11
2.2 Graph theoretic image segmentation techniques ..... 12
2.2.1 Max-flow and Min-cut ..... 12
2.2.2 Graph cut ..... 14
2.2.3 RAG-Minimax algorithm ..... 16
2.3 Normalized Cuts ..... 18
2.3.1 $\quad$-cuts algorithm implementation [21, 20] ..... 18
2.3.2 The research based on N-cuts ..... 23
2.4 The basics of Morphology [12] ..... 24
2.4.1 Erosion ..... 25
2.4.2 Dilation ..... 26
2.4.3 Opening ..... 27
2.4.4 Closing ..... 27
2.5 Watershed ..... 28
2.5.1 Watershed Segmentation Algorithm [12] ..... 28
CHAPTER 3 WATER-CUTS RAG ..... 32
3.1 Filter preprocessing ..... 34
3.2 The implementation of water-cuts RAG ..... 35
3.2.1 The preprocessing of watershed method ..... 35
3.2.2 Structural weight matrix ..... 36
3.3 Combine water-cuts RAG method with clustering method ..... 38
3.4 GUI (Graphical User Interface) ..... 42
CHAPTER 4 RESULTS AND DISCUSSION ..... 46
4.1 Time comparison. ..... 46
4.2 Comparison in Calculation Complexity. ..... 47
4.3 YLGC (Yang and Liu's global criterion) values comparison. ..... 49
CHAPTER 5 CONCLUSION AND FUTURE WORK ..... 62
REFERENCE LIST ..... 64
CURRICULUM VITAE ..... 67

## LIST OF TABLES

4.1 Time comparison. ..... 46
4.2 YLGC values comparison when regions $=10$. ..... 49
4.3 YLGC values comparison when regions $=20$. ..... 52
4.4 YLGC values comparison when regions $=30$. ..... 56

## LIST OF FIGURES OR ILLUSTRATIONS

2.1 A sample example for Graph ..... 10
2.2 Key stage in digital image processing ..... 11
2.3 Directed example graph. ..... 13
2.4 A case where minimum cut gives a bad partition [21]. ..... 14
2.5 A simple 2D segmentation example for a $3 \times 3$ image. ..... 16
2.6 Flowchart of the proposed algorithm. ..... 17
2.7 A simple example for cut. ..... 19
2.8 Similarity matrix $W$ and Degree of node d. ..... 20
2.9 (a) is a sample image ( $12 \times 12$ ); (b) with gaussian noise; (c) is the symmetrical matrix $W$; (d) is the diagonal matrix $D$; (e) is the segmentation result. All the results shown above are produced by Shi's code. ..... 24
2.10 (a),(c),(e) are original image(Berkley's dataset),(b),(d),(f) are N-cuts results. All the results shown above are produced by Shi's code. ..... 25
2.11 (a) Set $A$; (b) Element $B$; (c) The result after erosion. Two black grids shown in the figure is the result after erosion. ..... 26
2.12 (a) Set $A$; (b) Element $B$; (c) $B$ 's mapping; (d) The result after dilation. The sum of grey parts and black parts in the picture is the result. ..... 262.13 (a) Structuring element $B$ "rolling" along the inner boundary of $A$ (the dotindicates the origin of $B$ ); (b) Structuring element B; (c) The heavy line is theouter boundary of the opening; (d) Complete opening (shaded).27
2.14 (a) Structuring element $B$ "rolling" on the outer boundary of set $A$; (b) The heavy line is the outer boundary of the closing; (c) Complete closing (shaded). ..... 28
2.15 Minima, catchment basins, and watersheds. ..... 28
2.16 (a),(c),(e) are original image(Berkleys dataset),(b),(d),(f) are Watershed results. ..... 30
3.1 The processing of segmentation that combine watershed method and N -cuts method. ..... 33
3.2 Gaussian filter's code. ..... 34
3.3 (a) Original image; (b) The result after Gaussian filter and $\sigma=1$. ..... 35
3.4 The idea of water-cuts. ..... 35
3.5 (a) Original image; (b) The result after watershed method. ..... 36
3.6 Water-cuts RAG's code: use N-cuts method to segment image after watershed method. ..... 38
3.7 (a) The result of N-cuts method; (b) The result of water-cuts RAG method. ..... 39
3.8 The process of clustering. ..... 39
3.9 (a) This is the input data points to be clustered; (b) Clustering result; (c) Eigenvectors. ..... 39
3.10 The idea of water-cuts clust. ..... 40
3.11 Water-cuts RAG with clustering code. ..... 40
3.12 The result of water-cuts clust. ..... 41
3.13 Example for removing over-segmentation. ..... 41
3.14 Remove over-segmentation code. ..... 42
3.15 The result after removing over-segmentation. ..... 42
3.16 GUI - Graphical User Interface ..... 43
3.17 The result after using GUI. ..... 45
4.1 Time comparison. ..... 46
4.2 Comparison in Calculation Complexity. ..... 47
4.3 Comparison in Calculation Complexity. ..... 48
4.4 Plots of YLGC values for 10 regions. ..... 52
4.5 Plots of YLGC values for 20 regions. ..... 56
4.6 Plots of YLGC values for 30 regions. ..... 59

## ACRONYMS

CT computed tomography
DOOG difference of offset gaussian
GUI graphical user interface
HSV hue, saturation, value
MST minimum spanning tree
N -cuts normalized cuts
NRN the number of regions produced by Normalized cut method
NRW the number of regions produced by Watershed method
NRWC the number of regions produced by Water-cuts RAG method
NRWNC the number of regions produced by Water-cuts Clust method
RAG region adjacency graph
YLGC Yang and Liu's global criterion
YLGCN the value of YLGC after using Normalized cut method
YLGCW the value of YLGC after using Watershed method
YLGCWC the value of YLGC after using Water-cuts RAG method
YLGCWNC the value of YLGC after using Water-cuts Clust method

## Chapter 1

## INTRODUCTION

### 1.1 Motivation

This thesis deals with graph-based image segmentation techniques. The first goal is to study graph theoretic algorithms in the literature mainly formulating image segmentation as a graph optimization problem. The second goal is to reduce the complexity of this problem by optimization of region-based graph structures. The last goal is to validate the performance of the existing and the proposed methods and test the hypothesis that region-based analysis reduces the complexity of optimization problem.

### 1.2 Preview

Image segmentation is a technology that divides an image into a set of meaningful areas or objects that are not overlapping. In general, the accuracy of segmentation depends on whether the required areas are accurately segmented or not. For example, in the automated inspection of electronic assemblies, interest lies in analyzing images of products with the objective of determining the presence or absence of specific anomalies, such as missing components or broken connection paths [12]. Segmentation has been widely applied in aerospace technology, transportation control systems, human-face recognition, finger recognition, machine vision and medical science, such as B ultra-sound, CT, X-ray. By analyzing the medical graphs, it can help locate tumors and other pathologies, assist in measuring tissue volume, and operat-
ing computer-guided surgery. It can also be used in anatomy and other fields. The successful segmentation will help us to apply subsequent high level image analysis. Therefore, image segmentation is a very important step for image processing.

Since the introduction of segmentation research, a lot of methods have been proposed for image segmentation. One of these mature methods is: the classic minimum spanning tree put forward by Zahn in 1971. The theory is very simple, which is to map the image into a graph, delete the edges with the smallest weight, and partition the image into different sub-images for segmentation. In the 1970s, Beucher and Lantuéjoul put forward the watershed method, which was successfully applied to grayscale images. This method has attracted a lot of attention. In 2000, Shi and Malik proposed the normalized cut method using graph theory. To attain segmentation, they also measured the difference of different partitioned areas and the similarity in the same area. This solves the flaw of the principle of MST (minimum spanning tree). However, most of the segmentation algorithms are based on one of two basic properties of intensity values: discontinuity and similarity. In the first category, the approach is to partition an image based on abrupt changes in intensity, such as edges. The principal approaches in the second category are based on partitioning an image into regions that are similar according to a set of predefined criteria, such as thresholding, graph-based segmentation and, so on [12].

The field of image segmentation is developing and new methods are emerging in an endless stream. In the following sections, this thesis will review image segmentation methods, based on graph theory. At the same time, we will also introduce the main image segmentation methods in recent research and we will also point out those methods advantages and disadvantages.

### 1.2.1 Edge Detection Algorithms

Edge detection aims to sketch split lines between the image and background through a certain algorithm and partitions the image into several sub-images. The edge of image is one of fundamental characteristics of image. It can provide substantial information of image, such as orientation and shape. Image edge is a local characteristic of discontinuity of reflection, such as gray mutation and color mutation. It indicates the ending of one part and the beginning of another part. It exists between the object and the background, between object and object, between pixel (The minimum elements has some characteristic) and different pixels. The edge is the most important characteristic that image segmentation depends on. In line with the intensity of the changes on grey level, edge detection can be divided into two types: (1) Step edge. Grey level pixel value in different edges is distinctly different, and the second derivative is zero crossed in the edges; (2) Ridge edge. It is located at the turning point of grey value, which changes from higher level to lower level. Second derivative takes the extreme value at the ridge edge. Fundamentally, the basic idea of edge detection algorithm is to calculate local differential operator, such as gradient operator, Sobel operator, Prewitt operator and Laplace operator [12]. Those classical edge operator methods only use individual pixel point as the criterion to edge, therefore they are sensitive to noise and will enhance noise when detecting edges. As a result, the difficulty in edge detection is greatly increased.

### 1.2.2 Thresholding

Thresholding method employs one or several thresholds to separate grey level of images into different parts, and holds the view that pixels that belong to the same part are of one single object. Thresholding algorithm is categorized into global thresh-
olding algorithm and local thresholding algorithm. The global thresholding utilizes global information to evaluate optimal segmentation threshold of the whole image (for instance, grey level histogram). Optimal segmentation threshold can be a single threshold or multiple thresholds. Local threshold algorithm is to divide the original image into several disjoint, sub images at first and then evaluate optimal segmentation threshold of every sub images. Because of its intuitive properties, simplicity of implementation, and computational speed, image thresholding enjoys a central position in applications of image segmentation [12]. It can be regarded as a classical algorithm.

Thresholding has a number of limitations. If the images we segment have distinct boundaries with the background, then thresholding is simple and accurate. If the image is a more complicated one, it is difficult to get a correct threshold. The result of image segmentation through thresholding depends to a great extent on the choice of threshold. Therefore, thresholding is not suitable for extensive use of image segmentation.

### 1.2.3 Region-Based Segmentation

Classical region-based segmentation algorithm includes: region growing, region splitting and region merging. Region growing is a procedure that groups pixels or subregions into larger regions based on predefined criteria for growth. The basic approach is to start with a set of "seed" points and from these grow regions by appending to each seed those neighboring pixels that have predefined properties similar to the seed (such as specific ranges of intensity or color) [12].

The result of the region-growing is determined by three factors: (1) Choice of initial point. Choose one or several seed pixels. (2) Choice of rules of growing. (3)

Terminal condition of growing. Artificial choice of seed pixels is the common defect of region-based segmentation. Meanwhile, it is inevitable to set up the same amount of seeds or seeds more than the number of regions in order to get the desired region. At the same time, noise exerts great influences on the process of region growing, or can even segment regions which are originally irrelevant to the region.

Region splitting and region fusion establish the rule for region merging. When the region characteristics in an image are in inconformity, it is required to split the region into several sub regions with equal proportion. When adjacent regions possess unanimous characteristics, they will merge into a bigger region until all the subregions don't meet the condition of region splitting and merging. The shortcomings of this algorithm are as follows: if the degree of splitting is insufficient, the result of it must be unsatisfactory. Whereas when the degree is higher than required, it intensifies the difficulty of splitting and consumes a large amount of time for calculation.

### 1.2.4 Normalized Cuts

Shi and Malik's normalized cut algorithm is one of the image segmentation algorithms based on graph theory, regarded as a normalized principle in the field of image segmentation. Normalized Cuts is an unsupervised segmentation technique, it does not require initialization and has three main advantages [2]: (1) It approaches the segmentation problem as a graph partitioning problem; (2) It is based on a global criterion; (3) It maximizes both the total dissimilarity between the different groups and the total similarity within the groups. In Chapter 2, the paper will illustrate the principle and method of normalized cut.

Though normalized cut dealt with the defects of minimum cut, normalized cut algorithm itself has some drāwbacks: heavy calculation, excessive segmentation, or
under-segmentation. In addition, when segmenting color images in using this algorithm, it generally should be converted into a grey level image, and then start image segmentation. If the converted the edge of grey level graph is clear, and the pixel grey level between the object the backdrop is distinct, the result would be a satisfactory one. If the similarity of pixels is distinct, the result would lead to an unsatisfactory one.

### 1.2.5 Watershed

Watershed algorithm evolves on the basis of mathematical morphology, and has become a relatively mature segmentation algorithm. The basis of watershed is: two space coordinates are regarded as grey level function. The calculation of watershed algorithm is divided into two steps: sorting pass and submerging pass. This algorithm is simple with fast calculating speed. Furthermore, the image after segmentation possesses closed outline. Accurate positioning shows its advantage in dealing with images with unclear edges. Nevertheless, the major defect is over-segmentation. In Chapter 2 , the paper will illustrate the principle and method of Watershed.

From the above analysis, it can be seen that even though some achievements have been made, there are still some defects in each method. In view of these defects, this paper has done some study and research. Some major work is as follows: a method of combining normalized cut algorithm and watershed algorithm has been put forward. First, preprocess target image using watershed algorithm, decrease the number of nodes, and reduce the complexity in calculation. Next, form a weighted graph from the pre-processed image as the input image of normalized cut algorithm. In this way, the dimension of weight matrix is greatly lowered, and the calculating time is reduced. Second, this work presents an algorithm combing cluster and average
pixel to compare with the result of the combination of normalized cut algorithm and watershed algorithm, which shows a satisfactory efféct. 3) This paper has done a simulation of the algorithm on the Windows 7 system on the MATLAB program. The result shows that the two methods produce good results. As for the watershed and normalized cut, the defects of involving too much calculation and taking too much time. A highly accurate segmented image has been achieved. By use of the YLGC (Yang and Liu's global criterion) to compare our proposed approaches with the existing methods, it can be seen that the values are smaller than the existing ones, which indicates that the two methods satisfy the segmentation result to a great extent.

### 1.3 Thesis organization

Chapter 1: Introduction. This part gives a general introduction of the thesis choosing background, significance and major work. It gives a detailed description of the existing image segmentation method and the merits and drawbacks.

Chapter 2: Algorithm of Image Segmentation Based on Normalized Cuts and Watershed. This paper gives a detailed description of the image basis, normalized cut, the introduction and comparison of the segmentation of major images. It also gives detailed introduction to watershed algorithm based on the mathematical morphology.

Chapter 3: Water-cuts RAG. Based on chapter two and chapter three, this paper comes up with the innovative method of combining watershed and normalized cut, introduces a method of clustering algorithm and uses new method to carry out calculation and analysis. It also compares with the traditional normalized cut in terms of operation time and segmentation results.

Chapter 4: Results and Discussion. We use the MATLAB program on the

Windows system to conduct simulation test based on the new method in chapter four. Analyzing the test result and comparing it with the existing ones to get satisfactory results.

Chapter 5: Conclusion. We summarize the major keypoints in this paper and present some goals for future work.

## Chapter 2

## ALGORITHM OF IMAGE SEGMENTATION BASED ON NORMALIZED CUTS AND WATERSHED

The basic theory of image segmentation is Graph theory. At the beginning of this chapter, we will introduce some related knowledge of Graph Theory. Secondly, we will introduce the algorithm of graph cuts. Thirdly, in the most important part, we will particularly introduce the concept and method of Normalized Cuts.

In mathematics and computer science, Graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A "graph" in this context is made up of nodes and vertices (or edges) that connect them. It's worth noting that the graph is not traditional graph such as triangle, square or image chart. The graph in this thesis is constituted by a number of given vertex and the edges which connect two vertices. This graph is usually used to describe a certain relationship between objects. It uses the vertex to present the object and uses the edges which connect two vertices to present the certain relationship between objects.

### 2.1 The concept of Graph Theory and Digital Image

### 2.1.1 Definitions

A graph is a finite set constituted by a set of vertex $V$ and a set of edges $E$ which connects the vertices. Definition by mathematical formula is $G=(V, E)$

For example:


Figure 2.1: A sample example for Graph.
$G_{A}, G_{B}$ is undirected graph and directed graph, respectively. It can be represented as $G_{A}=\left(V_{A}, E_{A}\right), G_{B}=\left(V_{B}, E_{B}\right)$, where $V_{B}=\left\{V_{1}, V_{2}, V_{3}\right\}, E_{B}=\left\{\left(V_{1}, V_{2}\right),\left(V_{2}\right.\right.$, $\left.\left.V_{1}\right),\left(V_{2}, V_{3}\right),\left(V_{3}, V_{1}\right)\right\}$
(1) The set of vertex $V \neq \emptyset$, the $|V|$ present the number of vertices
(2) $E$ is a set which contains unordered pairs of any two points at $V$. In the $E$ a vertex can appear many times. Meanwhile, the degree of correlation between two vertices is present by weight $W$.

### 2.1.2 Degree of a vertex

Degree of a vertex is the number of edges that connect to this vertex. If it is weighted graph, the degree of vertex $V$ is change to the sum of weighted for all edges which connect vertex $V$. Exactly, $d_{i}=\sum_{j} w_{i j}$. For example, $V_{1}$ is the vertex of $G_{A}$, the degree of $V_{1}$ can be present as $D\left(V_{1}\right)=3$. Whether it is undirected graph or directed graph, the relationship between the number of vertex $n$, the number of edges and degree can be expressed as follows: $e=\frac{1}{2} \sum_{i=1}^{n} D\left(V_{i}\right)$

The degree of a vertex can obviously reflect the degree correlation of vertex and other vertex that is in one set with vertex. If degree of one vertex is zero then
the vertex must be an isolated point. The degree of node and weight of edges are important information for image segmentation.

### 2.1.3 Digital Image

An image may be defined as a two-dimensional function, $f(x, y)$, where $x$ and $y$ are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates $(x, y)$ is called the intensity or gray level of the image at that point. When $x, y$, and the intensity values of $f$ are all finite, discrete quantities, we call the image a digital image [12].

Key Stages in Digital Image Processing: Therefore, we can use the matrix in


Figure 2.2: Key stage in digital image processing.
mathematics to present the important information in this image.
(1) Adjacency Matrix: it can determine whether or not there is connection between any two points in image. If the target image has $n$ vertices then adjacency matrix must be a $n \times n$ matrix.

It can be presented as:

$$
a_{i j}= \begin{cases}1 & \left(V_{i}, V_{j}\right) \in E \\ 0 & \left(V_{i}, V_{j}\right) \notin E\end{cases}
$$

Then, the example $G_{A}$ can be described by adjacency matrix as follow:

$$
A_{1}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Correspondingly, if we have an adjacency matrix then we can reproduce the graph. It is simple to see that the degree of one vertex is a sum of rows in adjacency matrix.
(2) Weight Matrix: It is used to identify the degree of similarity of each vertex. When it has number of n vertex, the dimension must be $n \times n$. It can be expression as follow:

$$
W_{i j}=\left\{\begin{array}{rl}
W\left(V_{i}, V_{j}\right) & \left(V_{i}, V_{j}\right) \in E \\
\infty & \left(V_{i}, V_{j}\right) \notin E \\
0 & i=j
\end{array}\right.
$$

### 2.2 Graph theoretic image segmentation techniques

### 2.2.1 Max-flow and Min-cut

In order to analyze the Local Property of image, we will always segment image in the actual problems. The most popular method of image segmentation is Max-flow and Min-cut.

Maximum flow is the maximum "amount of water" that can be sent from the source to the sink by interpreting graph edges as directed "pipes" with capacities equal to edge weights [4].

CUT is the division of a vertex in the network. It divides all vertexes in the
network into two sets which is $S$ and $T$. Source node $s \in S$, sink node $t \in T$. Write as $\operatorname{CUT}(S, T)$. The inside is capacity and the outside is flow. Show in the graph: A


Figure 2.3: Directed example graph.
set of vertex $S=\{1,2,3\}$ and a set of $T=\{4,5\}$ constitute to a cut. If two vertices in a strip of arc belongs to $S$ and $T$ respectively, it can be called $C U T$.

Max-flow and Min-cut is based on CUT. The relationship between Max-flow and Min-cut is showed below: Min-Cut-Max-Flow Theorem [7]:

Let $g=<V, E>$ consist of a set of nodes, or vertices, $v \in V$ and a set of edges or arcs $e \in E$, and let $s, t \in V$ be the two terminal nodes. Then the three statements are equivalent:
(1) $f$ is a maximal flow ( $f$ is a flow in the network $f(X, Y)$, it expresses all arc which is from the vertex of X point to the vertex of $Y$ );
(2) There is no path in the residual graph $g_{f}$ from s to that could be augmented;
(3) $|f(g)|=c(C)$ for some cut $C$.

Min-cut is a common method in $C U T$. The minimum cut problem on a graph is to find a cut that has the minimum cost among all cuts. To put it simply, the Min-cut method is changed from minimum the interval similar to minimum the CUT.

Wu and Leahy have already used the Min-cut method at image segmentation
in a simple way. First, use the Min-cut method to divide the target image into two parts. Second, use loop iteration to divide the target image into suitable numbers of sub-graph. Meanwhile, we should make sure that CUT between many sub-graph is the minimum value $[24,3]$.

The advantage of Min-cut method is simplicity. However, it also has disadvantages. This method just considered the difference of vertices between the sets but neglected similarity.

In this way, we find an approach to the shortest route to obtain the minimum value capacity of the two subgraph. And this method will result in the smallest value on the shortest side. Usually the noise point and isolation point are the smallest in this condition. From the above chart, we can clearly see that it is a wrong segmentation.


Figure 2.4: A case where minimum cut gives a bad partition [21].

The result is not a best segmentation that we are looking for.

### 2.2.2 Graph cut

Graph cut is a very useful and popular energy optimization algorithm. In general, the Graph cut algorithm is using Max-flow-Min-cut to improve the model. In fact, the Graph cuts is an effective global optimization method which is used to solve combinatorial optimization problems. Graph cuts can be treated as a two-value mark problem, which is applied to pixel level. 1 is to mark the object pixel and 0 is mark
the background pixel. Let [25] $A=\left\{A_{1}, \cdots, A_{p}, \cdots, A_{|P|}\right\}$ be a binary vector whose components $A_{p}$ specify assignments to pixels $p$ in $P$. Each $A_{p}$ can be either "object" or "background". $|P|$ is the number of pixel, $A_{p}$ is the mark of $p^{\text {th }}$, then the vectors $A$ defines a segmentation of image.

The expression of vectors $A$ is showed in below [25]:

$$
\begin{equation*}
E(A)=\lambda R(A)+B(A) \tag{2.1}
\end{equation*}
$$

where, $R(A)=\sum_{p \in P} R_{p}\left(A_{p}\right)$ (Data item or area term), $B(A)=\sum_{\{p, q\}} B_{\{p, q\}} \delta\left(A_{p}, A_{q}\right)$ (Smooth item or Boundary term) and $\delta_{A_{p}} \neq \delta_{A_{q}}=\left\{\begin{array}{cc}1 & A_{p} \neq A_{q} \\ 0 & A_{p}=A_{q}\end{array}\right.$.
$\lambda \geq 0$ the importance of weight area item and boundary item
$R_{p}(\cdot)$ may reflect how the intensity of pixel $p$ fits into a known intensity model of the object and background. Coefficient $B_{\{p, q\}} \geq 0$ should be interpreted as a penalty for a discontinuity between $p$ and $q . B_{\{p, q\}}$ is large when pixels $p$ and $q$ are similar and $B_{\{p, q\}}$ is close to zero when the two are very different.

Graph cuts is an implicit optimized method. It needs to construct relevant image first, use max-flow/min-cut to find the min cut of this image, mark each vertex with two-value, express object and background respectively, and then achieve the image segmentation finally.

The details of Boykov's interactive segmentation are shown in Figure 2.5 [25, 26]:
(a) $O$ is the target point of interactive, $B$ is the background point of interactive;
(b) it is weight flow that is built on energy function which is from equation (2.1);
(c) it uses max-flow/min-cut method to segmentation the flow which is built on


Figure 2.5: A simple 2D segmentation example for a $3 \times 3$ image.
(b);
(d) it is the result after segmentation; it is like two-value divided the image into target and background.

### 2.2.3 RAG-Minimax algorithm

In [15] a method is presented that incorporates the main principles of region-based segmentation and cluster-analysis approaches - A multiresolution color image segmentation approach. The outline of the proposed algorithm is depicted in Figure 2.6:

The RAG-Minimax algorithm is based on fuzzy similarity relations. The final segmentation is produced by applying lambda cuts to produce a crisp relation that embraces the similar regions. In literature define $\left[x_{i}\right]=\left\{x_{j}, \mid\left(x_{i}, x_{j}\right) \in E R\right\}$ as the equivalent class of $x_{i}$ on a universe of data points, $X$. This class is contained in a special relation $E R$, known as equivalence relation. The equivalence relation is defined as a mathematical relation that possesses the properties of reflexivity, symmetry and


Figure 2.6: Flowchart of the proposed algorithm.
transitivity:
Reflexivity: $\mu_{E R}\left(x_{i}, x_{i}\right)=1$
Symmetry: $\mu_{E R}\left(x_{i}, x_{j}\right)=\mu_{E R}\left(x_{j}, x_{i}\right)$
Transitivity : $\mu_{E R}\left(x_{i}, x_{j}\right)=\lambda 1, \mu_{E R}\left(x_{j}, x_{k}\right)=\lambda 2$ then $\mu_{E R}\left(x_{i}, x_{k}\right)=\lambda, \lambda \geq$ $\min (\lambda 1, \lambda 2)$

When only reflexivity and symmetry requirements are fulfilled, it is called a tolerance relation.

This process is completed in the following steps:

1. Map the Watershed regions onto RAG.
2. Form a forest that comprises of subtrees.
3. Repeat until subtrees are formed.
4. Find the minimum cost link between subtrees.
5. Merge the corresponding subtree-regions and reduce total population by 1 .
6. Calculate the new merging costs between the resulting subtree and its neighbors.

For each pair of subtrees:
7. Calculate the dissimilarity values of the regions-members between the examined subtrees.
8. Find the maximum dissimilarity value.
9. Assign the maximum value to the cost between the subtrees.
10. Map the final subtrees onto the region map.

### 2.3 Normalized Cuts

Based on the disadvantage of Min-cut, Shi and Malik have posted an unsupervised image segmentation method. This method change image segmentation to optimize image segmentation Normalized Cuts. Normalized Cuts method has three characteristics [2]:
(1) It approaches the segmentation problem as a graph-partitioning problem;
(2) It is based on a global criterion;
(3) It maximizes both the total dissimilarity between the different groups and the total similarity within the groups.

### 2.3.1 N -cuts algorithm implementation [21, 20]

A graph $G=(V, E)$ can be partitioned into two disjointed sets, $A, B, A \cap B=\emptyset$. The degree of dissimilarity between these two parts can be computed as total weight of the edges that have been removed. In graph theoretic language it is called the cut:

$$
\begin{equation*}
\operatorname{cut}(A, B)=\sum_{u \in A, v \in B} w(u, v) \tag{2.2}
\end{equation*}
$$

where $w(u, v)$ is the weight of the edges connecting the $u, v$. It represents the similarity degree between two points.

For example:


Figure 2.7: A simple example for cut.

An optimized dichotomy of an image is the minimum value of Cut. However, minimum cut is not optimal value. Aimed at this problem, Shi and Malik point out non-similarity measure in difference organization, which is Normalized Cut.

$$
\begin{equation*}
N \operatorname{cut}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(B, V)} \tag{2.3}
\end{equation*}
$$

where $\operatorname{assoc}(A, V)=\sum_{u \in A, t \in V} w(u, t)$ is the total connection from nodes in $A$ to all nodes in the graph, and $\operatorname{assoc}(B, V)$ is similarly defined.

As well , we can identify similarity measure function in the same group Nassoc:

$$
\begin{equation*}
N \operatorname{assoc}(A, B)=\frac{\operatorname{assoc}(A, A)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{assoc}(B, B)}{\operatorname{assoc}(B, V)} \tag{2.4}
\end{equation*}
$$

Where $\operatorname{assoc}(A, A)$ and $\operatorname{assoc}(B, B)$ are total weights of edges connecting nodes within $A$ and $B$ respectively.

Therefore, we can get the conclusion that they are naturally related:

$$
\begin{equation*}
N c u t(A, B)=2-N a s s o(A, B) \tag{2.5}
\end{equation*}
$$

According to what has been mentioned above, we can see that in image segmentation
algorithm, minimizing the disassociation between the groups and maximizing the association within the group are in fact identical.

Let $x$ be an $N=|V|$ dimensional indicator vector $x_{i}=\left\{\begin{array}{rl}1 & i \in A \\ -1 & \text { otherwise }\end{array}\right.$ and let $d(i)=\sum_{j} W(i, j)$ be the total connection from node $i$ to all other nodes.with the definitions $x$ and $d$ we can rewrite:

$$
\begin{align*}
N c u t(A, B) & =\frac{\operatorname{cut}(A, B)}{\operatorname{asso}(A, V)}+\frac{\operatorname{cut}(A, B)}{\operatorname{asso}(B, V)} \\
& =\frac{\sum_{\left(x_{i}>0, x_{j}<0\right)}-w_{i j} x_{i} x_{j}}{\sum_{x_{i}>0} d_{i}}+\frac{\sum_{\left(x_{i}<0, x_{j}>0\right)}-w_{i j} x_{i} x_{j}}{\sum_{x_{i}<0} d_{i}} \tag{2.6}
\end{align*}
$$

let $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots d_{N}\right)$ be an $N \times N$ diagonal matrix with $d$ on its diagonal, $W$ be an $N \times N$ symmetrical matrix with $W(i, j)=w_{i j}$.


Degree of node: $\mathrm{d}_{i}=\sum_{j} w_{i j}$.


Figure 2.8: Similarity matrix $W$ and Degree of node d.
Let $I$ be an $N \times 1$ vector of all ones, and $k=\frac{\sum_{x_{i}>0} d_{i}}{\sum_{i} d_{i}}$, corresponding, we can rewrite:

$$
\begin{equation*}
4[N \operatorname{cut}(x)]=\frac{(1+x)^{T}(D-W)(1+x)}{k I^{T} D I}+\frac{(1-x)^{T}(D-W)(1-x)}{(1-k) I^{T} D I} \tag{2.7}
\end{equation*}
$$

Setting $y=(1+x)-b(1-x)$ and $b=\frac{k}{1-k}$. In this way, to find the optimized value
in all can be simplified as below:

$$
\begin{equation*}
\min _{x} N c u t(x)=\min _{y} \frac{y^{T}(D-W) y}{y^{T} D y} \tag{2.8}
\end{equation*}
$$

where $y_{i} \in\left\{1, \frac{-\sum_{x_{i}>0} d_{i}}{\sum_{x_{i}<0} d_{i}}\right\}$ and $y^{T} D I=y^{T}\left[\begin{array}{r}d_{1} \\ \vdots \\ d_{n}\end{array}\right]=0$.
Note that the above expression is the Rayleigh quotient [11]: If $y$ is relaxed to take on real values, we can minimize equation (2.8) by solving the generalized eigenvalue system

$$
\begin{equation*}
(D-W) y=\lambda D y \tag{2.9}
\end{equation*}
$$

However, we have two constraints on $y$ :
(1) $y^{T} D I=y^{T}\left[\begin{array}{r}d_{1} \\ \vdots \\ d_{n}\end{array}\right]=0$
(2) $y$ it can be discretized into two values automatically.

Rewrite equation (2.9) as:

$$
\begin{equation*}
D^{-\frac{1}{2}}(D-W) D^{-\frac{1}{2}} z=\lambda z \tag{2.10}
\end{equation*}
$$

Where $\lambda$ is eigenvalue and $z=D^{-\frac{1}{2}} y, z_{0}=D^{-\frac{1}{2}} I$ is an eigenvector of equation (2.10) with eigenvalue of $0 .(D-W)$ is Laplacian matrix, it is also semi-positive definite therefore $D^{-\frac{1}{2}}(D-W) D^{-\frac{1}{2}}$ is symmetric semi-positive definite. Hence $z_{0}$ is the smallest eigenvector of equation (2.10), and all eigenvectors of equation (2.10) are perpendicular to $z_{0}$. Translating this statement back into the general eigensystem
(2.9) we have:
(1) $y_{0}=I$ corresponding with eigenvalue 0 , is the smallest eigenvector;
(2) $y_{1}^{T} D I=z_{1}^{T} z_{0}=0$ where $y_{1}$ is the second smallest eigenvector of (2.9).

So we can have

$$
\begin{equation*}
y_{1}=\arg \cdot \min _{y^{t} D I} \frac{y^{T}(D-W) y}{y^{T} D y} \tag{2.11}
\end{equation*}
$$

Based on what was mentioned above. Since $y_{1}$ is the second smallest eigenvector of (2.9) and it is meet the specification. Thus the eigenvector corresponding to the second smallest eigenvalue has significant meaningful for Nut-cuts. But each element of eigenvalue has consecutiveness. Next, we should identify a separation point. In general we can choose one of the follows: 1) 0; 2) median; 3) Search for a splitting point which results in minimized $\operatorname{Ncut}(A, B)$. The splitting point which minimizes Nut-cuts value can be found by repeating calculation of $\frac{y^{T}(D-W) y}{y^{T} D y}$ where $y, b, k, x$ by our definitions. Finally, we can have the optimal segmentation of image.

Based on the research above, the algorithm can be summarized as follows:

1. Given a set of features, set up a weighted graph $G=(V, E)$. Compute the weight on each edge, and summarize the information into $W$ and $D$;
2. Solve $(D-W) y=\lambda D y$ generalized eigensystem and get the eigenvectors with the smallest eigenvalues;
3. Use the eigenvector with second smallest eigenvalue to bipartition the graph by finding the splitting point such that N-cuts is maximized;
4. Decide if the current partition should be subdivided by checking the stability of the cut, and if necessary, recursively repartition the segmented parts.

### 2.3.2 The research based on N -cuts

N -cuts can change image segmentation problem to divide image. First $\overline{\mathrm{w}} \mathrm{e}$ construct the weighted graph $G=(V, E)$, by taking each pixel as a node, the weight of edges that connect $i$ and $j$ is $W(i, j)$. The similarity of two points can be expressed as: $w_{i j}=e^{\frac{-\|F(i)-F(j)\|_{2}}{\sigma_{I}}} *\left\{\begin{aligned} e^{\frac{-\|X(i)-X(j)\|_{2}}{\sigma_{X}}} & i f\|X(i)-X(j)\|_{2}<\gamma \\ & 0 \\ & \text { otherwise }\end{aligned}\right.$

Where $\|X(i)-X(j)\|_{2}<\gamma$ present the Euclidean distance to $i$ and $j, X(i)$ is the spatial location of node $i, \sigma_{X}$ decided space similarity, $\sigma_{I}$ can decide the level of similarity for selected information, $F(i)$ is the feature vector based on intensity, color, or texture information at that node define as:

1. $F(i)=1$ for segmenting point sets;
2. $F(i)=I(i)$ the intensity value, for segmenting brightness images;
3. $F(i)=[v, v \cdot s \cdot \sin (h), v \cdot s \cdot \cos (h)](i)$ where h.s.v are the $H S V$ values for color segmentation;
4. $F(i)=\left[\left|I * f_{1}\right|, \ldots\left|I * f_{n}\right|\right](i)$ where the $f_{i}$ are DOOG(Difference Of Offset Gaussian) filters at various scales and orientations as used in [16], in the case of texture segmentation.

A sample example for N -cuts, we do N -cuts for a $12 \times 12$ Image:
In order to show how N -cuts works on image segmentation, we have chosen some result pictures from our research and show it in Figure 2.10.

After we use Normalized Cuts method to process image, then we can have a better result than using other image segmentation method. But it also has some shortcomings, such as the image segmentation processing is really slow, because if the image is $N \times M$, then the weight matrix $W$ is a $N M \times N M$ big matrix. Meanwhile, from the definition of $W$, we can see that $W$ is a symmetric sparse matrix. When the


Figure 2.9: (a) is a sample image ( $12 \times 12$ ); (b) with gaussian noise; (c) is the symmetrical matrix $W$; (d) is the diagonal matrix $D$; (e) is the segmentation result. All the results shown above are produced by Shi's code.
distance between $i$ and $j$ is more than $\gamma, W_{i j}=0$. At the same time, Normalized Cuts method also has other problems such as over- segmentation and under-segmentation.

### 2.4 The basics of Morphology [12]

The word morphology commonly denotes a branch of biology that deals with the form and structure of animals and plants. We use the same word here in the context of mathematical morphology as a tool for extracting image components that are useful in the representation and description of region shape, such as boundaries, skeletons, and the convex hull. In this paper, we have mainly used erosion, dilation, opening and closing methods. Now we will simply introduce the basic principles of those four methods below.


Figure 2.10: (a).(c),(e) are original image(Berkley's dataset),(b),(d),(f) are N-cuts results. All the results shown above are produced by Shi's code.

### 2.4.1 Erosion

Erosion method can be used to reduce the size of image and it can also remove some parts of image. With $A$ and $B$ as sets in $Z^{2}$, the erosion of $A$ by $B$, denoted $A \ominus B$, is defined as

$$
A \ominus B=\left\{z \mid(B)_{z} \subseteq A\right\}
$$

in common, $B$ is structural element, this equation indicates that the erosion of $A$ by $B$ is the set of all points $z$ such that $B$, translated by $z$, is contained in $A$.

For example:


Figure 2.11: (a) Set $A$; (b) Element $B$; (c) The result after erosion. Two black grids shown in the figure is the result after erosion.

### 2.4.2 Dilation

Dilation can be used to expend part of image. With $A$ and $B$ as sets in $z^{2}$, the dilation of $A$ by $B$, denoted $A \oplus B$, is defined as

$$
A \oplus B=\left\{z \mid(\hat{B})_{z} \cap A \neq \emptyset\right\}
$$

This equation is based on reflecting $B$ about its origin, and shifting this reflection by $z$. The result of $B$ is dilation by $A$ can be treated as the set of after translation fellowship, which is the intersection, is not empty. In other words, $\hat{B}$ intersection $A$ exist one element at least. The processing is shown in below:


Figure 2.12: (a) Set $A$; (b) Element $B$; (c) $B$ 's mapping; (d) The result after dilation. The sum of grey parts and black parts in the picture is the result.

### 2.4.3 Opening

Opening generally smooths the contour of an object, breaks narrow isthmuses, and eliminates thin protrusions. The opening of set $A$ by structuring element $B$, denoted

$$
A \circ B=(A \ominus B) \oplus B
$$

Opening can be explained as geometric method. As shown in the picture [12] $B$ is a graphic entity. The processing of opening can be achieved by translations of $B$ in $A$. The boundary point of $A \circ B$ can be looked as a set that is all elements in $B$ which are can closely reach the boundary of $A$.


Figure 2.13: (a) Structuring element $B$ "rolling" along the inner boundary of $A$ (the dot indicates the origin of $B$ ); (b) Structuring element B; (c) The heavy line is the outer boundary of the opening; (d) Complete opening (shaded).

### 2.4.4 Closing

Closing also tends to smooth sections of contours but, as opposed to opening, it generally fuses narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour. The closing of set $A$ by structuring element $B$, denoted $A \bullet B$, is defined as

$$
A \bullet B=(A \oplus B) \ominus B
$$

Closing method can be explained by the following Figure [12]:


Figure 2.14: (a) Structuring element $B$ "rolling" on the outer boundary of set $A$; (b) The heavy line is the outer boundary of the closing; (c) Complete closing (shaded).

### 2.5 Watershed

Watershed method is a traditional segmentation method. At the beginning, it is pointed out for Terrain mathematical Elevation Model. In 1978, H.Digabel and C.Lantuejoul firstly used watershed method in digital image processing area [9]. After further study by Beucher and Vincent, a complete watershed theory system was built up. Since 1980s, the watershed method has been used to segment grey images [5]. Main concept: the image gradient magnitude is considered to be a topographic surface as a function of two spatial coordinates of the image plane. The watershed segmentation is performed in two stages: sorting and flooding of gradient minima.

As shown in the Figure 2.15 [23]:


Figure 2.15: Minima, catchment basins, and watersheds.

### 2.5.1 Watershed Segmentation Algorithm [12]

Let $M_{1}, M_{2}, \cdots, M_{R}$ be sets denoting the coordinates of the points in the regional minima of an image $g(x, y)$. Let $C\left(M_{i}\right)$ be a set denoting the coordinates of the points
in the catchment basin associated with regional minimum $M_{i}$.
Let $T[n]$ represent the set of coordinates $(s, t)$ for which $g(s, t)<n$. That is $T[n]=\{(s, t) \mid g(s, t)<n\}$.

Let $C_{n}\left(M_{i}\right)$ denote the set of coordinates of points in the catchment basin associated with minimum $M_{i}$ that are flooded at stage n . And givēn by $C_{n}\left(M_{i}\right)=$ $C\left(M_{i}\right) \cap T[n]$.

Let $C[n]$ denote the union of the flooded catchment basins at stage $\mathrm{n}: C[n]=$ $\bigcup_{i=1}^{R} C_{n}\left(M_{i}\right)$.

The processing of flooding for watershed method can be explained as water level increased slowly from the minimum point of gradient image by units whole number to maximize. So $g(x, y)=n$ can be regarded as a horizontal plane, $T[n]$ is a point coordinate set that is located at a horizontal plane.

The notation min and max will be used to denote the minimum and maximum values of $g(x, y)$. To construct a watershed is a recursion process. The algorithm for finding the watershed lines is initialized with $C[\min +1]=T[\min +1]$, and Let $Q$ denote the set of connected component $q \in Q[n]$, there are three possibilities:
(1) $q \cap C[n-1]$ is empty;
(2) $q \cap C[n-1]$ contains one connected component of $C[n-1]$;
(3) $q \cap C[n-1]$ contains more than one connected component of $C[n-1]$.

Construction of $C[n]$ from $C[n-1]$ depends on which of these three conditions holds. Condition 1 occurs when a new minimum is encountered; Condition 2 occurs when $q$ lies within the catchment basin of some regional minimum; Condition 3 occurs when all, or part, of a ridge separating two or more catchment basins is encountered.

In other words, two or two more connected component will become one con-
nected component. At this time, it should build watershed in $q$ to protect connected component merge connected component. If it has many connected components, then more watersheds are needed.

The result of Watershed is shown in Figure 2.11:


(c)

(d)

(e)

(f)

Figure 2.16: (a),(c),(e) are original image(Berkleys dataset),(b),(d),(f) are Watershed results.

The Watershed method has used many Terrain concepts. In fact, Watershed [23] is a region growing method. But it also has difference with region growing method; the difference is the watershed methods growing is from the location of minimum value in the detected part of image. Due to the effect by noise and dark texture, the image will have a number of false minimum values; that false minimum value will become false hydrops basin. Therefore, the false minimum value and the real minimum value
will be regarded as an independent area through Watershed - it will cause oversegmentation problem finally, as shown in the above picture. Meannwhile, Watershed has the following advantage: (1) It is computationally efficient;(2) Watershed regions have closed boundaries;(3) It produces accurate delineation.

## Chapter 3

## WATER-CUTS RAG

Most traditional segmentation methods, such as the N-cut method process directly the greyscale image. Alternatively they transform a color to greyscale image, then apply the segmentation algorithm. If the region indicator function, which is produced by segmentation, has preserved the object boundaries and has separated object from background successfully, then the segmentation is considered accurate. However, if segmentation has produced disconnected boundaries between objects, or overly segmented regions, the result is considered erroneous and segmentation needs to be improved.

Watershed is a spatial domain segmentation method that is based on the combination of edge and spatial information. However, due to the fact that the watershed method is very sensitive to noise in the image, the watershed method has an over-segmentation problem $[22,13,8]$. At present, two methods can solve the oversegmentation problem in watershed method. The first one is processing the image before using watershed method. This method is based on markers to detect the watershed regions [10, 17]. Every marker corresponds to an object in the image. So the point of solving the over-segmentation problem for watershed method is based on processing image before is effective selected marks. Second, processing image after watershed method. This method aims at the result after using watershed method. It is based on any standards then process to merge region $[14,19,18]$. To achieve goals to reduce the computational complexity and reduce the computing time. In this pa-
per, I will introduce water-cuts RAG method. The water-cuts RAG method belongs to processing techniques after watershed method. It has concentrated the advantages of N-cuts and watershed method. That is to say, use the watershed method first to segment the target image, preprocessing the image, reduce the number of nodes, reduce the computational complexity and use the image which is after preprocessing to construct a piecewise constant image. Then weight image will be used as the input image at N -cuts method. In this way, we will not only solve the over-segmentation under the watershed method but also solve the long calculation time and the request of edges under the N -cuts method.

The processing is shown below:


Figure 3.1: The processing of segmentation that combine watershed method and N -cuts method.

Based on this method, I will propose another method that combines water-cuts RAG method and clustering method. The calculation using the pixel values on average in each area in the image that preprocessing by use of watershed algorithm. Then use those average values in clustering algorithm. The difference between these two algorithms is the combination of water-cuts RAG method and clustering method has use average intensity of pixel into clustering algorithm. But the watershed algorithm directly uses average intensity of pixel into N -cuts algorithm. The result shows that the combined method of water-cuts RAG method and clustering method will make a better segmentation result.

### 3.1 Filter preprocessing

The disadvantage of watershed method is over-segmentation. It is due to the effect of the noise in the image and the quantization error, the result will split out many small regions that should be formed a region surrounded by a large margin. And it is also because gradient information in the next step is very sensitive to noise. These reasons will cause the real edge be divided into many false edges, which is over-segmentation. In order to avoid this over-segmentation phenomenon, we can use the filter preprocessing method to filter the noise in the image before use the watershed method. I will mainly use the Gaussian filter method in this paper [12]:

$$
H(u, v)=e^{-D^{2}(u, v) / 2 D_{0}^{2}}
$$

The implementation process of this method is shown below:

```
G=gfilt(size(A), varargin{2});
FG=fftshift(fft2(G, size(G,1), size(G, 2)));
FA=fftshift(fft2(A,size(A,1), size(A, 2)));
FGA=FA. *FG;
GA=fftshift(real(ifft2(ifftshift(FGA), size(FGA,1), size(FGA, 2))));
```

Figure 3.2: Gaussian filter's code.

The result after use Gaussian filter is shown below:
Compare the image that is after using Gaussian filter with the original image. The result shows that the image that is after use Gaussian filter is very smooth and reduces the noise. It has made a good foundation for the next watershed method, and it is effective to decrease the over-segmentation phenomenon in watershed.


Figure 3.3: (a) Original image; (b) The result after Gaussian filter and $\sigma=1$.

### 3.2 The implementation of water-cuts RAG

In this paper, the main process of water-cuts RAG method is use the image that is after use Gaussian filter as the enter image to watershed segmentation, then use the preprocessing result by watershed method as the new target image to N -cuts segmentation.

The key stage is shown below:


Figure 3.4: The idea of water-cuts.

We will introduce this method by these processes in the following parts.

### 3.2.1 The preprocessing of watershed method

In practical problemsthe image that need to deal with is very large. Then the dimensions of the weighted matrix must be very large. For example, there are $N$ pixels in the image, so we will have an $N \times N$ system in the calculation. If the image size is $256 \times 256$ then the dimensions of the weighted matrix is $(256 \times 256) \times(256 \times 256)$.

It is obvious that the image size is big then the amount of calculation is big. It will increase computational complexity; increase the amount of calculation, and increase the time of calculation. Therefore, in order to meet precision requirements we can use watershed method to preprocess the image. In this way, we can reduce the number of nodes and decrease computational complexity. The result of preprocessing is shown in Figure 3.5(b):


Figure 3.5: (a) Original image; (b) The result after watershed method.

In the Figure $3.5(\mathrm{~b})$, after dealing with the watershed, the image is divided into 493 areas. We can treat the 493 areas as 493 pixels. Then use it to compare with $241 \times 161$ pixels in Figure 3.5(a). We can see that under the condition of keeping the original pixel values, it has reduced the number of node in weight image, reduced the amount of calculation and reduced the time of calculation.

### 3.2.2 Structural weight matrix

After using the filter method to smooth preprocessing the image, it has effectively eliminated the detail and noise in the image. Reducing the over-segmentation has produced a good foundation for N-cuts. However, before using N-cuts method we also need to use the image that is after processing by watershed method to structure
a weight matrix. The form of weight in this paper is show in below:

$$
w_{i j}=e^{\frac{-\|F(i)-F(j)\|_{2}}{\sigma_{I}}} *\left\{\begin{aligned}
e^{\frac{-\|X(i)-X(j)\|_{\mathbf{2}}}{\sigma_{X}}} & i f\|X(i)-X(j)\|_{2}<\gamma \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Where $\|X(i)-X(j)\|_{2}<\gamma$ present the Euclidean distance to $i$ and $j, X(i)$ is the spatial location of node $i$. This method adopts the method of identifying adjacency matrix, in the picture if the two small area are identified as adjacency then calculate their similarity level the same as weight. If the two small areas are non-adjacent then weight is zero. The value of $\sigma_{x}$ and $\sigma_{I}$ will have effect for the research results. In addition, the factor of calculation weight matrix $\gamma$ is a constant number that is approved in advance. If the value of $\gamma$ is small then the weight matrix will become sparse, the speed of segmentation will become quickly. But we will have a bad result. On the contrary, if the value of $\gamma$ is big then the result will be better. But the amount of calculation will increase. Therefore, we should choose the appropriate value [6].

In this paper, through calculation the average intensity of pixel , which is after using watershed method to preprocessing then build a weight image. In this way, we effectively reduce the number of nodes and save amount of calculation time. The processing detail is shown below:

The result is shown in Figure 3.7:
In the Figure 3.7 above, Figure $3.7(\mathrm{a})$ is the result of N -cuts and Figure 3.7(b) is the result of water-cuts RAG. For the same parameterin the segmentation result of water-cuts RAG, we can see that the segmentation for persons face is very meticulous and the background is closer to the entirety. Meanwhile, it reduces a lot of calculation time.

What are said reproted are the implementation processing and the result of water-cuts RAG. In order to have a more clear segmentation result, We will introduce

```
n_watershed_regions \(=\) length(mean_intensity) ;
Adjacency_Matrix = zeros(n_watershed_regions, n_watershed_regions);
[ \(\mathrm{nr}, \mathrm{nc}, \mathrm{nb}]=\operatorname{size}(\mathrm{I})\);
for \(i=2: n r-1\)
    for \(\mathrm{j}=2: \mathrm{nc}-1\)
        if \(B(i, j)==0\)
            \(\mathrm{V}=\mathrm{B}=(\mathrm{i}-1: \mathrm{i}+1, \mathrm{j}-1: j+1)\);
            VN2=uni que (VN)
            if length(VN2) > 2
                        Adjacency_Matrix(VN2 (2), VN2 (3)) \(=1\);
                        Adjacency_Matrix(VN2(3), VN2 (2)) = 1;
            end
        end
    end
end
[W, Dist] = compute_relation(mean_intensity');
Adjacency_Graph = W.* Adjacency_Matrix:
nbSegments \(=\) nb1;
[NcutDiscrete, NcutEigenvectors, NcutEigenvalues] = ncutW(Adjacency_Graph, nbSegments);
```

Figure 3.6: Water-cuts RAG's code: use N-cuts method to segment image after watershed method.
another method, which combines by water-cuts RAG method with clustering method. The details are described in the following section.

### 3.3 Combine water-cuts RAG method with clustering method

Clustering is the processing of dividing a set of data into different groups. It can make the data in the same groups have the same label but the data in the different group have different labels. The process of clustering is shown below:

Clustering-based segmentation algorithms in general also have a serious drawback. Pixels from disconnected areas of the image can be grouped together, if there is an overlap in their feature space values. As a consequence, several noisy areas and incomplete region borders are produced in the segmentation results [15].


Figure 3.7: (a) The result of N-cuts method; (b) The result of water-cuts RAG method.


Figure 3.8: The process of clustering.

The picture shown in Figure 3.9 will give a typical example of clustering: Figure 3.9(a) the input data for clustering analysis Figure 3.9(b) the result after using clustering method that based on similarity measurement. The same color points present the same group. The original data has been divided into four groups. Figure 3.9(c) is the eigenvector that corresponding to the point in Figure 3.9(b).


Figure 3.9: (a) This is the input data points to be clustered; (b) Clustering result; (c) Eigenvectors.

From the literature [15] idea, in this paper, we will combine the clustering method with water-cuts RAG method. This means that using the image that is after use watershed method to preprocessing then use combined clustering method with N cuts method to do the segmentation.

The key stage is shown below:


Figure 3.10: The idea of water-cuts clust.

The processing is shown below:

```
[W,Dist] = compute_relation(mean_intensity');
nbCluster = nb2;
[NcutDiscrete,NcutEigenvectors, NcutEigenvalues] = ncutW(W, nbCluster);
RegionLabels = zeros(size(NcutDiscrete, 1), 1);
for i=1:size(NcutDiscrete,1)
    RegionLabels(i) = find(NcutDiscrete(i,:));
end
```

Figure 3.11: Water-cuts RAG with clustering code.

The result is shown in the Figure 3.12:
From the result, we can see that it has an over-segmentation phenomenon. Therefore, we have done some corresponding processing for over-segmentation. The detailed processing is: the image that after watershed will have a corresponding number label in each area. After using clustering method, it will merge many similar areas and relabel them. In this way, it has reduced the number of areas produced by watershed method and marked the edge as 0 . Therefore, we can compare the mark value of pixel $a_{i j}$ with adjacent mark value. If there are two values between this pixel and adjacent


Figure 3.12: The result of water-cuts clust.
pixel, then relabel the value of $a_{i j}$ as the same with adjacent value. If there are more than two values, then $a_{i j}$ keep the same value.

For example:

| 3 | 3 | 3 |
| :--- | :--- | :--- |
| 3 | 0 | 3 |
| 3 | 3 | 3 |

(a)

| 1 | 0 | 2 |
| :--- | :--- | :--- |
| 1 | 1 | 0 |
| 1 | 0 | 2 |

(b)

Figure 3.13: Example for removing over-segmentation.

In the Figure 3.13(a), $a_{i j}=0$ and there are just 0 and 3 so remark $a_{i j}=3$
In the Figure $3.13(\mathrm{~b}), a_{i j}=1$ and mark value is 0,1 and 2 , it is more than two, so $a_{i j}$ keep the same value.

The implementation code is shown below:
The result is shown Figure 3.15:

```
for i=2:nr-1
    for j=2:nc-1
        if B (i,j)==0
            V=Seglabel(i-1:i+1, j-1:j+1);
            V2=uni que (V);
            if length(V2)==2
                        SegLabel_NcutCluster(i,j)=V2(2);
                end
            end
    end
end
```

Figure 3.14: Remove over-segmentation code.


Figure 3.15: The result after removing over-segmentation.

From the result above, we can see that we have improved the over-segmentation problem.

### 3.4 GUI (Graphical User Interface)

GUI is the abbreviation of Graphical User Interface. It is a graphical user interface development environment, which is provided by MATLAB. It can vividly show the simulated calculation results. However, GUI just has a shell. There is no real substance in it. Therefore, we need to add our development program into GUI. In this
way, we can have more benefit for our research. In order to control experimêhtal parameters. compare the segmentation result that is based on difference method and test amount of data, we improve the GUI that is provided by MATLAB in this paper.

In this interface, we input different filtering parameters and segmentation param-eters first. Second, we transfer those parameters to different segmentation methods. Finally, we can get results based on different methods and we can also have other research data. In this way, we can clearly analyze the results produced by differ-
ent segmentation methods. The details are shown the picture below. Now, I will particularly introduce our GUI.


Figure $3 \cdot 16 \cdot$ GUI-Graphical User Interface.
In Figure 3.16, the interface has been divided into five areas. In the area 1, we can input the research parameter. And the nbsegment is the number of subrange that uses N-cuts method and water-cuts RAG method segment the image. This determines how many regions in the segmentation result. nbCluslering is the number of categories
that is used in clustering method to divide the pixels in the image. nbParzen is the radius of the parzen, nbfilter and nbsigma are the parameters that are needed in Gaussian Filter. In the area 2, we can clearly see that it consists of five parts , which is the original image, the result based on N -cuts method, the result based on watershed method, the result based on water-cuts RAG method and the result based on watercuts and clustering method. In area 3 , it is mainly presenting the calculation time and the size of test image, which is based on N-cuts method, water-cuts RAG method and water-cuts clustering method. In area 4 , it is mainly presenting the number of YLGC that is based on four different segmentation methods.

YLGC is Yang and Liu's global criterion. YLGC quantifies the error between the piecewise constant image model after segmentation and the original image. Smaller YLGC values indicate more accurate segmentation with smaller number of regions and larger region areas.

The YLGC measure is expressed by the relation [15]:

$$
Y L G C=\sqrt{\frac{N_{R}}{h \cdot w \cdot c}} \cdot \sum_{i=1}^{N_{R}} \frac{\sigma_{i}^{2}}{\sqrt{\operatorname{card}_{i}}}
$$

In this equation, $h, w$ and $c$ are the height, width, and number of the image channels, respectively. $N_{R}$ is the number of final regions, $\sigma_{i}^{2}$ is the color over region $i$, and $c a r d_{i}$ is the number of pixels inside region $i$.

In area 5 , are displayed the names of all test images in the specified folder and the image is that current in testing.

In the Figure 3.17 we can directly see results after using four different segmentation methods. In the same parameter environment (nbsegments $=11, n b$ Clustering $=$ $3, n b$ Parzen $=15, n b$ Filter $=3, n b$ Sigma $=0.5)$. Segment a $241 \times 161$ size image


Figure 3.17: The result after using GUI.
, the calculation time for N -cuts is 4.7498 s water-cuts RAG is 1.2065 s , water-cuts clust is 0.59249 s . Based on those numbers, we can see that the calculation time has been improved. The value of YLGC for N-cuts is 3.3394 . The value of YLGC for water-cuts RAG is 2.5432 . In the same segmentation area that is in the eleven subregion condition, the value of YLGC for water-cuts RAG is lower. It is powerfully proved that the improved result of water-cuts RAG method. What's more from the segmentation result, we can directly see that using water-cuts RAG method combined with clustering method will have the best result.

This paper introduced two kinds of improved method of image segmentation. We will mainly discuss the results produced by two newly introduced methods. We will also compare the method that we already have.

## Chapter 4

## RESULTS AND DISCUSSION

In this chapter, a large number of experimental data will be used to prove that the proposed algorithm has a relative improvement compared with the past algorithm in different problems.

### 4.1 Time comparison.



Figure 4.1: Time comparison.

A sample table to compare time:

Table 4.1: Time comparison.

|  | Normalized cut | Water-cuts RAG | Water-cuts Clust |
| :--- | :---: | :---: | :---: |
| Image 1 (Top) | 4.6329 s | 0.63898 s | 0.2744 s |
| Image 2 (Bottom) | 7.7781 s | 1.2944 s | 0.61024 s |

From the results in Figure 4.1 and Table 4.1, it is clear that the two methods in this thesis have a larger amount of calculation and enjoy improvement in problem of time length. For example, in Figure 4.1, Image 1, N-cuts takes 4.6329 seconds, while Water-cuts RAG take merely 0.63898 seconds. Because solved a standard eigenvalue problem for all eigenvectors takes $O\left(n^{3}\right)$ time, $n$ is the number of pixel in the image. However, the watershed method just takes $O\left(n^{2}\right)$. Therefore we can save the time. Meanwhile, it is clear to see that in the segmentation results, the two methods mentioned in this thesis have also made improvements.

### 4.2 Comparison in Calculation Complexity.



Figure 4.2: Comparison in Calculation Complexity.


Figure 4.3: Comparison in Calculation Complexity.

We can visually observe through the two experimental results that the two mentioned calculation methods have made improvements in the segmentation results. It demonstrated that we have lowered the complexity of calculation. Connect the midpoints of the two neighboring sub-sections (sharing the same side) and then we can directly compare the complexity of the centralized algorithm, and this has solved the problem of over-segmentation. For example, in Figure 4.3, the segmentation in Watershed has connected almost all the pixels in pictures, which has fully proved the problem of over-segmentation. In our calculation, we have reduced over-segmentation, without affecting the accuracy. Thus, this method has lowered calculation complexity, saved time and obtained a relatively satisfactory segmentation result.

### 4.3 YLGC (Yāng and Liu's global criterion) values comparison.

Täble 4.2: YLGC values comparison when regions=10.

| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101085.jpg | 1462 | 4459.038852 | 10 | 6.612651443 | 10 | 4.350396147 | 107 | 127.3660733 |
| 101087.jpg | 746 | 2063.898901 | 10 | 1.441639693 | 10 | 1.997075592 | 62 | 48.45759147 |
| 102061.jpg | 765 | 1619.5499 | 10 | 1.327016299 | 10 | 3.866544513 | 81 | 76.71929147 |
| 103070.jpg | 1278 | 1824.098851 | 10 | 1.828089795 | 10 | 2.219193677 | 44 | 26.15395909 |
| 105025.jpg | 1213 | 3003.803367 | 10 | 3.916996771 | 10 | 3.326853859 | 146 | 178.2052387 |
| 106024.jpg | 594 | 1131.0962 | 10 | 3.074454631 | 10 | 2.31711896 | 43 | 61.78439424 |
| 108005.jpg | 1553 | 3787.707448 | 10 | 2.076821018 | 10 | 1.961964896 | 110 | 156.3862185 |
| 108070.jpg | 1724 | 3910.235553 | 10 | 2.569569981 | 10 | 1.990143309 | 127 | 190.9954054 |
| 108082.jpg | 1129 | 2770.021562 | 10 | 1.744562681 | 10 | 2.869749934 | 114 | 202.3997086 |
| 109053.jpg | 1261 | 1659.88248 | 10 | 1.437226602 | 10 | 1.340215079 | 108 | 84.63875571 |
| 119082.jpg | 1002 | 3992.752066 | 10 | 2.236670696 | 10 | 3.680723161 | 121 | 180.4750289 |
| 12084.jpg | 1632 | 2764.577656 | 10 | 1.414994644 | 10 | 1.229676041 | 234 | 242.5923961 |
| 123074.jpg | 1498 | 2508.009528 | 10 | 2.280491773 | 10 | 2.056101667 | 110 | 59.71384376 |
| 126007.jpg | 632 | 937.330477 | 10 | 3.097868634 | 10 | 3.765556208 | 53 | 46.07724528 |
| 130026.jpg | 1293 | 3790.791667 | 10 | 2.886246193 | 10 | 4.237123332 | 130 | 253.6586484 |
| 134035.jpg | 1582 | 7169.763812 | 10 | 5.118928856 | 10 | 3.978412172 | 338 | 1005.787135 |
| 14037.jpg | 579 | 564.128357 | 10 | 1.377574613 | 10 | 1.319852202 | 32 | 20.67628111 |
| 143090.jpg | 538 | 500.7862833 | 10 | 1.081743313 | 10 | 1.042909297 | 28 | 3.677841299 |
| 145086.jpg | 973 | 2458.52386 | 10 | 7.691318192 | 10 | 2.702139288 | 88 | 162.9091351 |
| 147091.jpg | 837 | 2708.554676 | 10 | 4.21483053 | 10 | 4.00122836 | 96 | 225.6598672 |
| 148026.jpg | 1422 | 6111.845619 | 10 | 3.303445789 | 10 , | 3.698330062 | 210 | 387.689182 |
| 148089.jpg | 1504 | 4431.765111 | 10 | 2.622284394 | 10 | 2.506058046 | 235 | 470.3532035 |
| 156065.jpg | 1313 | 2219.830678 | 10 | 2.039214261 | 10 | 2.426440483 | 137 | 122.66972 |
| 157055.jpg | 1122 | 2823.108547 | 10 | 2.500024085 | 10 | 3.276985344 | 134 | 169.5157434 |
| 159008.jpg | 1154 | 6732.920097 | 10 | 5.438496494 | 10 | 6.004046038 | 190 | 634.7981505 |
| 160068.jpg | 772 | 2036.412202 | 10 | 1.041537974 | 10 | 3.375384435 | 173 | 280.0261124 |
| 16077.jpg | 1126 | 3152.885822 | 10 | 2.936289363 | 10 | 4.007359639 | 137 | 183.0302029 |
| 163085.jpg | 1201 | 1601.214206 | 10 | 1.554053298 | 10 | 1.391001347 | 152 | 86.36854209 |
| 167062.jpg | 350 | 685.4944914 | 10 | 0.822630338 | 10 | 5.10185144 | 36 | 98.97854525 |
| 167083.jpg | 1503 | 7715.091844 | 10 | 3.809319581 | 10 | 4.380887751 | 249 | 799.8364334 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170057.jpg | 1510 | 1981.454758 | 10 | 2.022719937 | 10 | 1.463915873 | 115 | 88.42343881 |
| 175032.jpg | 2016 | 3985.263652 | 10 | 1.842317032 | 10 | 1.4239029 | 340 | 297.7718876 |
| 175043.jpg | 1867 | 5075.423858 | 10 | 1.663369801 | 10 | 1.648116232 | 246 | 285.9459943 |
| 182053.jpg | 843 | 2358.289013 | 10 | 3.054512789 | 10 | 6.863538823 | 66 | 76.28830959 |
| 189080.jpg | 493 | 1631.276724 | 10 | 3.00644967 | 10 | 3.058277065 | 53 | 118.0697033 |
| 19021.jpg | 1186 | 3096.880374 | 10 | 2.382312457 | 10 | 2.601042839 | 91 | 143.2138538 |
| 196073.jpg | 1363 | 450.9580497 | 10 | 0.138305399 | 10 | 0.196102062 | 33 | 26.8759108 |
| 197017.jpg | 1063 | 2290.770542 | 10 | 1.74340452 | 10 | 1.581084146 | 47 | 74.50146819 |
| 208001.jpg | 1370 | 2001.25038 | 10 | 1.86367739 | 10 | 1.573016024 | 72 | 32.98443583 |
| 210088.jpg | 812 | 1906.626621 | 10 | 2.305601778 | 10 | 3.071174043 | 193 | 262.2567517 |
| 21077.jpg | 1023 | 3251.439426 | 10 | 8.404654671 | 10 | 4.271956656 | 103 | 158.7648391 |
| 216081.jpg | 1100 | 2658.064517 | 10 | 3.572677975 | 10 | 3.815260728 | 101 | 121.2143725 |
| 219090.jpg | 806 | 1909.133809 | 10 | 2.918953814 | 10 | 2.21458789 | 91 | 170.7857638 |
| 220075.jpg | 1151 | 4315.980814 | 10 | 3.300236284 | 10 | 3.487605526 | 185 | 473.5713127 |
| 223061.jpg | 1464 | 5114.112066 | 10 | 2.277589427 | 10 | 1.418875067 | 132 | 361.4520283 |
| 227092.jpg | 580 | 183.9550192 | 10 | 0.5364781 | 10 | 0.911991563 | 34 | 4.359286332 |
| 229036.jpg | 1643 | 5441.190404 | 10 | 4.654938715 | 10 | 4.126182009 | 204 | 375.9505826 |
| 236037.jpg | 1769 | 3377.443403 | 10 | 2.225099626 | 10 | 1.56291121 | 61 | 37.24615372 |
| 24077.jpg | 1171 | 6586.889012 | 10 | 2.581738555 | 10 | 4.25261261 | 209 | 564.1490066 |
| 241004.jpg | 672 | 1846.342772 | 10 | 1.942255495 | 10 | 2.603372731 | 18 | 6.329999727 |
| 241048.jpg | 1311 | 3567.731294 | 10 | 2.894726694 | 10 | 3.256216993 | 116 | 145.0025739 |
| 253027.jpg | 1407 | 3761.930428 | 10 | 0.875883649 | 10 | 1.461643403 | 145 | 216.0783924 |
| 253055.jpg | 724 | 1358.926062 | 10 | 0.964749732 | 10 | 1.615126964 | 42 | 92.38044463 |
| 260058.jpg | 951 | 586.5687677 | 10 | 0.949865382 | 10 | 0.847642625 | 55 | 28.40556885 |
| 271035.jpg | 1226 | 2654.735854 | 10 | 4.242941633 | 10 | 3.420696233 | 160 | 176.3366913 |
| 285079.jpg | 1458 | 5394.252112 | 10 | 3.623544661 | 10 | 3.723192575 | 144 | 392.5575418 |
| 291000.jpg | 1918 | 4780.218802 | 10 | 2.818934518 | 10 | 2.23019997 | 223 | 306.8441283 |
| 295087.jpg | 1007 | 973.0664025 | 10 | 0.832132621 | 10 | 1.156328344 | 121 | 61.22315617 |
| 296007.jpg | 798 | 457.9159813 | 10 | 0.479559472 | 10 | 1.07396935 | 76 | 22.26186981 |
| 296059.jpg | 772 | 766.5473701 | 10 | 1.108810297 | 10 | 1.796984834 | 51 | 36.33194045 |
| 299086.jpg | 811 | 354.8147129 | 10 | 0.43197164 | 10 | 0.598382833 | 96 | 27.797624 |
| 300091.jpg | 776 | 1144.278115 | 10 | 1.462147696 | 10 | 2.607632341 | 52 | 75.73142579 |
| 302008.jpg | 654 | 3691.273901 | 10 | 2.884090616 | 10 | 5.140408864 | 157 | 401.3807512 |
| 304034.jpg | 1757 | 6510.811321 | 10 | 2.782822162 | 10 | 3.893646181 | 216 | 449.1603183 |
| 304074.jpg | 1493 | 3932.347653 | 10 | 2.648117209 | 10 | 2.417644886 | 165 | 220.0041843 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 306005.jpg | 971 | 3015.340076 | 10 | 4.20834502 | 10 | 4.686217923 | 106 | 179.5255069 |
| 3096.jpg | 206 | 149.5137425 | 10 | 1.169845477 | 10 | 2.054745966 | 28 | 13.67870754 |
| 33039.jpg | 1770 | 10599.49286 | 10 | 6.943575232 | 10 | 4.969616398 | 389 | 1162.028895 |
| 351093.jpg | 1170 | 5359.964398 | 10 | 3.748986976 | 10 | 3.733629756 | 53 | 78.25471604 |
| 361010.jpg | 1105 | 2519.155531 | 10 | 4.725238562 | 10 | 2.24185897 | 78 | 165.052685 |
| 37073.jpg | 609 | 556.5093111 | 10 | 0.622595402 | 10 | 1.043045097 | 40 | 28.98454219 |
| 376043.jpg | 1669 | 3481.975713 | 10 | 2.604317797 | 10 | 2.852911578 | 87 | 88.23981302 |
| 38082.jpg | 1553 | 2063.978909 | 10 | 1.521070314 | 10 | 1.566825872 | 78 | 32.44682015 |
| 38092.jpg | 1077 | 3348.257229 | 10 | 5.325858756 | 10 | 2.96017398 | 97 | 135.7437119 |
| 385039.jpg | 1030 | 3367.504621 | 10 | 4.255668077 | 10 | 2.409927433 | 139 | 250.4655104 |
| 41033.jpg | 1144 | 2590.762031 | 10 | 2.674720868 | 10 | 1.458544204 | 93 | 141.6848215 |
| 41069.jpg | 1755 | 2568.748952 | 10 | 1.757995797 | 10 | 1.25269236 | 148 | 103.1438815 |
| 42012.jpg | 1191 | 2429.570657 | 10 | 3.225526456 | 10 | 3.18557005 | 98 | 103.8458467 |
| 42049.jpg | 332 | 1034.002545 | 10 | 2.824786286 | 10 | 3.418524966 | 85 | 105.6548292 |
| 43074.jpg | 1060 | 712.4855877 | 10 | 0.447705313 | 10 | 0.806358827 | 93 | 30.44427631 |
| 45096.jpg | 294 | 372.2186529 | 10 | 1.395233146 | 10 | 3.503917203 | 15 | 11.95737328 |
| 54082.jpg | 938 | 718.0327851 | 10 | 1.234375211 | 10 | 1.176841941 | 86 | 30.02521021 |
| 55073.jpg | 1712 | 5508.721617 | 10 | 4.986893731 | 10 | 2.846702049 | 136 | 225.5938128 |
| 58060.jpg | 1396 | 3235.000036 | 10 | 0.921512259 | 10 | 1.542967008 | 178 | 191.3430426 |
| 62096.jpg | 935 | 5695.879963 | 10 | 2.999058272 | 10 | 4.370493134 | 120 | 519.389533 |
| 65033.jpg | 1580 | 3814.284184 | 10 | 4.908090175 | 10 | 2.762718172 | 105 | 119.854935 |
| 66053.jpg | 1372 | 1992.226258 | 10 | 2.663875041 | 10 | 2.031702684 | 52 | 18.96573007 |
| 69015.jpg | 1195 | 2129.845456 | 10 | 1.710412546 | 10 | 2.387325678 | 78 | 58.05884074 |
| 69020.jpg | 1565 | 1921.961181 | 10 | 2.258882085 | 10 | 1.522070376 | 34 | 15.19594645 |
| 69040.jpg | 1971 | 2794.546194 | 10 | 1.839960098 | 10 | 0.967807159 | 164 | 93.98774733 |
| 76053.jpg | 1355 | 1961.592974 | 10 | 2.213782483 | 10 | 1.770400225 | 58 | 37.26601839 |
| 78004.jpg | 950 | 2308.134626 | 10 | 3.223757948 | 10 | 1.90073404 | 43 | 31.97505569 |
| 8023.jpg | 1581 | 2154.594959 | 10 | 0.854495564 | 10 | 0.843024723 | 89 | 44.07585383 |
| 85048.jpg | 1379 | 4989.556449 | 10 | 6.766614125 | 10 | 4.361585149 | 165 | 291.389224 |
| 86000.jpg | 1040 | 2145.954108 | 10 | 1.618399828 | 10 | 2.629948886 | 178 | 205.7746148 |
| 86016.jpg | 1978 | 1902.673829 | 10 | 0.4989062 | 10 | 0.355262288 | 205 | 71.91071026 |
| 86068.jpg | 1491 | 1344.468875 | 10 | 1.092489171 | 10 | 0.843437756 | 142 | 93.10549882 |
| 87046.jpg | 1498 | 5306.339497 | 10 | 3.419759584 | 10 | 4.218342322 | 208 | 372.5246924 |
| 89072.jpg | 1149 | 2574.694171 | 10 | 3.982910056 | 10 | 2.986760705 | 150 | 150.3189623 |
| 97033.jpg | 1210 | 4551.142666 | 10 | 5.199996191 | 10 | 4.250897088 | 141 | 246.4491116 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mean |  | 2917.524147 |  | 2.647802234 |  | 2.637201466 |  | 183.6760808 |
| std.dev. |  | 1890.982214 |  | 1.654097691 |  | 1.333306016 |  | 198.6627919 |



Figure 4.4: Plots of YLGC values for 10 regions..

Table 4.3: YLGC values comparison when regions=20.

| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101085.jpg | 1462 | 4459.038852 | 20 | 9.558760594 | 20 | 10.01615362 | 81 | 67.25593397 |
| 101087.jpg | 746 | 2063.898901 | 20 | 5.699227829 | 20 | 6.952102975 | 66 | 63.01609789 |
| 102061.jpg | 765 | 1619.5499 | 20 | 4.423759827 | 20 | 7.986375675 | 76 | 69.65285914 |
| 103070.jpg | 1278 | 1824.098851 | 20 | 4.966239932 | 20 | 6.701562755 | 27 | 11.73749473 |
| 105025.jpg | 1213 | 3003.803367 | 20 | 11.75856928 | 20 | 9.231829354 | 146 | 178.2052387 |
| 106024.jpg | 594 | 1131.0962 | 20 | 9.150322877 | 20 | 6.098057848 | 43 | 61.78439424 |
| 108005.jpg | 1553 | 3787.707448 | 20 | 6.926755788 | 20 | 7.242678342 | 110 | 156.3862185 |
| 108070.jpg | 1724 | 3910.235553 | 20 | 6.941059092 | 20 | 6.766917723 | 67 | 91.87273654 |
| 108082.jpg | 1129 | 2770.021562 | 20 | 5.825925938 | 20 | 8.53088278 | 113 | 208.2430261 |
| 109053.jpg | 1261 | 1659.88248 | 20 | 4.095410154 | 20 | 5.129383125 | 94 | 69.87160063 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 119082.jpg | 1002 | 3992.752066 | 20 | 11.88144028 | 20 | 11.47298221 | 119 | 178.3646614 |
| 12084.jpg | 1632 | 2764.577656 | 20 | 4.43989874 | 20 | 4.695818727 | 245 | 255.9873433 |
| 123074.jpg | 1498 | 2508.009528 | 20 | 7.422341988 | 20 | 6.11931917 | 111 | 60.55466387 |
| 126007.jpg | 632 | 937.330477 | 20 | 5.444163642 | 20 | 8.430290471 | 54 | 48.25830186 |
| 130026.jpg | 1293 | 3790.791667 | 20 | 8.006028236 | 20 | 11.34810679 | 133 | 258.1950349 |
| 134035.jpg | 1582 | 7169.763812 | 20 | 17.75608488 | 20 | 11.15584239 | 339 | 1008.01674 |
| 14037.jpg | 579 | 564.128357 | 20 | 2.865726568 | 20 | 3.484711126 | 32 | 20.67628111 |
| 143090.jpg | 538 | 500.7862833 | 20 | 3.855181405 | 20 | 3.311662389 | 28 | 3.677841299 |
| 145086.jpg | 973 | 2458.52386 | 19 | 14.5570011 | 20 | 7.595193662 | 88 | 162.9091351 |
| 147091.jpg | 837 | 2708.554676 | 20 | 10.70924169 | 20 | 10.30619581 | 96 | 225.6598672 |
| 148026.jpg | 1422 | 6111.845619 | 20 | 9.168282566 | 20 | 11.53108879 | 210 | 387.689182 |
| 148089.jpg | 1504 | 4431.765111 | 20 | 10.0806689 | 20 | 9.48433817 | 235 | 470.3532035 |
| 156065.jpg | 1313 | 2219.830678 | 20 | 7.183921568 | 20 | 8.188325082 | 135 | 122.8370829 |
| 157055.jpg | 1122 | 2823.108547 | 20 | 6.806303807 | 20 | 9.828801109 | 134 | 169.9310366 |
| 159008.jpg | 1154 | 6732.920097 | 20 | 13.15069302 | 20 | 14.82479456 | 192 | 645.5640987 |
| 160068.jpg | 772 | 2036.412202 | 20 | 9.961960934 | 20 | 12.34429016 | 173 | 280.0261124 |
| 16077.jpg | 1126 | 3152.885822 | 20 | 8.41719794 | 20 | 9.452431964 | 137 | 183.0302029 |
| 163085.jpg | 1201 | 1601.214206 | 20 | 4.833950389 | 20 | 5.342380707 | 152 | 86.36854209 |
| 167062.jpg | 350 | 685.4944914 | 20 | 3.248302974 | 20 | 13.72381365 | 36 | 98.97854525 |
| 167083.jpg | 1503 | 7715.091844 | 20 | 16.09946694 | 20 | 11.20455668 | 248 | 865.0936552 |
| 170057.jpg | 1510 | 1981.454758 | 20 | 9.679351575 | 20 | 4.319378833 | 109 | 73.65622576 |
| 175032.jpg | 2016 | 3985.263652 | 20 | 5.952689452 | 20 | 4.704597367 | 338 | 295.3701176 |
| 175043.jpg | 1867 | 5075.423858 | 20 | 7.062429455 | 20 | 6.354999451 | 181 | 199.6011817 |
| 182053.jpg | 843 | 2358.289013 | 20 | 11.16426234 | 20 | 16.94919173 | 68 | 72.7531178 |
| 189080.jpg | 493 | 1631.276724 | 20 | 17.47000036 | 20 | 7.7413932 | 53 | 118.0697033 |
| 19021.jpg | 1186 | 3096.880374 | 20 | 9.471173467 | 20 | 8.202056783 | 126 | 207.4307501 |
| 196073.jpg | 1363 | 450.9580497 | 20 | 0.610087054 | 20 | 0.779089503 | 33 | 26.8759108 |
| 197017.jpg | 1063 | 2290.770542 | 20 | 5.361312105 | 20 | 5.130785227 | 47 | 74.50146819 |
| 208001.jpg | 1370 | 2001.25038 | 20 | 7.625736341 | 20 | 6.073090876 | 72 | 32.98443583 |
| 210088.jpg | 812 | 1906.626621 | 20 | 9.076604295 | 20 | 11.4784937 | 193 | 262.2567517 |
| 21077.jpg | 1023 | 3251.439426 | 20 | 20.5019509 | 20 | 15.07660978 | 103 | 158.7648391 |
| 216081.jpg | 1100 | 2658.064517 | 20 | 8.359020025 | 20 | 10.02850557 | 96 | 113.0429951 |
| 219090.jpg | 806 | 1909.133809 | 20 | 8.442336459 | 20 | 9.203540216 | 91 | 170.3919395 |
| 220075.jpg | 1151 | 4315.980814 | 20 | 12.41487739 | 20 | 12.26810712 | 185 | 473.5713127 |
| 223061.jpg | 1464 | 5114.112066 | 20 | 14.86413027 | 20 | 5.211202392 | 132 | 361.4520283 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 227092.jpg | 580 | 183.9550192 | 20 | 3.731355448 | 20 | 2.90728158 | 34 | 4.359286332 |
| 229036.jpg | 1643 | 5441.190404 | 20 | 14.4572563 | 20 | 8.907716471 | 212 | 382.5563382 |
| 236037.jpg | 1769 | 3377.443403 | 20 | 6.590110965 | 20 | 5.911472464 | 61 | 37.24615372 |
| 24077.jpg | 1171 | 6586.889012 | 20 | 10.55602919 | 20 | 18.06137742 | 209 | 564.1490066 |
| 241004.jpg | 672 | 1846.342772 | 20 | 6.073410615 | 20 | 6.505118555 | 18 | 6.327899914 |
| 241048.jpg | 1311 | 3567.731294 | 20 | 9.238795663 | 20 | 8.211911071 | 115 | 143.2347836 |
| 253027.jpg | 1407 | 3761.930428 | 20 | 4.169791061 | 19 | 4.201223006 | 145 | 216.2380939 |
| 253055.jpg | 724 | 1358.926062 | 20 | 4.068694515 | 20 | 4.089691504 | 42 | 92.37146143 |
| 260058.jpg | 951 | 586.5687677 | 20 | 4.183248393 | 20 | 2.626513384 | 54 | 36.17599479 |
| 271035.jpg | 1226 | 2654.735854 | 20 | 12.27967559 | 20 | 9.351204732 | 160 | 176.3366913 |
| 285079.jpg | 1458 | 5394.252112 | 20 | 15.35276052 | 20 | 13.03080765 | 144 | 392.5575418 |
| 291000.jpg | 1918 | 4780.218802 | 20 | 9.531319059 | 20 | 6.91363447 | 215 | 296.1297228 |
| 295087.jpg | 1007 | 973.0664025 | 20 | 3.143584861 | 20 | 4.21366326 | 121 | 60.26074322 |
| 296007.jpg | 798 | 457.9159813 | 20 | 2.209890687 | 20 | 3.826085987 | 76 | 22.26186981 |
| 296059.jpg | 772 | 766.5473701 | 20 | 3.868606245 | 20 | 4.25680216 | 51 | 36.33076152 |
| 299086.jpg | 811 | 354.8147129 | 20 | 1.219578315 | 20 | 2.664696198 | 96 | 27.81292182 |
| 300091.jpg | 776 | 1144.278115 | 20 | 4.313514028 | 20 | 7.040496076 | 52 | 75.81395802 |
| 302008.jpg | 654 | 3691.273901 | 20 | 8.58455705 | 20 | 19.65574016 | 156 | 399.5842216 |
| 304034.jpg | 1757 | 6510.811321 | 20 | 11.11002326 | 20 | 10.07699607 | 216 | 449.1603183 |
| 304074.jpg | 1493 | 3932.347653 | 20 | 6.191814656 | 20 | 6.846657479 | 164 | 219.7605662 |
| 306005.jpg | 971 | 3015.340076 | 20 | 10.5597659 | 20 | 15.59471661 | 95 | 147.9922043 |
| 3096.jpg | 206 | 149.5137425 | 20 | 4.041883882 | 20 | 4.595630081 | 29 | 14.35546169 |
| 33039.jpg | 1770 | 10599.49286 | 20 | 16.97918181 | 20 | 17.09874158 | 393 | 1190.262646 |
| 351093.jpg | 1170 | 5359.964398 | 20 | 11.7490618 | 20 | 12.39633964 | 53 | 78.25471604 |
| 361010.jpg | 1105 | 2519.155531 | 20 | 9.975943624 | 20 | 8.190425897 | 78 | 164.9542503 |
| 37073.jpg | 609 | 556.5093111 | 20 | 1.581152432 | 20 | 3.378439619 | 40 | 28.98454219 |
| 376043.jpg | 1669 | 3481.975713 | 20 | 8.429443965 | 20 | 9.079588475 | 86 | 87.2018895 |
| 38082.jpg | 1553 | 2063.978909 | 20 | 5.384359384 | 20 | 5.056215221 | 146 | 66.87794986 |
| 38092.jpg | 1077 | 3348.257229 | 20 | 9.450361203 | 20 | 9.344495194 | 97 | 135.7437119 |
| 385039.jpg | 1030 | 3367.504621 | 20 | 10.56956759 | 20 | 9.347168417 | 139 | 250.4655104 |
| 41033.jpg | 1144 | 2590.762031 | 20 | 7.089450813 | 20 | 6.086329831 | 93 | 141.6891176 |
| 41069.jpg | 1755 | 2568.748952 | 20 | 6.452772075 | 20 | 4.279472456 | 147 | 102.3214193 |
| 42012.jpg | 1191 | 2429.570657 | 20 | 7.131222422 | 20 | 9.442734715 | 98 | 103.8458467 |
| 42049.jpg | 332 | 1034.002545 | 20 | 7.776392532 | 20 | 10.73026451 | 85 | 105.6548292 |
| 43074.jpg | 1060 | 712.4855877 | 20 | 1.366006143 | 20 | 3.077370261 | 91 | 29.33066064 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45096.jpg | 294 | 372.2186529 | 20 | 4.824399347 | 20 | 9.67601323 | 28 | 22.21981633 |
| 54082.jpg | 938 | 718.0327851 | 20 | 3.290245383 | 20 | 4.467529024 | 86 | 30.02521021 |
| 55073.jpg | 1712 | 5508.721617 | 20 | 9.631260691 | 20 | 8.817134429 | 136 | 225.5938128 |
| 58060.jpg | 1396 | 3235.000036 | 20 | 3.467173732 | 20 | 5.163989045 | 180 | 201.3045066 |
| 62096.jpg | 935 | 5695.879963 | 20 | 15.25676638 | 20 | 12.60000198 | 120 | 519.389533 |
| 65033.jpg | 1580 | 3814.284184 | 20 | 16.95270702 | 20 | 6.53485348 | 105 | 119.854935 |
| 66053.jpg | 1372 | 1992.226258 | 20 | 7.792761076 | 20 | 6.172039713 | 52 | 18.96573007 |
| 69015.jpg | 1195 | 2129.845456 | 20 | 9.028624872 | 20 | 8.134693809 | 61 | 31.14809579 |
| 69020.jpg | 1565 | 1921.961181 | 20 | 6.067240714 | 20 | 6.052635323 | 34 | 15.19594645 |
| 69040.jpg | 1971 | 2794.546194 | 20 | 4.54969056 | 20 | 3.147627423 | 162 | 92.50660174 |
| 76053.jpg | 1355 | 1961.592974 | 20 | 5.191346517 | 20 | 4.968602216 | 58 | 37.26601839 |
| 78004.jpg | 950 | 2308.134626 | 20 | 8.718809736 | 20 | 6.00641845 | 43 | 31.70448657 |
| 8023.jpg | 1581 | 2154.594959 | 20 | 3.626703664 | 20 | 3.626162321 | 89 | 44.07585383 |
| 85048.jpg | 1379 | 4989.556449 | 20 | 13.37038315 | 20 | 9.229950753 | 165 | 291.389224 |
| 86000.jpg | 1040 | 2145.954108 | 20 | 6.420195676 | 20 | 9.61242763 | 174 | 198.7167875 |
| 86016.jpg | 1978 | 1902.673829 | 20 | 1.783387306 | 20 | 1.14858364 | 218 | 94.80089487 |
| 86068.jpg | 1491 | 1344.468875 | 20 | 2.86066178 | 20 | 2.552752249 | 142 | 93.07573198 |
| 87046.jpg | 1498 | 5306.339497 | 20 | 13.01142918 | 20 | 12.62922742 | 208 | 372.5246924 |
| 89072.jpg | 1149 | 2574.694171 | 20 | 8.720798917 | 20 | 6.954148212 | 153 | 160.8571813 |
| 97033.jpg | 1210 | 4551.142666 | 20 | 12.29096324 | 20 | 9.928216936 | 138 | 244.6839257 |
| mean |  | 2917.524147 |  | 8.095559813 |  | 7.964419591 |  | 182.8282199 |
| std.dev. |  | 1890.982214 |  | 4.218116805 |  | 3.803244349 |  | 202.7474744 |
|  |  |  |  |  |  |  |  |  |



Figure 4.5: Plots of YLGC values for 20 regions.

Table 4.4: YLGC values comparison when regions $=30$.

| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101085.jpg | 1462 | 4459.03885 | 30 | 20.75857272 | 30 | 21.19645766 | 107 | 127.3660733 |
| 101087.jpg | 746 | 2063.8989 | 30 | 10.86602198 | 30 | 12.64797016 | 68 | 65.30421228 |
| 102061.jpg | 765 | 1619.5499 | 30 | 8.519071036 | 30 | 18.53951647 | 76 | 69.65285914 |
| 103070.jpg | 1278 | 1824.09885 | 30 | 10.7606218 | 30 | 11.70377697 | 44 | 26.15395909 |
| 105025.jpg | 1213 | 3003.80337 | 30 | 19.73769556 | 30 | 18.54924284 | 146 | 178.2052387 |
| 106024.jpg | 594 | 1131.0962 | 30 | 15.26270812 | 30 | 11.67398232 | 43 | 61.78439424 |
| 108005.jpg | 1553 | 3787.70745 | 30 | 12.93989857 | 30 | 15.61221008 | 104 | 170.7971345 |
| 108070.jpg | 1724 | 3910.23555 | 30 | 13.40892557 | 30 | 13.77610645 | 61 | 77.51449104 |
| 108082.jpg | 1129 | 2770.02156 | 30 | 10.73086768 | 30 | 16.06070497 | 117 | 212.9525407 |
| 109053.jpg | 1261 | 1659.88248 | 30 | 7.038542832 | 30 | 9.302588451 | 104 | 81.8788876 |
| 119082.jpg | 1002 | 3992.75207 | 30 | 28.49741427 | 30 | 21.56462192 | 121 | 180.4750289 |
| 12084.jpg | 1632 | 2764.57766 | 30 | 8.55183975 | 30 | 9.074732154 | 224 | 222.7092147 |
| 123074.jpg | 1498 | 2508.00953 | 30 | 14.85287237 | 30 | 12.1086 | 110 | 66.08119499 |
| 126007.jpg | 632 | 937.330477 | 30 | 13.49758754 | 30 | 14.29725505 | 54 | 47.37484995 |
| 130026.jpg | 1293 | 3790.79167 | 30 | 13.92529744 | 30 | 21.02152662 | 130 | 253.6586484 |
| 134035.jpg | 1582 | 7169.76381 | 30 | 35.06079451 | 30 | 24.5414119 | 339 | 1008.01674 |
| 14037.jpg | 579 | 564.128357 | 30 | 6.575411068 | 30 | 8.348742418 | 32 | 20.66507743 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 143090.jpg | 538 | 500.786283 | 30 | 6.122757692 | 30 | 6.153586031 | 28 | 3.677841299 |
| 145086.jpg | 973 | 2458.52386 | 30 | 19.63453914 | 30 | 13.44926084 | 88 | 163.6657304 |
| 147091.jpg | 837 | 2708.55468 | 30 | 15.1188396 | 30 | 23.03006061 | 96 | 225.6598672 |
| 148026.jpg | 1422 | 6111.84562 | 30 | 17.46055117 | 30 | 23.35928087 | 209 | 380.6909295 |
| 148089.jpg | 1504 | 4431.76511 | 30 | 21.73096994 | 30 | 18.28279097 | 230 | 466.8259941 |
| 156065.jpg | 1313 | 2219.83068 | 30 | 12.51620561 | 30 | 13.66115018 | 137 | 122.66972 |
| 157055.jpg | 1122 | 2823.10855 | 30 | 15.6379309 | 30 | 15.30140228 | 134 | 169.5157434 |
| 159008.jpg | 1154 | 6732.9201 | 30 | 24.34746955 | 30 | 27.87585098 | 192 | 645.5640987 |
| 160068.jpg | 772 | 2036.4122 | 30 | 15.11944853 | 30 | 24.37725296 | 173 | 280.0261124 |
| 16077.jpg | 1126 | 3152.88582 | 30 | 20.64326055 | 30 | 19.41141424 | 137 | 183.0302029 |
| 163085.jpg | 1201 | 1601.21421 | 30 | 10.46208559 | 30 | 11.44165898 | 153 | 88.97638392 |
| 167062.jpg | 350 | 685.494491 | 30 | 6.462879692 | 30 | 21.94535665 | 36 | 98.97854525 |
| 167083.jpg | 1503 | 7715.09184 | 30 | 29.69046734 | 30 | 24.11377944 | 249 | 868.7227677 |
| 170057.jpg | 1510 | 1981.45476 | 30 | 14.23792585 | 30 | 7.975875815 | 115 | 88.42343881 |
| 175032.jpg | 2016 | 3985.26365 | 30 | 13.04761629 | 30 | 10.21119107 | 338 | 295.3701176 |
| 175043.jpg | 1867 | 5075.42386 | 30 | 15.88458913 | 30 | 13.11017098 | 246 | 285.9459943 |
| 182053.jpg | 843 | 2358.28901 | 30 | 21.03958202 | 30 | 29.26805034 | 66 | 76.45878524 |
| 189080.jpg | 493 | 1631.27672 | 30 | 27.15149667 | 30 | 17.65593404 | 53 | 118.0697033 |
| 19021.jpg | 1186 | 3096.88037 | 30 | 20.15174685 | 30 | 15.23727214 | 126 | 207.4307501 |
| 196073.jpg | 1363 | 450.95805 | 30 | 1.605263779 | 30 | 1.562410798 | 28 | 13.86236283 |
| 197017.jpg | 1063 | 2290.77054 | 30 | 13.73395621 | 30 | 8.834629605 | 49 | 75.76156178 |
| 208001.jpg | 1370 | 2001.25038 | 30 | 14.17481305 | 30 | 10.53450461 | 73 | 33.45594298 |
| 210088.jpg | 812 | 1906.62662 | 30 | 21.23122316 | 30 | 23.77100518 | 196 | 262.3353513 |
| 21077.jpg | 1023 | 3251.43943 | 30 | 34.11562349 | 30 | 26.13554329 | 103 | 158.7648391 |
| 216081.jpg | 1100 | 2658.06452 | 30 | 16.94230393 | 30 | 16.32767746 | 101 | 121.2143725 |
| 219090.jpg | 806 | 1909.13381 | 30 | 14.79824417 | 30 | 17.19563349 | 126 | 249.814327 |
| 220075.jpg | 1151 | 4315.98081 | 30 | 25.84094046 | 30 | 27.92794847 | 191 | 490.5314982 |
| 223061.jpg | 1464 | 5114.11207 | 30 | 30.72041176 | 30 | 10.48690307 | 130 | 359.6593382 |
| 227092.jpg | 580 | 183.955019 | 30 | 6.948703126 | 30 | 6.048066693 | 35 | 5.053446491 |
| 229036.jpg | 1643 | 5441.1904 | 30 | 24.65057288 | 30 | 20.10478811 | 205 | 367.9809758 |
| 236037.jpg | 1769 | 3377.4434 | 30 | 13.56062625 | 30 | 11.60584411 | 47 | 24.28399309 |
| 24077.jpg | 1171 | 6586.88901 | 30 | 21.09340498 | 30 | 34.34597759 | 209 | 564.1490066 |
| 241004.jpg | 672 | 1846.34277 | 30 | 15.03175824 | 30 | 11.25943748 | 18 | 6.329999727 |
| 241048.jpg | 1311 | 3567.73129 | 30 | 18.62327039 | 30 | 15.78780182 | 115 | 145.4363074 |
| 253027.jpg | 1407 | 3761.93043 | 30 | 8.616660962 | 30 | 10.20736089 | 145 | 216.2380939 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 253055.jpg | 724 | 1358.92606 | 30 | 10.50763307 | 30 | 8.481973985 | 43 | 93.39157767 |
| 260058.jpg | 951 | 586.568768 | 30 | 7.167213422 | 30 | 4.93240211 | 56 | 27.91579579 |
| 271035.jpg | 1226 | 2654.73585 | 30 | 27.89463073 | 30 | 19.03873562 | 160 | 176.3366913 |
| 285079.jpg | 1458 | 5394.25211 | 30 | 27.77880681 | 30 | 27.77352228 | 144 | 392.5575418 |
| 291000.jpg | 1918 | 4780.2188 | 30 | 17.77147849 | 30 | 12.24252809 | 215 | 296.1297228 |
| 295087.jpg | 1007 | 973.066403 | 30 | 7.312288358 | 30 | 7.646635007 | 121 | 61.22315617 |
| 296007.jpg | 798 | 457.915981 | 30 | 5.219127091 | 30 | 6.153148851 | 72 | 20.87690283 |
| 296059.jpg | 772 | 766.54737 | 30 | 8.190954832 | 30 | 7.076291333 | 51 | 36.33076152 |
| 299086.jpg | 811 | 354.814713 | 30 | 2.582472537 | 30 | 3.796890368 | 90 | 26.62139639 |
| 300091.jpg | 776 | 1144.27812 | 30 | 8.080730937 | 30 | 14.39581718 | 52 | 75.73142579 |
| 302008.jpg | 654 | 3691.2739 | 30 | 16.00413413 | 30 | 42.89515041 | 157 | 401.3807512 |
| 304034.jpg | 1757 | 6510.81132 | 30 | 23.03209476 | 30 | 20.84206713 | 215 | 445.5341587 |
| 304074.jpg | 1493 | 3932.34765 | 30 | 14.80218701 | 30 | 15.07463291 | 165 | 220.0041843 |
| 306005.jpg | 971 | 3015.34008 | 30 | 21.75390303 | 30 | 25.43988632 | 106 | 179.5255069 |
| 3096.jpg | 206 | 149.513743 | 30 | 9.168466113 | 30 | 8.887204618 | 28 | 13.67870754 |
| 33039.jpg | 1770 | 10599.4929 | 30 | 34.14008898 | 30 | 37.19887928 | 382 | 1141.536169 |
| 351093.jpg | 1170 | 5359.9644 | 30 | 31.90378971 | 30 | 26.17192941 | 54 | 83.80317278 |
| 361010.jpg | 1105 | 2519.15553 | 30 | 27.69520757 | 30 | 18.08430152 | 78 | 165.052685 |
| 37073.jpg | 609 | 556.509311 | 30 | 3.616207401 | 30 | 7.794460685 | 40 | 28.98454219 |
| 376043.jpg | 1669 | 3481.97571 | 30 | 22.04329843 | 30 | 16.21279401 | 87 | 88.23981302 |
| 38082.jpg | 1553 | 2063.97891 | 29 | 10.85394477 | 30 | 11.04287982 | 150 | 79.0603222 |
| 38092.jpg | 1077 | 3348.25723 | 30 | 21.64435293 | 30 | 22.861577 | 97 | 135.7437119 |
| 385039.jpg | 1030 | 3367.50462 | 30 | 20.57241501 | 30 | 16.09431364 | 139 | 250.4655104 |
| 41033.jpg | 1144 | 2590.76203 | 30 | 11.84977398 | 30 | 11.27291502 | 95 | 147.1746392 |
| 41069.jpg | 1755 | 2568.74895 | 30 | 11.53359152 | 30 | 8.936223088 | 148 | 95.87780124 |
| 42012.jpg | 1191 | 2429.57066 | 30 | 12.34068668 | 30 | 15.88521028 | 98 | 103.8458467 |
| 42049.jpg | 332 | 1034.00255 | 30 | 17.28088576 | 30 | 25.10549263 | 85 | 105.6548292 |
| 43074.jpg | 1060 | 712.485588 | 30 | 5.646093351 | 30 | 5.59818713 | 91 | 29.33066064 |
| 45096.jpg | 294 | 372.218653 | 30 | 13.10613857 | 30 | 20.98230911 | 28 | 22.21981633 |
| 54082.jpg | 938 | 718.032785 | 30 | 6.336446096 | 30 | 9.446316232 | 84 | 29.94485143 |
| 55073.jpg | 1712 | 5508.72162 | 30 | 21.08557028 | 30 | 17.92284581 | 146 | 253.5688952 |
| 58060.jpg | 1396 | 3235.00004 | 30 | 7.986055522 | 30 | 10.56054144 | 182 | 200.988938 |
| 62096.jpg | 935 | 5695.87996 | 30 | 37.22602605 | 30 | 26.76224867 | 120 | 519.389533 |
| 65033.jpg | 1580 | 3814.28418 | 30 | 26.57344001 | 30 | 17.76725125 | 116 | 131.5661554 |
| 66053.jpg | 1372 | 1992.22626 | 30 | 15.06141044 | 30 | 11.85939944 | 52 | 18.96573007 |


| Name | NRW | YLGCW | NRN | YLGCN | NRWC | YLGCWC | NRWNC | YLGCWNC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 69015.jpg | 1195 | 2129.84546 | 30 | 16.85257154 | 30 | 14.62187156 | 37 | 16.01728089 |
| 69020.jpg | 1565 | 1921.96118 | 30 | 9.691657694 | 30 | 11.30199694 | 34 | 15.19594645 |
| 69040.jpg | 1971 | 2794.54619 | 30 | 8.430874632 | 30 | 6.742054893 | 162 | 92.50660174 |
| 76053.jpg | 1355 | 1961.59297 | 30 | 14.53839708 | 30 | 8.030870929 | 58 | 37.26601839 |
| 78004.jpg | 950 | 2308.13463 | 30 | 25.53464809 | 30 | 11.99868266 | 43 | 31.97505569 |
| 8023.jpg | 1581 | 2154.59496 | 30 | 7.49848691 | 30 | 6.923516488 | 89 | 44.07585383 |
| 85048.jpg | 1379 | 4989.55645 | 30 | 28.64631403 | 30 | 21.65225117 | 165 | 291.389224 |
| 86000.jpg | 1040 | 2145.95411 | 30 | 15.0834316 | 30 | 17.38467529 | 191 | 223.9795532 |
| 86016.jpg | 1978 | 1902.67383 | 30 | 5.340363073 | 30 | 2.459407839 | 222 | 92.92388521 |
| 86068.jpg | 1491 | 1344.46888 | 30 | 8.242691678 | 30 | 5.464249634 | 142 | 93.10549882 |
| 87046.jpg | 1498 | 5306.3395 | 30 | 25.03255663 | 30 | 22.28005166 | 208 | 372.5246924 |
| 89072.jpg | 1149 | 2574.69417 | 30 | 17.66717589 | 30 | 11.86732774 | 150 | 150.3189623 |
| 97033.jpg | 1210 | 4551.14267 | 30 | 22.41333127 | 30 | 20.64859837 | 138 | 244.6839257 |
| mean |  | 2917.52415 |  | 16.29866326 |  | 15.71628835 |  | 185.3977909 |
| std.dev. |  | 1890.98221 |  | 8.076534288 |  | 7.712174375 |  | 200.4808565 |



Figure 4.6: Plots of YLGC values for 30 regions.

In Tables 4.2, 4.3, 4.4 and Figure 4.4, 4.5,4.6. NRW is the number of regions after use Watershed method, YLGCW is the value of YLGC that after using Watershed
method. NRN is the number of regions after use Normalized cut method, YLGCN is the value of YLGC that after using Normalized cut method. NRWC is the number of regions after use Water-cuts RAG method, YLGCWC is the value of YLGC that after using Water-cuts RAG method. NRWNC is the number of regions after use Watercuts Clust method, YLGCWNC is the value of YLGC that after using Water-cuts Clust method.

In the above three Figure 4.4, 4.5, 4.6 and Table 4.2, 4.3, 4.4, we have set in N-cuts and Water-cuts RAG the same number of region (100 images), which is under the condition of changing the nbsegments only. Table 4.2 is the result of segmenting the original image into 10 regions, Table 4.320 regions and Table 4.4 30 , which means nbsegments takes 10,20 and 30 . Graph $4.4,4.5,4.6$ show the bar graphs. Here we only compare YLGC value of N-cuts and Water-cuts RAG because we can not precisely control or predict the regions of the segmentation results. Thus it is meaningless to compare YLGC value under the condition of different regions. So we adopt line chart and YLGC mean value and standard deviation to compare N-cuts and Water-cuts RAG. In Table 4.2, when the segmentation has 10 sections, the YLGC mean value and standard deviation calculated by N-cuts are 2.648 and 1.654 , while the YLGC mean value and standard deviation calculated by Water-cuts RAG are 2.637 and 1.333; both are smaller than the former two numbers. In Table 4.3, when the segmentation results have 20 sub-sections, then the YLGC mean value and standard deviation calculated by N-cuts are 8.096 and 4.218 , while YLGC mean value and standard deviation calculated by Water-cuts RAG are 7.964 and 3.803 ; both are smaller than the former two numbers. In Table 4.4, when the segmentation results have 30 sub-sections, the YLGC mean value and standard deviation calculated
by N-cuts are 16.299 and 8.077 , while the YLGC mean value and standard deviation calculated by Water-cuts RAG are 15.716 and 7.712 ; both are smaller than the former two numbers. This has further proved that the Water-cuts RAG methods proposed in this thesis had made relative improvement compared with past calculation methods.

All the images are from UC Berkley Segmentation dataset [1].

## Chapter 5 CONCLUSION AND FUTURE WORK

Image segmentation has been a popular topic in the past few decades. Successful segmentation is useful for identifying and interpreting the features of images. This paper has proposed a combined approach of using Watershed and N-cuts together, which is Water-cuts RAG to segment images. The Watershed approach preprocesses the input image, structures a weighted image and then uses N -cuts to segment the pictures. In addition, this paper has proposed a method to integrate clustering algorithm, which has achieved a relatively good segmentation result.

The following major work has been done in this paper: the first is to study graph theoretic algorithms in the literature mainly formulating image segmentation as a graph optimization problem. The second is to reduce the complexity of this problem by optimization of region-based graph structures. The last is to validate the performance of the existing and the proposed methods and test the hypothesis that region-based analysis reduces the complexity of optimization problem.

Meanwhile, the large amount of experiments done by using these two calculation methods have demonstrated that these two methods have achieved satisfactory results in execution time and segmentation results. These two methods are of practical value.

Due to factors such as limited time, calculation complexity and so on, there is still much room of study for this paper in regard of this topic. The main targets are to lower calculation complexity, reduce calculation time, and more precise segmentation results. In the future work, emphasis will be on the following aspects:
(1) To try other approaches to preprocess the input images and even techniques in other domain to segment the visual scene.
(2) To start from the feature vector and eigenvalue to optimize calculation results and reduce calculation time length.
(3) To improve N-cuts method by using image magnitude and phase.

## REFERENCE LIST

[1] http://www.eecs.berkeley.edu/research/projects/cs/vision/bsds/.
[2] Julio Carballido-Gamio abd Serge J. Belongie and Sharmila Majumdar. Normalized cuts in 3d for spinal mri segmentation. IEEE Trans, Medical Imaging, 23(1):36-44, 2004.
[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222-1239, 2001.
[4] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124-1137, September, 2004.
[5] Ting Chen and Zhenqiang Shen. An adaptive image segmentation method using region growing. In the Computer Engineering and Technology, pages 78-80, 2010.
[6] Timothee Cour, Florence Benezit, and Jianbo Shi. Spectral segmentation with multiscale graph decomposition. IEEE Computer society Conferenc on Computer Vision and Pattern Recognition, 2:1124-1131, 2005.
[7] O. Demetz. Graph cuts in computer vision. Master's thesis, 2009.
[8] Wang Demin. Unsupervised video segmentation based on watersheds and temporal tracking. IEEE Transactions on Circuits and Systems for Video Technology, 8(5):539-546, 1998.
[9] H. Digabel and C. Lantuejoul. Iterative algorithms. In J.-L. Chermant, editor, 2nd European Symposium on Quantitative Analysis of Microstructures in Material Science, Biology and Medicine, pages 85-99, 1977.
[10] Hai Gao, Wan-Chi Siu, and Chao huan Hou. Improved techniques for automatic image segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 11(12):1273-1280, 2001.
[11] Golub and Van Loan. Matrix computations. 1989.
[12] R. C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edition). Aug,
2007.
[13] Xu Haifeng, Akmal A Y, and Mansur R K. Automatic moving object extraction for content based applications. IEEE Transactions on Circuits and Systems for Video Technology, 14(6):796-812, 2004.
[14] Haris K, Efstratiadis S.N, Maglaveras N, and Katsaggelos A.K. Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing, 7(12):1684-1699, 1998.
[15] Sokratis Makrogiannis, George Economou, Spiros Fotopoulos, and Nikolaos G.Bourbakis. Segmentation of color images using multiscale clustering and graph theoretic region synthesis. IEEE Transactions on Systems, Man, and Cyberneticspart Part A: Systems and Humans,, 35(2):224-238, March 2005.
[16] J. Malik and P.Perona. Preattentive texture discrimination with early vision mechanisms. Optical Society of American, 7(2):923-932, May 1990.
[17] Salembier P and Pardas M. Hierarchical morphological segmentation for image sequence coding. IEEE Transactions on Image Processing, 3(5):639-651, 1994.
[18] Paul R.H, Canagarajah C.N, and David R.B. Image segmentation using a texture gradient based watershed transform. IEEE Transactions on Image Processing, 12(12):1618-1633, 2003.
[19] O'Callaghan R.J and Bull D.R. Combined morphological spectral unsupervised image segmentation. IEEE Transactions on Image Processing, 14(1):49-62, 2005.
[20] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Xplore, pages 731-737, 1997.
[21] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.
[22] Yaakov T and Amir A. Automatic segmentation of moving objects in video sequence: A region labeling approach. IEEE Transactions on Circuits and Systems for Video Technology, 12(7):597-612, 2002.
[23] Luc Vincent and Pierre Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583-598, June 1991.
[24] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:1101-1113, 1993.
[25] Yuri Y.Boykov and Marie-Pierre Jollu. Interactive graph cuts for optimal boundary \& region segmentation of objects in $n-d$ images. Internation Conference on Computer Vision, I:105-112, July 2001.
[26] Yuri Y.Boykov and Olga Veksler. Graph cuts in vision and graphics theories and applications. Mathematical Models in Computer Vision, 2006.

## CURRICULUM VITAE

Chao Zhang<br>1300 S Farmview Dr Apt.G33<br>Dover, DE 19904<br>(302) 698-7582

## Education

Masters: Fall 2012 - Spring 2015, Department of Applied Mathematics and Mathematical Physics, Delaware State University, Dover, Delaware. Major in Applied Mathematics.

Bachelor of Science: Fall 2008- Spring 2012 :Department of Computer Science, Jilin Business and Technology College, Changchun, Jilin, China. Major in Computer Science

Learning experience: exchange student- fall semester 2011 study in Delaware State University (08/2011 01/2012) Study Achievement: excellent

## Awards and Presentations

The Mathematical Association of America. "Finding Water-Cuts: Image Segmentation using Watershed and Graph Optimization", October 25, 2014.

Excellent Graduate Student of Jinlin Province, 2012.

## Other Experience

The Host of the Chinese New Year celebration for Great Dover Area, U.S.A for years 2013, 2014.

## Computer Skills

C/C++
Matlab
Latex
MS-Office


Delaware State University
Mass Communication Dept. 1200 N. DuPont Hwy
Dover, DE 19901
ETV building room 125
302.857.6584

Fax 302.857.6589

## News Release

## FOR IMMDIATE RELEASE

WDSU radio "The Hive" radio station is hosting the weekly show "Breakn N Entern" for up and coming artist on campus and local artist. The interview's with the guest will take place on 4/21/2015 at the station location from 4:30 to 6:30 pm. from the radio show.

Dover, Delaware (April 20,2015)- WDSU radio station "The Hive" is hosting their weekly show to promote inspiring artist of all diversifications. "Breakn N Entern" is mutually beneficial to the artists on the rise and the hive station. The station and artists obtain exposure. The show will be hosted by Marguell "Quell" Tate, who is the Music Director and Label Representative. The co-host is Lonjae "LonnieJ" Williams who is the hive"s operation manager.
"Breakn N Entern" has interviewed emerging artist " Lee Mazin" who is the first female contracted artist of Dream chasers record label, as well as another artist under Jahlil Beats music group. Our shows helps the artist get a following from our students." -Marquell Tate

WDSU Radio, "The Hive," is a closed-circuit campus radio station of Delaware State University. This station airs on all campus televisions on channel 15. The Hive is by the students, for the students with the advisement of professor Ava Perrine.

This organization is open to all students at DSU regardless of the major as long as they are in good academic standings. The WDSU radio station aims to promote student opportunities to gain hands on experience with radio production before they graduate and enter the production industry.

For more information on WDSU Radio
https://vimeo.com/user33133172
https://instagram.com/wdsuradio/
https://www.facebook.com/media/set/?set=0.52562646477\&ref=mf http://websta.me/n/wdsuradio
https://blogwdsuradio.wordpress.com/2013/03/26/about-wdsu-radio/

